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Highlights:

• The most representative examples for the TM-free and TM-catalyzed mechano-synthesis of
functional polymers are reported;

• The most common applications for the various types of functional polymers are precented;
• The advantage of solvent-free mechanosynthesis over conventional solvent-based synthesis

are highlighted;
• In many cases the better performance of the mechanchemically-prepared polymers over those

obtained by using conventional methods are demonstrated.

Abstract: Mechanochemically induced methods are commonly used for the depolymerization of
polymers, including plastic and agricultural wastes. So far, these methods have rarely been used
for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical
polymerization offers numerous advantages such as less or no solvent consumption, the accessibility
of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly,
the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during
polymerization. Consequently, the development of new functional polymers and materials, including
those based on mechanochemically synthesized polymers, has drawn much interest, particularly
from the perspective of green chemistry. In this review, we tried to highlight the most representative
examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional
polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials
for photovoltaics, etc.

Keywords: functional polymers; ball-milling; green chemistry; solid-state chemistry; solvent-free
synthesis; TM-catalyzed synthesis; TM-free synthesis

1. Introduction

According to the International Union of Pure and Applied Chemistry (IUPAC), among
the 10 chemical innovations that could impact society, reactive extrusion could be the most
promising one as it allows chemical reactions to be carried out completely in solvent-
free conditions with good E-factors and, thus, with a lower negative impact on the
environment [1]. One remarkable example of such a technique is the use of mechanosyn-
thesis, such as grinding, ball-milling etc., as an equal or, in most cases, better alternative
to conventional solvent-based conditions for carrying out chemical reactions. In turn,
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a most remarkable example of such reactions is solvent reduced or solvent-free polymeriza-
tion, including processes involving coordination bonds [2] under mechanochemical, most
commonly ball-milling, conditions. Therefore, the methods for making polymers under
grinding/ball-milling conditions, which were formerly used to rupture them, are of wide
interest in the chemical community worldwide [3].

It worth mentioning that in past decades, mechanochemical processes/reactions
have attracted growing attention due to the green aspects of this type of synthesis [4],
especially for the utilization of recyclable materials [5,6], the preparation of biologically
active compounds [7,8], the preparation of various types of polymers [9], and the other
types of materials [10,11].

In this review, the most representative examples of the mechanosynthesis of functional
polymers are presented. The obtained polymers are arranged according to their possible
applications and/or polymerization conditions.

2. Results and Discussion
2.1. Mechanosynthesis of Conductive Polymers

The high electrical conductivity of polyacetylenes and polyethynes were discovered for
the first time in the 1970s [12], and since that time these polymers have become promising
materials for molecular electronics [13–16]. On the other hand, poly(p-phenylene vinylenes)
(PPVs) possess several of such extraordinary attributes, such as tunable optical properties,
good reactivity, and high electrical conductivity [17], and, therefore, they are considered
as advanced materials for electronics applications, particularly for OLEDs [18]. In 2014,
Swager’s group reported the mechanochemical synthesis of poly(phenylene vinylene) [19]
(Figure 1). To achieve this, the authors used solid-state base-catalyzed Gilch polymerization
in a Retsch vibrational mill and zirconium oxide jar/milling balls. Depending on the
amount of milling time, base strength, solid-state dilution, milling frequency, and the
size of the milling balls, various polymerization degrees were observed. In the most
representative case, PPVs up to a 40 kDa molecular weight were prepared in up to a
70% yield after 30 min milling with 6 eq. of KOtBu. Polymer molecular weights and
polydispersity indices were estimated by gel permeation chromatography (GPC) using
polystyrenes as standards.
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Among semiconductive polymers, polypyrroles (PPy) are the most attractive ones due
to their high conductivity, good stability, and great applicability for various tasks, such as en-
ergy storage and transfer, sensory applications [20–23], and functional membranes [24–26].
Electrochemical or chemical oxidative polymerization in water or organic solutions is a
common way to prepare polypyrroles. Depending on the type of oxidant and solvent,
polypyrroles of various conductivities can be obtained [27,28]. For instance, in an aqueous
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medium in the presence of ammonium persulfate, PPy with a conductivity not higher than
0.5 S·cm−1 was obtained [29].

Posudievsky and Kozarenko [30] reported the synthesis of PPy by using solvent-
free ball-milling in the presence of ammonium persulfate as an oxidant at an uncommon
(for solvent-based approaches) value of the monomer/oxidant (ammonium persulfate)
mole ratio equal to two. The PPy was obtained in a high yield, and the greatest level of
conductivity (6.5 S·cm−1) was achieved.

In a later study [31], the same authors proposed the formation of highly conducting PPy
at a high monomer/oxidant (ammonium persulfate) mole ratio via the chain mechanism
with the intermediate formation of poly(3-pyrroline) and its further mechanochemical
dehydrogenation via both an oxidative (ammonium persulfate) method and under the
action of mechanical forces. For the obtained PPy, a conductivity above 5 S·cm−1 was
achieved only at a relatively low oxidant content in the initial reaction mixture. Based
on the TEM data, the PPy with the highest conductivity consisted of up to ∼100 nm
nanoparticles with a core–shell structure, with the material of the shell being amorphous
and the core being formed by more closely packed polymer macromolecules.

2.2. Mechanosynthesis of Polystyrenes and Poly(2-vinylnaphthalene)

Polystyrene (PS) and poly(2-vinylnaphthalene) (PVN) are known to exhibit
excimer-induced energy migration properties [32,33], strong excimer fluorescence, and
phosphorescence [34,35]. In addition, they are important components for plastic
scintillators [36–39].

Cho and Bielawski published a paper on the mechanosyntheis of PVN (Figure 2) by
using a variant of atom transfer radical polymerization under ball-milling conditions using
2-vinylnaphthalene, phenylethyl bromide (initiator), and CuIBr/tris(2-pyridylmethyl)amine
(catalyst) under nitrogen using 10 mm diameter zirconium dioxide jar/balls in a vibrational
ball mill at 30 Hz for 6 h [40]. By using semi-logarithmic plot of the monomer concentration
vs. time, a linear dependance was observed, with the conversion of the polymerization
reaction reaching as high as 97 % after 6 h. In addition, a linear correlation between the
polymer MW and monomer conversion was observed, although the experimental Mn,
which was estimated by means of size-exclusion chromatography (SEC) using anisole as a
standard, was in fact lower than the theoretical one, which was possibly due to premature
mechanical degradation.
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Figure 2. Mechanosynthesis of PVN.

