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Abstract: The practical problem of free formaldehyde pollution in the plywood industry is that
polyethylene films have been shown to be able to replace some urea–formaldehyde resins for wood
adhesives. To broaden the variety of thermoplastic plywood, reduce the hot-press temperature,
and save energy consumption, an ethylene–vinyl acetate (EVA) film was selected as a wood adhe-
sive to manufacture a novel wood–plastic composite plywood via hot-press and secondary press
processes. The effects of the hot-press and secondary press processes at different levels on the
physical–mechanical properties of EVA plywood (tensile shear strength, 24 h water absorption, and
immersion peel performance) were evaluated. The results showed that the properties of the resulting
plywood using the EVA film as an adhesive could meet the type III plywood standard. The optimum
hot-press time was 1 min/mm, the hot-press temperature was 110–120 ◦C, the hot-press pressure
was 1 MPa, the dosage film was 163 g/m2, the secondary press time was 5 min, the secondary press
pressure was 0.5 MPa, and the secondary press temperature was 25 ◦C. EVA plywood can be used in
indoor environments.

Keywords: wood–plastic plywood; hot-press; secondary press; thermoplastic resin; physical–mechanical
properties; aldehyde-free

1. Introduction

With the rapid development of the construction and furniture industries, the demand
for wood has intensely increased. Wood-based panels could effectively improve the broad
utilization rate of wood. Wood-based panels mainly include plywood, particle board,
and fiberboard. Among them, plywood is widely used in the furniture, construction,
packaging, car, and boat manufacturing industries owing to its excellent physical and
mechanical properties. However, plywood production was mainly formaldehyde-based-
material-type adhesives, of which urea–formaldehyde (UF) resin adhesives account for
80% of the total use [1]. UF resins are characterized by low cost, mature technology, and a
great gluing effect, but they release free formaldehyde during their production and use. To
reduce the formaldehyde emission from wood-based composites, several researchers have
investigated the optimization process of aldehydes in adhesives through the reduction of
the formaldehyde–urea molar ratio [2], the control of the reaction temperature and pH [3],
and the addition of a formaldehyde trapping agent [4,5] of UF resins during synthesis.
These can effectively reduce the emission of free formaldehyde from wood-based panels.

With the improved living conditions of people, most countries have issued more
stringent environmental protection standards. The formaldehyde emission standard for
composite wood products issued by the United States in 2017 stipulates that the formalde-
hyde emission of hardwood plywood manufactured with single or composite cores should
be ≤0.05 ppm. According to the GB/T 39600-2021 classification of formaldehyde emissions
from wood-based panels and their products implemented in China, the formaldehyde
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content has been newly classified, and the highest electric network frequency level limits
the formaldehyde emission from exceeding 0.025 mg/m3. Under the advocacy of energy
conservation and emission reduction and green environmental protection policies, green
and environment-friendly adhesives have received considerable attention [6–8]. Presently,
isocyanate (MDI) adhesives [9], soybean protein adhesives [10,11], starch adhesives [11–13],
and other biological adhesives [14] have been widely used in the production of wood-based
panels, and related products have been marketed. In addition, inorganic adhesives, such
as silicate, magnesium oxychloride, and phosphate, have received attention from scien-
tific researchers owing to their mildew resistance, water resistance, and flame retardancy.
Zheng et al. [15] prepared bamboo chips/magnesium oxychloride composites with higher
mechanical properties and water resistance using magnesium oxychloride gel, bamboo
chips, and 0.3% polycarboxylate superplasticizer, providing research guidance for new
wall materials.