It worth mentioning that at a frequency of 10 Hz for 6 h and at the same reagents
ratio, no significant polymerization was observed, while at a frequency of 20 Hz, the
formation of the desired polymer took place with an Mn of 16.0 kDa, although with
a monomer conversion of 50 % and a relatively broad polydispersity (Ð of 3.23). The
monomer conversion was analyzed by 1H NMR spectroscopy.

In 2007, Hasegawa and co-authors reported the mechanochemically initiated polymer-
ization of styrene via its grinding with talc in SiN3 jar/milling balls (8.5 mm) at 24 Hz in a
vibrating ball mill [41]. The obtained PSs were isolated as composites of talc particles, that
is, the polymer was attached to the talc particles. Their time–conversion studies demon-
strated that the polymerization of styrene took place within 1 h, and the conversion of
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styrene depended strongly on either the grinding time or talc concentration. For instance, a
41% conversion was observed at a talc concentration of 15 wt% with a grinding time of 6 h,
while only a 50% conversion was observed after 24 h. The molecular weight of the polymers
was measured by means of GPC, and the highest Mn observed was 1.6 × 106 Da. Thus,
the authors suggested an efficient way toward forming clay nanocomposites composed of
widely used polystyrene possessing attractive thermomechanical properties.

Very recently, Kim and co-authors reported a mechanochemical solid-state vinyl
polymerization method [42] (Figure 3). In their study, either 4-vinyl biphenyl or 4-biphenyl
methacrylate in zircona jars/milling balls (8 mm) were subject to ball-milling in a Retsch
Mixing Mill MM400 at 30 Hz for 1 h to produce BPP1-2 polymers with a 99% conversion.
It worth mentioning that at lower speed lower or no conversion was observed.
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The same polymerization was also carried out by using an anionic initiator, such as
sec-BuLi. According to the authors, the alkyl-anion-promoted polymerization proceeded
with excluding radical initiation, and the generally expected features of anionic poly-
merization, such as molecular weight control and narrow dispersity, were not observed
(PDI = 1.25–4.46, Mw = 23.5–309 kDa). The molecular weights of the polymers were deter-
mined by SEC analysis using polystyrenes as standards, and the conversion degree was
determined by 1H NMR spectroscopy. It was suggested that upon ball-milling, the me-
chanical force fractured the newly formed polymer chains via anionic initiation to generate
macroradicals, and these newly formed radicals participated in the polymerization process.
In other words, the anionic process was responsible for only the initiation step, and after
that, the ball-milling made the radical process become dominant during the polymerization.

2.3. Mechanosynthesis of Polyazomethines

The main difference in polyazomethines (PAMs) from polyacetylenes is the presence of
C=N moieties, which are isoelectronic to CH=CH ones, and they both have a similar planar
molecular structure and maximum absorption peak. Owing to the much easier formation
of C=N bonds, PAMs can be suitable alternatives to polyacetylenes. PAMs are widely
used in optoelectronic devices [43] such as photovoltaic cells [44,45], electroluminescent
devices [46], and electrochromic devices [47–49]. Importantly, the dynamic nature of
azomethine bonds provides new avenues for using polyazomethines as components for
biocompatible and totally disintegrable electronics [50]. However, as with most high-
molecular-weight conjugated polymers, the low solubility of polyazomethines in common
organic solvents limits their preparation, processability, characterization, and application.
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Therefore, the mechanosynthesis of PAM is a good alternative to conventional solution-
based procedures.

In 2016, Grätz and Borchardt reported [51] the very-first mechanosynthetic approach
to polyazomethines, PAM1, by mixing equal molar amounts of p-phenylenediamine and
terephthalic aldehyde in a zirconium oxide milling cup with 22 zirconium oxide milling
balls (d10 mm) at 800 rpm for 45 min to produce the desired polymer with Mn = 3010 Da
and PDI = 1.36 (based on the data of MALDI-TOF) (Figure 4):
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According to the authors, the obtained polymers had a high thermal stability and
low optical bandgaps (λmax = 456 nm). The influence of the milling ball size and material
was investigated, and the tungsten carbide ones gave the highest conversion, but all the
materials gave higher yields compared to solution polymerization due to the absence of
the influence of the solvent. The formation of PAM1 could be easily monitored by solid-
state IR based on the appearance of a vibration of the C=N group at 1609 cm−1 as well
as the disappearance of the vibrations of the carbonyl and amine groups at 1686 cm−1

and 1514 cm−1, respectively. All the above-mentioned information strongly supports the
effectiveness of mechanosynthesis for the preparation of polyazamethines.

We recently reported on the mechanosynthesis of diketo-pyrrolopyrroles (DPPs)-
based azomethine polymers [52] (Figure 5). Two synthetic strategies were used. In the first
approach, a combination of Pd(OAc)2-catalyzed Suzuki cross-coupling and a condensation
reaction was used, and dibromo-substituted DPPBr reacted with 4-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)aniline and terephthalic aldehyde in the presence of potassium
carbonated in a stainless-steel jar/milling balls upon ball-milling in a Retch Planetary Mill
PM100 at 500 rpm for 4 h to produce the polymer PAM2 in a 60 % yield. In the second
approach, owing to the wide use of DPP-based materials for biological applications [53],
a cytotoxic Pd-free synthesis was developed by reacting aniline-appended DPPNH2 with
terephthalic aldehyde in the presence of p-toluenesulphonic acid (p-TSA) and with an
excess of CaCl2 as a dehydrating agent to produce target polymer PAM2 in a yield as high
as 85%.
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By using similar conditions, an azamethine-linked dibenzo[a,c]phenazine-containing
polymer PAM3 was prepared [54] (Figure 6). The Mn = 5365 Da was calculated by using
1H NMR end-group analysis.
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2.4. Mechanosynthesis of Biopolymers and (Bio)Degradable Polymers

In past decades, closed-loop plastic recycling, as a process by which a product or
material can be used and then turned into a new product or converted back to raw ma-
terial without losing its properties during the recycling process, has gained wide interest
worldwide [55–63]. For instance, dynamic covalent polymers, such as vitrimers, have been
proposed as a possible alternative to non-recyclable polymers [64–70]. It is worth mention-
ing that the depolymerization of vintimers is still a challenge as it commonly requires high
temperatures and, in many cases, it does not produce the starting monomers but produces
short oligomers.

Christensen et al. suggested using diketoenamine dynamic bonds and mechanical
force for the closed-loop recycling of plastic poly(diketoenamine)s (PDKs) [71]. In their
work, PDK1-3 was prepared in high yields (95%) via simple polycondensation reactions
between ß-triketones and either aromatic or aliphatic amines by using a stainless-steel
jar/milling balls in a SPEX SamplePrep 8000 Mixer/Mill for between 15 and 60 min
(Figure 7).



Polymers 2023, 15, 1853 7 of 31Polymers 2023, 15, x FOR PEER REVIEW 7 of 31 
 

 

 
Figure 7. The mechanosynthesis of poly(diketoenamine)s PDK1-3. 

In addition, the authors reported a recycling process (depolymerization) for the pol-
ymer to recover the used monomers. A disintegration process occurred during room-tem-
perature hydrolysis in aqueous strong acid solutions to collect pure triketones, while the 
amine monomers were recovered by a regenerative resin-based process. Interaction with 
sulfuric or hydrochloric acids (5.0 M) during 12 h recovered the pure monomers in a more 
than 90% isolated yield. Moreover, it was confirmed experimentally that the presence of 
various types of polymers and plastics, such as poly(ethylene terephthalate) (PET), nylon-
6,6 (PA), polyethylene (PE), poly(vinyl chloride) (PVC), and polycarbonate (PC), as well 
as dyes, inorganic substances, etc., did not interfere with the regeneration process, thus 
confirming the high ability of PDKs to be recovered in a high selectivity. This degrada-
tion/regeneration process represents an efficient closed-loop recycling method of a poly-
mer with potential applications in biodegradable materials. 

Poly(lactic acid)(PLA)-based polymers are another type of readily degradable mate-
rials for bioplastics [72]. In 2019, Lee and co-workers reported the mechanochemical syn-
thesis of PLA block copolymers [73] (Figure 8).  

In the most representative case, the authors were able to prepare PLA-PEO-PLA 
block copolymer via the reaction of D-Lactide, polyethylene oxide 6000, and DBU in a 
stainless-steel milling container/milling ball (12 mm diameter) in a Retsch Mixer Mill MM 
400 at 20 Hz for 1 h to produce the target polymer with Mn = 17.9 kDa (PDI = 1.33, based 
on GPC) with a >99% conversion. By using a similar approach (7 mm milling ball), other 
di- and three-block co-polymers, such as PLA4000-PεDL4600-PLA4000 (92%, 19.9 kDa, 
PDI = 1.52), PLA4000-PδDL4400-PLA4000 (88%, 10.7 KDa, PDI = 1.41), PεCL4800-PLA4000 
(89%, 11.3 kDa, PDI = 1.20), PLA2000-PTHF2900-PLA2000 (94%, 8.89 kDa, PDI = 1.55), and 
PLA4000-PTHF2900-PLA4000 (83%, 13.2 kDa, PDI = 1.26), were successfully prepared. 
Due to the biodegradability of PLA, these polymers could have biomedical applications. 

 
Figure 8. The mechanosynthesis of poly(lactic acid) block co-polymers. Reproduced with the per-
mission of reference [73]. 

Along with 2,5-furandicarboxylic acid (FDCA) [74,75] and 5-hydroxymethylfurfural 
(HMF) [76], 2,5-bis(hydroxymethyl)furan (BHMF) can be considered as one of the im-
portant bio-based building blocks for green chemistry and as an important monomer for 

Figure 7. The mechanosynthesis of poly(diketoenamine)s PDK1-3.

In addition, the authors reported a recycling process (depolymerization) for the poly-
mer to recover the used monomers. A disintegration process occurred during room-
temperature hydrolysis in aqueous strong acid solutions to collect pure triketones, while
the amine monomers were recovered by a regenerative resin-based process. Interaction
with sulfuric or hydrochloric acids (5.0 M) during 12 h recovered the pure monomers
in a more than 90% isolated yield. Moreover, it was confirmed experimentally that the
presence of various types of polymers and plastics, such as poly(ethylene terephthalate)
(PET), nylon-6,6 (PA), polyethylene (PE), poly(vinyl chloride) (PVC), and polycarbonate
(PC), as well as dyes, inorganic substances, etc., did not interfere with the regeneration
process, thus confirming the high ability of PDKs to be recovered in a high selectivity. This
degradation/regeneration process represents an efficient closed-loop recycling method of a
polymer with potential applications in biodegradable materials.

Poly(lactic acid)(PLA)-based polymers are another type of readily degradable materials
for bioplastics [72]. In 2019, Lee and co-workers reported the mechanochemical synthesis
of PLA block copolymers [73] (Figure 8).
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In the most representative case, the authors were able to prepare PLA-PEO-PLA block
copolymer via the reaction of D-Lactide, polyethylene oxide 6000, and DBU in a stainless-
steel milling container/milling ball (12 mm diameter) in a Retsch Mixer Mill MM 400 at
20 Hz for 1 h to produce the target polymer with Mn = 17.9 kDa (PDI = 1.33, based on
GPC) with a >99% conversion. By using a similar approach (7 mm milling ball), other
di- and three-block co-polymers, such as PLA4000-PεDL4600-PLA4000 (92%, 19.9 kDa,
PDI = 1.52), PLA4000-PδDL4400-PLA4000 (88%, 10.7 KDa, PDI = 1.41), PεCL4800-PLA4000
(89%, 11.3 kDa, PDI = 1.20), PLA2000-PTHF2900-PLA2000 (94%, 8.89 kDa, PDI = 1.55), and
PLA4000-PTHF2900-PLA4000 (83%, 13.2 kDa, PDI = 1.26), were successfully prepared. Due
to the biodegradability of PLA, these polymers could have biomedical applications.

Along with 2,5-furandicarboxylic acid (FDCA) [74,75] and 5-hydroxymethylfurfural
(HMF) [76], 2,5-bis(hydroxymethyl)furan (BHMF) can be considered as one of the im-
portant bio-based building blocks for green chemistry and as an important monomer for
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biopolymers. In 2020, Oh and co-authors [77] reported a facile mechanochemical synthesis
of BHMF-derived eco-friendly polyurethanes (PUs) (Figure 9). To achieve this, BHMF
was reacted with di-isocyanates in the presence of either DBTDL, DABCO, or DBU upon
ball-milling in a vibration mill. As a result of these two-component mechanochemical
polymerization reactions, a variety of BHMF-containing PUs were obtained with a Mw
that varied from 5 to 163 k with PDI = 1.18–2.75. According to the authors, these PUs were
flexible (Tg = 96 ◦C) and thermally stable (Td = 197 ◦C). In addition, three-component
mechanochemical polymerization was carried out (with BHMF and equimolar amounts
of either aliphatic diols or diamines) to produe PU co-polymers with a wide variation in
the polymer properties, such as the glass transition temperature and molecular weight
(Mw = 13–111 kDa, PDI = 1.25–1.75).
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2.5. Mechanosynthesis of Polyphenylenes

Functional polyphenylenes (FPPs) are one of the hottest topics for use in organic
electronics [78,79] and photovoltaics [80]. The most common methods for the preparation of
FPPS involve the Friedel–Crafts [81], Ullmann, and Suzuki cross-coupling reactions. How-
ever, the low solubility of FPPs is themain drawback for their preparation by solvent-based
methods. Therefore, some synthetic approaches, such as polymerization on a surface [82]
and Friedel–Crafts post-modification [83], are used.