In recent years, thermoplastic resin films, such as polyethylene (PE), polypropylene
(PP), and polyvinyl chloride (PVC), have been widely used for producing plywood owing
to their excellent water resistance, flexibility, easy processing, and secondary melting
characteristics. PE has the simplest structure and has been widely studied as a wood
adhesive [16–19]. Fang et al. [17] systematically evaluated the adhesive properties of high-
density polyethylene films. The results showed that the plywood manufactured with PE
as an adhesive featured similar bonding strength and elastic modulus with the UF resin
plywood containing similar resin contents. In addition, because its plasticity can endow the
plywood with stronger resistance to bending damage, PE thermoplastic plywood exhibits
a higher modulus of rupture. PVC is a thermoplastic resin characterized by high flame
retardancy and chemical resistance and can be used for wood veneer bonding. Gao [20]
obtained the optimal process conditions for the production of PVC–thermoplastic plywood
via a response surface method. The result showed that the properties of the produced
plywood can meet the type II plywood standard, and the optimum hot-press conditions
were 170 ◦C and 1 min/mm. Compared with PE and PVC films, the PP film features higher
heat resistance. The bonding strength of the PP thermoplastic plywood is 1.5 MPa after
three treatment cycles (immersing in boiling water for 4 h, then drying at 63 ◦C for 20 h and
immersing again in boiling water for 4 h), which can meet the requirements of ordinary
plywood category I in the GB/T 9846-2015 standard [21]. However, owing to the high
melting temperature of the PP film, the temperature of the PP thermoplastic plywood
should not be lower than 180 ◦C. In the manufacturing process of thermoplastic resin
plywood, the heat transfer rate and uniformity can directly affect the plywood performance.
Li et al. [22] not only increased the mechanical interlocking between the plastic and wood
but also significantly reduced the hot-press time of the plywood through the perforation
of the PVC film and then bonding with the wood veneer. Ye et al. [23] used mechanical
methods to punch holes in the wood veneer surface and then combined it with the PE
film. The increase in holes on the veneer was highly conducive to the penetration of PE,
increasing the number of dendritic glue nails, which can form a highly stable microstructure,
and thus, the panel strength is improved. Conventional wood–plastic composites can
be obtained by extrusion molding or injection molding [24,25]; however, thermoplastic
plywood is usually prepared by hot-press and secondary press processes. Bekhta et al. [26]
used a high-density polyethylene film as an adhesive to manufacture alder plywoods,
investigated the effects of hot-press temperatures and hot-press times on the physical and
mechanical properties of alder plywood panels, and compared these properties with UF
resin and phenol–formaldehyde resin plywoods. In a study on a hot-press process factor of
a wood–plastic composite plywood, Chang [27] selected the secondary press conditions
as follows: a secondary press time of 5 min, a secondary press pressure of 1 MPa, and a
secondary press temperature of 30 ◦C; Fang [28] used a PE film to manufacture a poplar
plywood and selected a hot-press pressure and secondary press pressure of 1 MPa. Among
them, the selection of the secondary press conditions has a certain impact on the plywood
performance, but studies on the secondary press process are few at present.
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The main bonding mechanism between wood veneer and thermoplastic film is me-
chanical interlock, no chemical reaction. When a specific thermoplastic film is selected
as a plywood adhesive, a suitable hot-press temperature needs to be selected so that the
thermoplastic resin can flow into the wood pores of the wood to form glue nails that give
the plywood mechanical strength. Usually, the hot-press temperature should be higher than
the melting point of the thermoplastic film. Fang et al. [17] chose a hot-press temperature
of 160 ◦C for the preparation of PE plywood. At this time, the PE film has better mobility
and forms a tight bond with the wood veneer. Compared with the PE film, the melting
temperature of the PP film was higher. Song et al. [29] prepared PP plywood at a hot-press
temperature of 165–195 ◦C based on the melting temperature of the PP film. At 185 ◦C, it
was found to have higher tensile strength than those formed at 165 ◦C due to the lower
viscosity and deeper penetration of PP at 185 ◦C. Poly-β-hydroxybutyrate film (PHBF)
is a biodegradable thermoplastic that can also be used as an adhesive for aldehyde-free
plywood. Chen et al. [30] prepared veneer–PHBF composite properties under a hot-press
temperature at 170 ◦C. Results showed that the properties of the produced plywood can
meet the type II plywood standard. The mechanical properties and water resistance of
these thermoplastic plywoods are excellent, but the processing temperature is usually
above 160 ◦C, which not only consumes more energy to process, but also causes surface
discoloration of the plywood. Ethylene–vinyl acetate copolymer (EVA) is a thermoplastic
resin with a relatively low melting temperature and remarkable flexibility. In this study,
an ethylene–vinyl acetate copolymer (EVA) film was selected as an adhesive instead of
the traditional formaldehyde adhesive to prepare the EVA wood–plastic plywood. The
effects of the hot-press and secondary press processes at different levels on the physical–
mechanical properties of the EVA plywood were evaluated. The purpose of this study
was to provide a new type of thermoplastic plywood with excellent performance, simple
preparation, and no formaldehyde environmental protection, and to provide a theoretical
basis for production practice.