Borchardt’s group reported a series of works on mechanochemical Suzuki cross-coupling
polymerization [84,85] (Figure 10). In the most representative case, 1,4-dibromobenzene re-
acted with 1,4-phenyldiboronic acid in the presence of palladium acetate and potassium
carbonate in a zirconium oxide jar with 22 zirconium oxide grinding balls (10 mm) in a
Fritsch Pulverisett 7 planetary ball mill at 800 rpm for 30 min to afford the linear polypheny-
lene (FPP1) with an outstanding degree of polymerization (DP) of 164. Among all the aryl
halides used, bromide was found to be the best functional group, leading to the highest
DP and yield while also showing a defined structure of the polymers. According to the
authors, the atom economy of the Suzuki reaction (38%) was identical for conventional
solvent-based and mechanochemical approaches. However, the conventional solvent-based
process proceeded with low mass productivity of 1.4% (due to the solvents present). Finally,
the mechanochemical approach provided three-times-as-high yields (10.6%).
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In addition to linear polymers, by using 3,5-dibromophenylboronic acid, the same
approach was used to prepare a microporous hyperbranched polymer (MHP1) with a high
temperature resistance and high yields in short reaction times.

Among the FPPs, polyfluorenes (PFs) [86] and their copolymers [87–89] exhibited
advanced optoelectronic properties due to the influence of micro- and macrostructural orga-
nization in a solid-state and/or polymer film [90–97]. Therefore, the method of preparation
of PFs can strongly influence their properties and performance.

Very recently, Nelson’s group developed [98] a mechanochemical Suzuki polymerization
method to prepare polyfluorene-conjugated polymers, such as poly(9,9-di-n-octylfluorenyl-
2,7-diyl) (PF), poly(9,9-dioctylfluorene-alt-benzothiadiazole) (PFBT), and poly[(9,9-bis(3′-
(N,N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) (Figure 11).
The authors provided extended research on optimizing the reaction conditions such as
the milling frequency and time and catalyst loading on the polymer molecular weights,
dispersity, and yield. It was found that the Pd catalyst loading played a key role, while the
milling time and frequency played a less important role.
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Moreover, a polyelectrolyte, PFN-Br, was developed using solvent-assisted ball-milling
polymerization from a PFN polymer during mechanochemical quaternization at the ter-
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minal amino groups. This material could have a potential application as an electron-
interface-layer material in OFETs, OLEDs, OPVs, and perovskite solar cells to improve the
interfacial properties.

2.6. Mechanosynthesis of Polyanylines and Polyamines

Polyanilines (PANIs) are the most famous conductive polymers [99–101] due to the
simplicity of their preparation via connecting the 1,4-coupling of aniline monomer parts,
environmental stability, ability to be doped by protonic acids, and, finally, ability to exist
in different oxidation states, such as (a) leucoemeraldine, (b) emeraldine (salt/base), and
(c) pernigraniline. PANIs and their derivatives/co-polymers are extensively applied in
rechargeable batteries, photovoltaic cells, gas separation membranes, chemical sensors, anti-
corrosion coatings, microwave absorption electromagnetic interference shielding, electrodes
and supercapasitors, reagents for photothermal therapy, etc. [102–104].

Zhou and co-authors reported a PANI synthesis method by using the interaction of
aniline sulphate with ammonium persulphate in a pan mill (600 rpm) and, for comparison,
by means of mortar grinding for 40 min [105]. The authors observed that for two pan
mill cycles, the molecular weight of PANI was lower than for the mortar-grinded mixture,
whilst it was almost equal after ten cycles, and twice as large after twenty cycles.

In 2011, a PANI mechanosynthesis method was reported [106] by mixing anilinium
hydrochloride with different oxidants (ammonium persulphate, FeCl3, and AgNO3) with a
mortar (5 min) with the following treatment of the obtained powder with air. According to
the authors, the PANI formed with ammonium persulphate in 24 h, while after one week
with FeCl3 and AgNO3, only short oligomers and branched non-conductive polymers were
obtained using Fe3+ or Ag+.

Posudievsky and co-authors reported the synthesis of highly conductive PANI
(22.3 S/cm) by means of grinding anilinium chloride and ammonium persulphate in
a planetary mill by using an agate jar and milling balls at 300 rpm [107]. For comparison,
the PANI was obtained via a solvent-based procedure. Even though the molecular weights
of both polymers were comparable, a better conductivity was observed for the PANI ob-
tained by using methanosynthesis. This difference was attributed by the authors to the
influence of mechanical stress on the polymer during its mechanochemical preparation,
and an increased conductivity of the PANI obtained via the solvent-based procedure by
post-synthesis mechanochemical treatment was observed.

It worth mentioning that, earlier, Huang and coauthors [108] reported a PANI syn-
thesis method using the interaction between anilinium chloride and ammonium persul-
fate in a stainless-steel jar using stainless-steel milling balls (5–10 mm) at 600 rpm in a
Pulverizette 7 planetary micromill for 1 h. Highly conductive PANI was obtained in a
65% yield at an ammonium persulfate:ammonium chloride ratio = 1:2. A conductivity of
0.01 S/cm was observed.

Bhandari and Khastgir reported the mechanosynthesis of ultra-long nanofibrous PANI
by means of grinding anilinium chloride and ammonium peroxydisulphate in the presence
and absence of citric acid (as a dopant) by using a mortar and pestle for 30 min [109].
According to the authors, citric acid influenced the morphology of the PANI via hydrogen
bonding and provided the doping of PANI, while in the absence of citric acid, the PANI was
“undoped”. In addition, this in situ doping dramatically influenced the electrochemical
behavior of the PANI.