2. Materials and Methods
2.1. Materials

Poplar veneers were purchased from Minsheng Wood Industry Co., Ltd. (Shandong,
China). The dimensions were 300 × 300 × 1.6 mm3, and the moisture content was 6–8%.
The EVA film purchased from Huakai Supply Chain Co., Ltd. (Shenzhen, China), had a
thickness of 0.1 mm and a density of 0.91 g/cm3.

2.2. Production of the EVA Wood–Plastic Plywood

A three-layer wood-based plywood was assembled by three poplar veneers and EVA
films. The plywood was prepared via a combination of hot-press and secondary press
methods (Figure 1). The hot-press pressure was controlled to 1 MPa, and the hot-press
temperatures were 90, 100, 110, 120, 130, and 140 ◦C. The numbers of EVA films were 1 layer,
2 layers, and 3 layers (one layer of EVA film was equivalent to 81.5 g/m2 of double-sided
sizing) during the hot-press process. Then, the plywood was secondary-pressed at room
temperature for 5 min under 1 MPa.
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Figure 1. The process of plywood preparation.

The best secondary press time for a pretest was 5 min. Under the same hot-press con-
ditions, the EVA wood–plastic plywood was prepared under secondary press temperatures
of 25, 45, 65, and 85 ◦C and cold pressures of 0.5, 1, 1.5, and 2 MPa.

2.3. Characterization
2.3.1. Thermal Properties of the EVA Film

Melting temperature: A differential scanning calorimetry (DSC) analysis of the EVA
film (5–10 mg) was conducted under a nitrogen atmosphere using DSC-250 (TA Instruments,
New Castle, DE, USA). The EVA film was heated up from 0 to 180 ◦C at a rapid heating
rate of 10 ◦C/min and preserved at 180 ◦C for 5 min to remove the thermal history of the
sample. Then, the EVA film was cooled down from 180 to 0 ◦C at a rate of 10 ◦C/min and
preserved at 0 ◦C for 5 min. Finally, it was heated up again from 0 to 180 ◦C at a rapid
heating rate of 10 ◦C/min to obtain the melting point of the EVA film.

Heat stability: A thermogravimetric analysis of the EVA film was conducted using
TGA-250 (TA Instrument) under a nitrogen atmosphere at a heating rate of 10 ◦C/min from
25 to 800 ◦C. Then, 5–10 mg of the EVA film was used for the test.

2.3.2. Physical–Mechanical Characterization

The physical–mechanical properties of the EVA plywood (tensile shear strength, wood
failure ratio, 24 h WA, and immersion peel performance) were evaluated according to the
Chinese National Standard (GB/T 17657-2013) [31]. Before the test was conducted, all
specimens were conditioned at 20 ◦C and 65% relative humidity for 48 h.

(1) Mechanical strength: According to the requirements of GB/T 9846-2015 [32] “Ordinary
Plywood” type II and III plywood standard, the tests for plywood were performed
under the conditions of 63 ± 3 ◦C hot water immersion for 3 h and 20 ± 3 ◦C cold
water immersion for 24 h. The result revealed that the plywood could not meet the
type II bonding strength test.