In 2021, a mechanochemical oxidative polymerization method using an OMe deriva-
tive of PANI, poly(o-anisidine) (POA), and POA-protected silver nanoparticles, POA@Ag,
was reported [110] (Figure 12). As a first step, the authors subjected anisidinium sulphate
(OA-HSO4) to mechanopolymerization as a monomer to produce POA in the presence of
ammonium persulphate as an oxidant. In the second step, POA was formed in situ in the
presence of AgNO3 as both an oxidant and a metal precursor to produce POA-protected
silver nanoparticles, POA@Ag. In this case, an equimolar amount of OA-HSO4 and AgNO3
(2 mM, 0.34 g) were hand-ground in mortar with a pestle for 10 min, resulting in the
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formation of a slurry, which in 15–45 min converted into a pale green color, with the final
product being the green-colored emeraldine salt. Ag nanoparticles were also immobilized
in the obtained polymer matrix. Based on electrochemical studies, the interconversion of
POA between the leucoemeraldine↔ emeraldine and emeraldine↔ pernigraniline redox
transformation and the redox responses of the AgNPs was observed. The authors suggested
the potential application of POA@Ag as an electrocatalyst. In addition, the electrochemical
response of POA@Ag toward dopamine via cyclic voltammetry (CV), differential pulse
voltammetry (DPV), and chronoamperometry was observed with the electrochemical sta-
bility of POA@Ag for the dopamine determination being in the 10–130 µM range and
with a limit of detection (LOD) as low as 2.8 µM. In a chronoamperometry-based method,
dopamine was detected in the range of 5–45 µM (0.83 µM LOD). Finally, a POA@Ag/GCE-
modified electrode for the determination of dopamine from mixtures was prepared, which
was able to operate at a 160 mV potential difference with repeatability after 15 and 30 days
of immersion.
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It worth mentioning that mechanosynthetic approaches are widely used for the prepa-
ration of PANI-based nanocomposites via the in situ formation of PANI upon ball-milling
or grinding anilines and oxidants (if needed) with different additives, such as porous clays,
carbon nanotubes, metal, and oxide nanoparticles, etc. [111].

Very recently, Yang, He, and co-authors reported [112] (Figure 13) an efficient method
for the construction of graphene/PANI composites via a one-pot high-energy ball-milling
process. In this process, aniline molecules acted as both the intercalator for the exfoliation
of graphite and the monomer for mechanochemical polymerization into PANI clusters on
the in situ exfoliated graphene sheets. The obtained graphene/PANI composite electrode
delivered a large specific capacitance of 886 F·g−1 at 5 mV·s−1 with a high retention of 73.4%
at 100 mV·s−1. In addition, a high energy density of 40.9 W·h·kg−1 was achieved by the
graphene/polyaniline-based symmetric supercapacitor at a power density of 0.25 kW·kg−1,
and the supercapacitor also maintained 89.1% of the initial capacitance over 10,000 cycles.
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Along with PANIs, anilines can be involved in the preparation of other polyamines
by using mechanosynthesis. For example, Lou and co-authors reported [113] (Figure 14) a
mechanosynthesis method of highly crosslinked N-connected polymers by using solvent-
free and mechanochemical conditions (NUT-71-F) and, for comparison, a conventional
solvent-based approach (NUT-71-S). According to the authors, upon mechanical grinding
in a mortar, NUT-71-F exhibited a higher reaction yield in comparison with NUT-71-S
(70.8% vs. 49.8%) due to the greater crosslinking degree and different linkage ways.
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In addition, by the carbonization of both polymers at different temperatures (500 ◦C,
600 ◦C, 700 ◦C, and 800 ◦C, respectively), the authors constructed N-doped porous carbons
(NDPCs) and evaluated their affinity and selectivity for a gaseous N2/CO2 (85/15, v/v)
mixture. It was found that NDPC-71-F (from mechanochemically prepared NUT-71-F)
possessed a higher specific surface area and a larger pore volume compared to NDPC-71-S
(obtained from NUT-71-S) and could separate CO2 from a N2/CO2 mixture more efficiently.
For instance, the pore size varied from 0.52 to 0.70 nm in NDPC-71-F-700, while it only
varied from 0.43 to 0.51 nm in NDPC-71-S-700. It should be noted that increasing the
carbonization temperature to 800 ◦C excessively enlarged the pore size, making them
unable to effectively capture CO2.

Moreover, no significant reduction in the CO2 adsorption capacity of NDPC-71-
F-700 was detected after six regeneration experiments, which is crucial for potential
practical application.

2.7. Mechanosynthesis of Organic Porous Polymers

Organic porous polymers (OPPs) have several unique features, such as high
surface/contact surface area, highly rigid permanent porous structure, low skeletal den-
sity along with good chemical and thermodynamic stability, and, thus, porous polymers
have a wide range of applications [114,115], including catalytic applications [116–120], gas
storage [121–125], and gas separation [126,127]. The most convenient approach to creating
OPPs is the so-called bottom-up building concept, which involves the stepwise building of
the desired material by using monomer units containing various functionalities by using
either TM-catalyzed transformations, such as cross-coupling reactions [128], Friedel–Crafts
alkylations [129], and cyclotrimerization reactions [130], or TM-free approaches, such as
Schiff base formation reactions [131], amidisation reactions [132], etc. In these approaches,
in order to achieve permanent micro- and mesoporosity, an initial intensive mixing is
crucial. In addition, shrinkage of the obtained material upon the drying step takes place
after the removal of the absorbed organic vapors or liquids. Finally, the low solubility of
most OPPs remains the main challenge, and in some cases the solution-based procedures
may suffer from the precipitation of reagents/products to produce OPPs with a low degree
of polymerization [133].

The ball-milling polymerization process allows the obtaining of polymeric porous
materials without solvents, has wide applicability, has an easy synthetic set-up (ball-milling
jar), is low-cost, has a simple pre- and post-treatment, and has little or no influence and
dependance on the environment. Therefore, ball-milling-assisted polymerization may be
considered to be a versatile tool for the synthesis of OPPs.

For instance, Grätz, Borchardt, and coauthors [134] reported a mechanochemical syn-
thesis method of producing hyper-crosslinked polymers (HCP), which may be considered
as some of the most promising OPP candidates [135], by using a solvent-free Friedel–
Crafts alkylation reaction involving 4,4′-bis(chloromethyl)-1,1′-biphenyl (Figure 15). In
a typical procedure, 4,4′-bis(chloromethyl)-1,1′-biphenyl) and FeCl3 were milled in a zir-
conium oxide milling vessel filled with 22 zirconium oxide balls (10 mm) in a Fritsch
Pulverisette 7 mill at 500 rpm for 35 min to produce a porous polymer with BET surface
areas of up to 1720 m2·g−1 and pore volumes of up to 1.55 cm3·g−1 with a narrower pore
size distribution compared to their solvent-based analogues. The obtained polymer exhib-
ited a preferable adsorption of benzene vapors over cyclohexane, which was, according to
the authors, due to the strong π–π interactions with the aromatic framework.
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Later, the same group reported [136] a more advanced mechanosynthesis method
of producing a microporous thiophene polymer (MTP) via oxidative polymerization in
the presence of NaCl as a bulking material (Figure 16). In a typical procedure, 1,3,5-tris(2-
thienyl)benzene, FeCl3, and the inert bulking material NaCl (to control the abrasion [137])
were mixed in a stainless-steel grinding jar with 22 grinding balls (10 mm) at 400 rpm in
a Fritsch Pulverisette 7 premium line planetary ball mill for 60 min. In the optimization
studies, the ball size (10–15 mm) and milling speed (400–600 rpm) were optimized for
the highest yields (up to 98%). The obtained MTP exhibited a specific surface area of
1850 m2·g−1 and a pore volume of 0.95 cm3·g−1 with a narrow pore size distribution and
with one major pore at 1.6 nm. According to the authors, the observed surface area was
almost twice as high as the reported values for the solution-based process. The obtained
material absorbed Ar and N2, and the authors did not observe the typical swelling behavior,
which was most probably due to the higher degree of polymerization and crosslinking and
therefore the more rigid structure of the polymer.
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In addition, to prove the generality of the developed strategy of mechanosynthesis of
polymers, the authors applied our procedure to the synthesis of previously synthesized
polycarbazoles [138] via FeCl3-catalyzed polymerization in a vibrational ball mill (Retsch
mixer-mill 400 at 30 Hz for 0.5 h) to produce a microporous carbazol-based polymer
starting from 1,3,5-tri(9-carbazolyl)-benzene as a promising candidate for CO2 storage.
The polycarbazole obtained by using the above-mentioned advanced protocol exhibited
a surface area of 1710 m2·g−1, which exceeded the previously reported [139] values by
a factor of two.

Very recently, the same group reported the mechanosynthesis of another microporous
polymer (MPP1-2) [140] by using a Friedel–Crafts alkylation of 1,3,5-triphenylbenzene with
two organochloride cross-linking agents, dichloromethane (DCM) (MPP1) and chloroform
(CHCl3) (MPP2), respectively (Figure 17). In a typical protocol, TPB and DCM or CHCl3
in the presence of AlCl3 were milled in a zirconium oxide milling jar with 22 milling
balls (10 mm) for 1 h at 30 Hz to produce the target polymers. DCM-linked polymers
were found to be flexible and extremely sensitive towards parameter changes, which even
enabled the synthesis of a polymer with a BET surface area of 1670 m2·g−1, while the
CHCl3-linked polymers were more rigid with a high porosity (the surface area was found
to be 1280 m2·g−1). Based on green metrics calculations, the mechanosynthesis had an
advantage over the solvent-based one in terms of the reaction time (0.5 h vs. 48 h), mass
intensity (4 vs. 31–37), mass productivity (23 vs. 3), and overall E-factor (1.8–2 vs. 30–36).
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Ladder-like polymers of intrinsic microporosity (PIMs) with contorted sites have been
reported as a family of soluble porous polymers and have been successfully utilized in
membrane-based gas separations [141,142]. In these polymers, ladder-like monomer units
are the main contributor for achieving the high porosity of the resulting polymers. Thus,
Tian, Liu, Jin, Dai, and coauthors [143] reported a solvent-free mechanosynthesis method
of producing a novel family of soluble fluorescent nanoporous polymer networks based
on 3,3,3′,3′-tetramethyl-2,2′,3,3′-tetrahydro-1,1′-pirobi[indene]-6,6′-diol (BPSPI-OH). The
authors used either a solvent-mediated FeCl3-initiated oxidative coupling reaction (A) or
mechanochemical approach (B) (Figure 18). As a result, three polymers, OCP-NPN1-3,
were obtained.
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According to the authors, for the polymer OCP-NPN-1, prepared under ball-milling
conditions in the presence of FeCl3, the Brunauer–Emmett–Teller (BET) surface area was lower
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than that of the polymer prepared via the solvent-mediated method (470 vs. 834 m2·g−1).
Moreover, dissolving and re-precipitating the polymer from CH2Cl2 resulted in a de-
crease in the BET surface area (205 vs. 470 m2·g−1) due to the possible swelling of
MC-OCP-NPN-1. However, the BET value could be increased to 319 m2·g−1 by means
of the repeated dissolution and re-precipitating process in CH2Cl2:EtOH = 1:4. For the
ball-milling approach, the FeCl3 content was critical, and by increasing the FeCl3 amount
to 4 mol. eq. the authors obtained OCP-NPN-3 with a BET surface area of 733 m2·g−1.
In experiments with gas absorption, the MC-OCP-NPN-1 sample showed selectivity to
CO2 over CH4 (20.9 cm3·g−1 vs. 5.8 cm3·g−1 of uptake). Finally, a MC-OCP-NPN-1 mixed-
matrix membrane was prepared, and this matrix membrane exhibited an efficient CO2/CH4
separation with a high CO2 permeability of 675 and a CO2/CH4 selectivity of 25.

Covalent 1,3,5-triazine-based frameworks are another promising scaffold for construct-
ing porous polymers with surface areas >3200 m2/g [144] combined with high chemical
and thermal stability up to 700 ◦C [145,146], and they are commonly prepared via nitrile cy-
clotrimerization approaches [147–149]. 1,3,5-Triazine-based porous polymers have a wide
range of applications, such as electrode materials in supercapacitors [150] or lithium-sulfur
batteries [151–153], materials for CO2 capture [154–156], etc. Another approach to such
polymers involves an AlCl3-mediated Friedel–Crafts alkylation method by using cyanuric
chloride as a core unit [154]. Lübken and Borchardt recently reported a mechanochemical
approach to producing s-triazine-based porous polymers (TPPs) [157] by using an s-triazine
node (cyanuric chloride) and various aromatic coupling partners upon ball-milling in a
planetary ball mill in the presence of stoichiometric amounts of AlCl3 as an activating
reagent and ZnCl2 as a bulking agent (Figure 19).
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In a typical procedure, cyanuric chloride, AlCl3, and ZnCl2 were reacted in either
a tungsten carbide grinding jar with 22 balls (10 mm) or in a zircon oxide grinding jar
with 22 tungsten carbide balls (10 mm) in a Fritsch Pulverisette 7 planetary ball mill at
800 rpm. In model experiments using carbazole, the authors observed a 32 % yield of
polymer TPP1 after 15 min and a 98% yield after 60 min, and the porosity of the material
remained constant from this point on (740 m2·g−1 due to N2 physisorption). According
to a BET model, the specific surface area for TPP1 was 570 m2·g−1, and a sharp pore size
distribution was observed, showing two micropores of 0.5 nm and 1.0 nm, respectively. By
using optimized reaction conditions, the authors obtained other polymers by using benzene
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(TPP2, specific surface area of 170 m2·g−1, 0.20 nm pore size, 5% yield), naphthalene (TPP3,
specific surface area of 110 m2·g−1, 0.17 nm pore size, 2% yield), and tetraphenylmethane
(TPP4, specific surface area of 390 m2·g−1, 0.43 nm pore size, 3% yield).