(2) Twenty-four-hour water absorption: The size of three-layer plywood specimens with
dimensions of 100 mm × 100 mm was weighed in 20 ◦C water before and after
24 h of soaking mass m1 and m2. The 24 h water absorption is calculated using the
following equation:

WA(%) =
m2 − m1

m1
× 100% (1)

(3) Immersion peel performance: The immersion peel performance of the EVA wood–
plastic plywood was tested according to the Chinese National Standard GB/T 9846-
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2015 [32], and the peeling delamination between the adhesive layers of the specimen
was observed.

2.3.3. Scanning Electron Microscopy (SEM)

Two layers of plywood with parallel structures were prepared as SEM observation
samples under all process conditions. The interface structure of the plywood was examined
using a Quanta-200 ESEM (Hillsboro, OR, USA). The specimens were fixed onto the copper
sheet with adhesive tape and sprayed with gold.

3. Results and Discussion
3.1. Characterization of the EVA Film

The thermal properties of the EVA film had a vital impact on the preparation and
performance of the EVA wood–plastic plywood. The preparation process of the EVA ther-
moplastic plywood indicated that EVA films melted and softened at a higher temperature
and pressure to penetrate the wood veneer, which endows the EVA wood–plastic plywood
with mechanical strength. Figure 2a shows the melting curve of the EVA film and its peak
temperature (melting temperature) of 84.8 ◦C. Based on this, hot-press temperatures of 90,
100, 110, 120, 130, and 140 ◦C were set.
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EVA consists of ethylene and vinyl acetate monomers (VA) in the presence of initiators
for high-pressure polymerization, where the VA content affects the material properties and
crystallinity [33]. Studies have shown that as the VA content was between 1% and 40%, EVA
featured high transparency, high flexibility, and high viscosity, which is used in packaging
films, hot-melt adhesives, agricultural land films, and coatings [34,35]. From the EVA
pyrolysis curve, the thermal decomposition of EVA occurred in three stages (Figure 2b).
The first stage was at 0–280 ◦C, and the mass loss rate of EVA was within 1%. The second
stage occurred between 300 and 380 ◦C, at a temperature of 380 ◦C, and the weight loss
rate of EVA was 15.6%; moreover, EVA ester bond breakage released an acetic acid and
generated a mixture of CO2 and CH4 [36]. The VA content of the EVA film used in this
study was 22.3% based on the weight loss rate of the acetic acid. In the final stage, PE began
to decompose at 420–550 ◦C and ended as the temperature reached 600 ◦C, indicating that
EVA has a wide processing temperature range.

A previous study noted that the thermal decomposition of most wood and other
natural fibers is between 215 and 310 ◦C [37]. In order to avoid pyrolysis of plywood, the
hot-press temperature should be chosen below 215 ◦C.
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3.2. Effect of the Hot-Press Process on the Performance of the EVA Wood–Plastic Plywood
3.2.1. Effect of the Hot-Press Process on the Bonding Strength of the EVA
Wood–Plastic Plywood
Hot-Press Temperature

In order for the thermoplastic resin to fully flow into and between the wood pores
and form a glue nail structure, the hot-press temperature should be 15 to 35 ◦C higher than
the melting temperature of the thermoplastic. Therefore, in this paper, the hot-pressing
temperature for EVA wood–plastic plywood ranged from 90 to 140 ◦C.

The hot-press temperature showed a low effect on the dry tensile shear strength of
the EVA wood–plastic plywood (Figure 3). With increasing hot-press temperatures from
90 to 110 ◦C, the dry strength of the EVA plywood increased from 1.09 to 1.2 MPa with a
11.7% variation, and the hot-press temperature continuously increased, with no significant
change in dry strength. Because EVA had melted and entered the porous structure of the
plywood, it formed a mechanical interlock structure, which endows the plywood with
dry strength.
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rate of EVA–wood plywood (III).

The main bonding mechanism between wood veneer and EVA film was mechanical
interlock, not chemically bonded [29,38–40], and its bonding interface has poor resistance
to water molecule damage, resulting in the wet strength of the plywood being significantly
lower than the dry strength. The hot-press temperature had an excellent influence on the
stability of the glued structure (Figure 3a). At a very low hot-press temperature (90 ◦C), the
stability of the bonding structure of the wood was poor, and the bonding strength could
not meet the type III standard of plywood in GB/T 9846-2015. The wood failure ratio of
the EVA wood–plastic plywood prepared under this condition was almost 0 (Figure 3b).
There was a large gap between the bonding interfaces of plywood (Figure 4a,b). At hot-
press temperatures between 110 and 120 ◦C, the bonding strength of type III plywood
was 0.9 MPa, reaching a stable state, and its wood failure ratio significantly increased,
indicating that the fluidity and permeability of EVA films were enhanced at higher hot-
press temperatures. The mechanical interlock structure formed by the wood veneer was
more stable, and the gap between the bonding interface was smaller (Figure 4c,d). Because
the EVA melt viscosity was high, the continuous increase in the hot-press temperature on
its permeability improvement was not significant (Figure 4e,f). With increasing hot-press
temperatures from 110 to 140 ◦C, the improvement rate of wet strength of the plywood was
<10%. Song et al. [29] prepared wood veneer/PP film composites using wood veneer and
PP film. When the hot-pressing temperature was 20 ◦C higher than the melting temperature
of the PP film, the tensile shear strength of the wood veneer/PP film composites was the
best. This conclusion is consistent with the conclusions of this study.
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Figure 4. The interfacial surface of plywood with different hot-press temperatures: (a) 90 ◦C,
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Dosage of the EVA Film

EVA film was used as an adhesive in the EVA wood–plastic plywood, and its dosage
had a significant effect on the number of mechanical nails and the thickness of the wood
interface layer. The plywood with different film dosages was prepared under a hot-press
temperature of 120 ◦C, hot-press time of 1 min/mm, and hot pressure of 1 MPa, and its
bonding strength is shown in Figure 5. With increasing dosages from 81.5 to 244.5 g/m2,
the dry strength of the plywood increased from 1.19 to 1.24 MPa, with a 4% increase.
Therefore, the EVA film that could endow the bonding strength of the panel was limited.
With increasing EVA dosages, the number of mechanical nails increased, but the change in
bonding strength of the wood was small. An EVA film dosage of 81.5 g/m2 could meet the
requirements of the bonding interface of the mechanical interlock structure.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

film dosage of 163 g/m2. The hot-press time had a significant impact on the bonding 

strength of the panel (Figure 5b). The dry and wet strength of the EVA plywood first in-

creased and then decreased with the hot-press time. With increasing hot-press times from 

0.5 to 1 min/mm, the dry and wet strength of the plywood increased by 14% and 22%, 

respectively. This phenomenon is elucidated as follows: At the same hot-press tempera-

ture, the heat transfer from the surface layer of the slab to the core layer occurred at a 

certain amount of time, the short hot-press time resulted in a low slab temperature of the 

core layer, and incomplete molten EVA and the veneer could not form a mechanical inter-

lock structure. With increasing hot-press times, the heat was completely transferred to the 

core layer, and the permeability of the EVA film in the wood pores became stronger, re-

sulting in the thinning of the panel glued interface layer, which reduces the wood bonding 

strength. Therefore, with an increasing hot-press time of 2 min/mm, the dry and wet 

strength (type III) of the plywood decreased. The result showed that the hot-press time 

affects the penetration depth of the thermoplastic film. Overpenetration may occur if the 

hot-press time is too long, which will have a negative impact on the bonding strength of 

the thermoplastic plywood [22]. 

 

Figure 5. (a) Tensile shear strength of plywood at different film dosages; (b) tensile shear strength 

of plywood at different hot-press times. 