A carbazole-based OPP (CzPP) with a high surface area and excellent stability was
reported as a promising porous material to capture and separate CO2 under mild condi-
tions [158] (Figure 20). To achieve this tetrakis(4-(9H-carbazol-9-yl)phenyl)methane and
FeCl3 were reacted in an agate tube with ball milling for 2 h to produce CzPP in a 91%
yield. As calculated by DFT, the median pore width for C was 0.75 nm, and the total pore
volume was 0.63 cm3/g. As for gas sorption, CzPP demonstrated selectivity toward CO2
over N2 in a binary gas mixture.
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Another type mechanochemically prepared CzPP was reported by Wang and
co-authors [159] (Figure 21). In addition to carbazole, a fullerene moiety was introduced
into the polymer structure. In a typical case, di-(9H-carbazol-9-ylphenyl) methylene
fullerenes, Ful-Cz-1 and Ful-Cz-2, were reacted together with FeCl3 in a stainless-steel
jar with stainless-steel balls in a Retsch mixer-mill 400 at 30 Hz for 30 min to procude
the polymer FulCP in an 82% yield. The solution method required 12 h with a tedious
purification method. The amount of FeCl3 had a great influence on the specific surface area
of the products prepared by the solvent method, but it did not affect the specific surface
area of products prepared by the ball-milling method. The pore size distribution of the
mechanochemically prepared FulCP was mainly 0.64 nm, which implied a microporous
nature, and the dominant pore size distribution peaks for the FulCP prepared by the
solution-based method were at 0.54 and 1.18 nm. The Brunauer–Emmett–Teller specific
surface area of the FulCP prepared by the ball-milling method (1015 m2·g−1) was higher
than that produced by traditional solvent method (920 m2·g−1). The obtained polymer
was further used to prepare a FulCP-supported palladium complex (FulCP-Pd) as a het-
erogeneous catalyst in a deallylation reaction. The conversion efficiency of FulCP-Pd with
different substrates ranged from 76% to 92%, and the conversion of allyl phenyl ether was
the highest (92%). Based on all the above, an obvious positive influence of both the presence
of a fullerene moiety in the monomer structure and the mechanopolymerization on the
increased porosity of the FulCP and the effectiveness of FulCP-Pd was demonstrated.
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It worth mentioning that fullerene polymers have a wide range of applications
for organic electronics, photovoltaics, and (photo)catalysis [160], including catalytic
applications [161], energy storage and transfer [162], and photovoltaics [163].

Pan and coworkers reported a dopamine-sensing system based on a mechanochem-
ically synthesized tetraphenylethylene-based porous polymer (TPEPP) [164] (Figure 22).
In the first step, the authors obtained a tetraphenylethylene (TPE)-based porous organic
polymer by means of the reaction of catalytic amounts of FeCl3, 1,3,5-triformylbenzene,
and 1,1,2,2-tetraphenylethene in a zirconium oxide milling vessel with zirconium oxide
milling balls in a planetary mill at 500 rpm for 35 min to produce the target TPEPP. After
that, the obtained TPEPP was carbonized, and a carbon quantum dot (CQD) was prepared.
In the last step, a CQD/chitosan–graphene composite film electrode was constructed for
the electrochemiluminescence-based determination of dopamine. The thus constructed
electrode presented good repeatability and a high sensitivity to dopamine with a wide
linear range from 0.06 to 1.6 µM. In addition, a satisfactory detection limit of 0.028 µM
(S/N = 3) was achieved. Finally, the authors demonstrated the possibility of detecting the
dopamine concentration in human fluids (namely in serum samples).
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2.8. Mechanochemical Post-Modification of Polymers

Mechanochemical methods are readily used for polymer post-modification and for the
preparation of co-polymers. Below, some of the most representative examples
are highlighted.

Ohura and co-authors reported [165] (Figure 23) the synthesis of diblock copolymers
of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) pro-
duced by mechanochemical polymerization under vacuum and at room temperature. The
tacticities of the HEMA sequences in the MCC-block-pHEMA varied according to the
reaction time, namely the fraction of pHEMA in the MCC-block-pHEMA increased up
to 21 mol% with increasing the fracture time (~6 h). According to the authors, cellulose
acted as a radical polymerization initiator that was capable of controlling the stereoregu-
larity. During the mechanosynthesis, the mechanical fracturing of the polymer produced
free-radical chain-ends, and their recombination resulted in block copolymers.
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Ohn and Kim reported [166] (Figure 24) the mechanochemical post-modification of
poly(stryrene-co-4-vinylbenzaldehyde) via solid-state Schiff’s base formations with a series
of amines and amine derivatives. In a typical case, polymer, amine, and ammonium
carbamate salt were reacted in a stainless-steel jar with three stainless-steel balls (7 mm) at
30 Hz for 30 min. Regardless of the nature of the amine, a 98–99% conversion with a PDI of
1.16–1.33 was observed.
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In addition to poly(stryrene-co-4-vinylbenzaldehyde), the mechanochemical post-
modification of poly(4-vinylbenzaldehyde) (Figure 25) was carried out.
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In a similar way, Kim and coauthors [167] developed a mechanochemical approach for
the post-modification of diblock copolyethers PEEGE-b-PAHGE obtained from monomers
of ethoxyethyl glycidyl ether (EEGE) and azidohexyl glycidyl ether (AHGE) (Figure 26).
The mechanochemical modification of the polymer-appended amino-functionality with
a highly hydrophobic and potent anticancer agent, cinnamaldehyde, through an imine
linkage. The resulting polymer–drug conjugates were further self-assembled into polymeric
micelles, which was confirmed by dynamic light scattering and atomic force microscopy.
In the obtained Schiff’s base-appended polymers, IM1-4, the pH-responsive cleavage of
the imine linkages under acidic conditions led to the release of cinnamaldehyde with a
concomitant disassembly of the polymeric micelles.