3.2.2. Effect of the Hot-Press Process on the Water Absorption of the EVA Wood–Plastic 

Plywood 

The water absorption could evaluate the dimensional stability of the plywood, which 

has a vital impact on the long-term use of the plywood. With increasing EVA film dosages, 

hot-press temperature, and hot-press time, the water absorption of the plywood gradually 

decreased, and the water resistance increased. Among them, the water absorption of the 

plywood was mainly affected by the amount of EVA film. With increasing EVA film dos-

ages from 81.5 to 244.5 g/m2, the 24 h water absorption decreased by 23%, because water-

repellent materials did not absorb water (Figure 6). The water absorption mainly occurred 

in the EVA wood–plastic plywood. As the EVA film was combined with the poplar veneer, 

one part of the EVA film fully penetrated the micropores of the wood veneer, and the other 

part covered the wood surface; therefore, the contact area between the wood and water 

molecules became smaller, which can reduce the absorption rate of water molecules in the 

wood. With increasing EVA film contents, the effect of blocked water molecules increased, 

and thus, the water absorption rate of the panel became lower. This conclusion was con-

firmed in the paper by another researcher [40], who found that plywood density also has 

an effect on water absorption: the water absorption of plywood panels decreased with 

increasing density. 

Figure 5. (a) Tensile shear strength of plywood at different film dosages; (b) tensile shear strength of
plywood at different hot-press times.

The hydrophobicity of the EVA film blocked the entry of water molecules and resisted
the damage of water molecules to the bonding interface. All samples exhibited strength
higher than 0.7 MPa for wet tests, which met the requirement for type III–grade plywood of
GB/T 9846-2015 standard (Figure 5a). With increasing EVA dosages from 81.5 to 163 g/m2,
the wet strength of the wood increased from 0.82 to 0.91 MPa. However, with an increasing
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film dosage of 244.5 g/m2, the wood adhesive strength decreased by 7%; because of the
high viscosity of EVA, its fully molten state was attained after a longer time, and the shorter
hot-press time led to an incomplete molten state. Moreover, too thick a layer of glue would
weaken the adhesion between veneers. Therefore, with increasing EVA film dosages, its
bonding strength decreases. The effect of the dosage of the thermoplastic film used on the
bonding properties of another thermoplastic plywood is similar. Fang et al. [41] laminated
the silane-modified poplar veneer with PE film, and when the PE thin film increased from
1 to 4 layers, the adhesive layer was more likely to detach from the modified poplar veneer,
causing a decrease in bonding strength.

Hot-Press Time

The EVA thermoplastic plywood was prepared with different hot-press times under
the conditions of a hot-press temperature of 110 ◦C, hot-press pressure of 1 MPa, and EVA
film dosage of 163 g/m2. The hot-press time had a significant impact on the bonding
strength of the panel (Figure 5b). The dry and wet strength of the EVA plywood first
increased and then decreased with the hot-press time. With increasing hot-press times from
0.5 to 1 min/mm, the dry and wet strength of the plywood increased by 14% and 22%,
respectively. This phenomenon is elucidated as follows: At the same hot-press temperature,
the heat transfer from the surface layer of the slab to the core layer occurred at a certain
amount of time, the short hot-press time resulted in a low slab temperature of the core
layer, and incomplete molten EVA and the veneer could not form a mechanical interlock
structure. With increasing hot-press times, the heat was completely transferred to the core
layer, and the permeability of the EVA film in the wood pores became stronger, resulting in
the thinning of the panel glued interface layer, which reduces the wood bonding strength.
Therefore, with an increasing hot-press time of 2 min/mm, the dry and wet strength
(type III) of the plywood decreased. The result showed that the hot-press time affects
the penetration depth of the thermoplastic film. Overpenetration may occur if the hot-
press time is too long, which will have a negative impact on the bonding strength of the
thermoplastic plywood [22].