Friščić and co-authors reported a solid-state mechanochemicalω-functionalization of
poly(ethylene glycol) (PEG) with tosyl (Figure 27a), bromide (Figure 27b), thiol (Figure 27c),
carboxylic acid (Figure 27d), and amine (Figure 27e) functionalities (Figure 27) in good-to-
quantitative yields [168]. In the most typical case, a PEG polymer and the corresponding
reagents were milled in a Teflon jar with one 10 mm Zr ball in a Retsch Mixer Mill 400 at
30 Hz for 15–90 min to produce the desired polymer. Depending on a nature of PEG, its
molecular weights, and the type of functionality introduced, the reaction was completed in
15–90 min and provided the desired polymers in 42–99% yields (according to 1H NMR).
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Ashlin and Hobbs reported [169] a mechanosynthesis-assisted post modification of
polymers BrP1-4 with thiol moieties (Figure 28). In a typical case, the polymer and the
corresponding thiol were milled in a stainless-steel grinding jar equipped with three
stainless-steel grinding balls (7 mm) using a Retsch MM-400 ball mill at 30 Hz for 15 min
to produce the thiol-containing polymers in up to a 95% yield. To prove the concept,
the authors prepared a chloromethyl-functionalized-polymer by the co-polymerisation
of styrene and 4-vinylbenzyl chloride, and, under similar conditions, the substitution of
the chlorine atom of the benzyl chloride moiety with various thiols was also achieved in
high yields.
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It worth mentioning that similar types of parent polymers could be obtained using
ruthenium-alkylidene catalysts for ring-closing and cross-metathesis reactions under ball-
milling conditions [170,171].

A quite rare example of the post-modification/co-polymerization of two polymers
via host–guest interaction under mechanochemical conditions was reported by Park and
co-authors [172] (Figure 29). In the first step, the authors prepared two polymers bearing
cyclodextrin (P-AcβCD(x)) (Figure 29a) and adamantane (P-Ad(y)) (Figure 29b) moieties.
In the second step, by mixing the host and guest polymers by planetary ball milling,
the supramolecular host–guest-based polymer was obtained. According to the authors,
the toughness of the supramolecular materials prepared by ball milling (way e) was
approximately two-to-five times higher than that of supramolecular materials prepared
by casting as a conventional method (way Figure 29c) or kneading (way Figure 29d), and
during repeated ball-milling treatments, the obtained supramolecular polymers were able
to maintain their mechanical properties. These materials are readily applicable as self-
healable bulk materials and coatings, as their fractured pieces can be re-adhered within
10 min.
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method (c) and kneading (d). Reproduced with the permission of reference [172].
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3. Conclusions and Future Perspectives

In summary, mechanochemical synthesis has become a convenient tool for the construc-
tion of functional homo- or co-polymers of various types, as well as for the fast and efficient
introduction of extra functionalities into terminal ends as well as side arms with a high
degree of conversion of previously prepared polymers without rupturing the main polymer
backbone. The main advantages of mechanosynthesis over the conventional solvent-based
synthesis of functional polymers include the much shorter reaction times (from several
minutes to several hours), the absence of the influence of the solvent (and its associated
solubility problems for both the target polymer and starting monomers), the lower mass
intensity, the higher mass productivity, and, finally, the much lower overall E-factors (due
to absence of solvents). The most-accepted mechanism of mechanopolymerization involves
the formation of short-lived mechanoradicals generated by mechanical force, which was
confirmed in some publications by using radical traps, such as TEMPO [173]. Due to strong
influence of the mechanical force in the reaction, the hardness and size/weight of the milling
balls, as well as intensity of the ball-milling, are critical for achieving a high monomer con-
version, and the best results were reported for tungsten carbide (WC) and zirconium oxide
(ZrO) and for agate milling balls (pests) and with a milling speed/frequency higher than
300 rpm/5 Hz. The avoidance of solvents is beneficial for the mechanosynthesis of various
organic porous polymers, which are hardly available by means of conventional solvent-
based methods with a high porosity/surface area for gas separation or catalysis. Finally,
mechanochemical synthesis is a convenient tool for the preparation of functional polymers
by using industrial by-products, for instance, sulfur [174,175], industrial/post-consumer
wastes [6,176], or agricultural wastes [177].

For polymer characterization, a set of common methods is usually used. The most
important factor is the molecular weight of the functional polymer. Most often, gel perme-
ation chromatography (GPC) [19,41,73] and size-exclusion chromatography (SEC) [40,42]
are used for the estimation of molecular weights. The main limitation of DPC/SEC is
the solubility of the analyzed polymer in organic solvents (most commonly DMF and
THF). More rarely, MALDI-TOF analysis [51] or, if it is possible to end-cap the obtained
polymer with 1H NMR- or IR-distinguishable end-groups, NMR- [54] or IR-based [178]
end-group analysis are used. Additionally, 1H NMR analysis can be used for the estimation
of monomer(s) conversion [40]. During mechanosynthesis, the heating of the milling balls
and, as a result, the local overheating of the reaction media/obtained polymer is questioned
in the literature [179]. Therefore, the thermal degradation of polymers, i.e., the maximum
temperature at which a polymer can be manufactured and processed, is another impor-
tant parameter and can be used for polymer analysis. To estimate the thermal stability
of polymers, thermogravimetric analysis (TGA) for measuring polymer weight changes
as a function of temperature and time, differential thermal analysis (DTA) for measuring
the glass and other polymer transitions, or differential scanning calorimetry (DSC) for
investigating the response of polymers to heating, such as the melting of a crystalline
polymer or the glass transition, can be used. For porous functional polymers such as those
used for catalytic applications and gas separation/storage, the contact surface area and
pore (voids) size is important. To estimates these values, the Brunauer–Emmett–Teller (BET)
surface area can be calculated for the theoretical estimation of the physical adsorption of
gas molecules (most commonly N2) on a solid surface of the polymer [135,140,143,157].

Regarding future perspectives, one can mention the following. Among the TM-
catalyzed mechanochemical approaches to producing functional polymers, Pd-catalyzed
processes, which have been widely explored for small molecules [180], have so far only
been reported by a few cases of Suzuki cross-coupling reactions [52,84,85,98]. So, in the
near future, one might expect the interest in mechanopolymerization reactions based on
the Buchwald, Stille, or Sonogashira cross-coupling protocols to grow.

Finally, in terms of closed-loop economic systems, to solve the end-of-use problem
for synthetic polymers, one needs to either design polymers composed of a certain type
of dynamic bonds that are capable of effective bonding and reversible cleaving and/or
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to develop of efficient ways for the polymers to depolymerize into monomers. For the
first approach, to break the dynamic bonds, high temperatures are usually required and,
in some cases, the thermo-degradation of polymers may occur, which may influence
their mechanical properties [181,182]. We mentioned [71] one example above of the
mechanosynthesis of diketoenamine-bond-connected polymers for ready mechanopoly-
merization/depolymerization at room temperature. Very recently, another type of room-
temperature-recyclable polymer containing dynamic maleic acid tertiary amide bonds was
reported [183].

For commercial polymers, their thermal degradation, except their monomers, produces
multiple decomposition products, including oligomers and char [184–188]. In addition, ball-
milling-assisted depolymerization might be a greener alternative to the above-mentioned
approaches, which was recently suggested in reports on the mechanochemistry-assisted
depolymerization of polyethylene terephthalate (PET) [189] and polystyrene [190].
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