3.2.2. Effect of the Hot-Press Process on the Water Absorption of the EVA
Wood–Plastic Plywood

The water absorption could evaluate the dimensional stability of the plywood, which
has a vital impact on the long-term use of the plywood. With increasing EVA film dosages,
hot-press temperature, and hot-press time, the water absorption of the plywood gradually
decreased, and the water resistance increased. Among them, the water absorption of
the plywood was mainly affected by the amount of EVA film. With increasing EVA film
dosages from 81.5 to 244.5 g/m2, the 24 h water absorption decreased by 23%, because
water-repellent materials did not absorb water (Figure 6). The water absorption mainly
occurred in the EVA wood–plastic plywood. As the EVA film was combined with the poplar
veneer, one part of the EVA film fully penetrated the micropores of the wood veneer, and
the other part covered the wood surface; therefore, the contact area between the wood and
water molecules became smaller, which can reduce the absorption rate of water molecules
in the wood. With increasing EVA film contents, the effect of blocked water molecules
increased, and thus, the water absorption rate of the panel became lower. This conclusion
was confirmed in the paper by another researcher [40], who found that plywood density
also has an effect on water absorption: the water absorption of plywood panels decreased
with increasing density.
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Figure 6. 24 h water absorption of plywood under different conditions.

The hot-press time and the hot-press temperature had a slight effect on the water
absorption of the panel as the amount of the EVA film and wood components was constant.
The increase in these conditions increased the penetration depth of the EVA film, and
the interfacial compatibility of the board was also improved owing to the increase in
the hydrophobicity, the volatilization of a small number of extracts in the wood, and
the reduction of hydrophilic hydroxyl groups under a high temperature. However, the
water absorption of the wood was still dominant; therefore, with increasing hot-press
temperatures from 90 to 140 ◦C, the 24 h water absorption decreased by 6%, and with
increasing hot-press times from 0.5 to 2 min/mm, the 24 h water absorption decreased
by 3%.

3.2.3. Effect of the Hot-Press Process on the Immersion Peel Performance of the EVA
Wood–Plastic Plywood

The immersion peel performance was a vital indicator for evaluating the water resis-
tance and gluing properties of the plywood. The immersion peel test (type III) performed
on all EVA plywood samples showed no evidence of delamination and degumming, which
still met the lowest requirement of the GB/T 9846-2015 standard (the total length of each
side of each specimen peeled from the same adhesive layer should not exceed 25 mm). Al-
though the glue layer could resist the damage of water molecules, some water molecules in
the glue layer could not destroy the board glue interface, which preserved its glue interface.

The type II impregnation peel test (soaking at 63 ± 3 ◦C for 3 h and then drying at
63 ± 3 ◦C for 3 h) produced stresses that caused the plywood to peel to varying degrees
(Figure 7). Among them, the plywood manufactured at 90 ◦C could not meet the standard
requirement of type II plywood. This phenomenon is elucidated as follows: At a lower
hot-press temperature, the adhesive layer of the bonding strength of specimens was less
than the wet expansion and dry shrinkage stress, and the panel layer produced peels. With
increasing hot-press temperatures, the veneer and EVA film closely combined, which can
partly resist stress. The panel with different EVA film dosages was peeled at the ends,
and the peeling length was approximately the same, indicating that the amount of the
EVA film has little impact on the immersion peel performance of the plywood (Figure 8).
However, the EVA film was not completely melted at a low hot-press time, resulting in
cracking and delamination on the panel. At hot-press times of 0.5 min/mm and 1 min/mm,
the immersion peel strength of the panel was 22 and 14.4 mm (Figure 9). With increasing
hot-press times from 1.5 to 2 min/mm, a little crack was observed on the panel.
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3.3. Effect of the Secondary Press Process on the Performance of the EVA Wood–Plastic Plywood

The temperature of the wood panel decreased after the EVA thermoplastic plywood
was subjected to a hot-press process. The thermoplastic film shrinks during the formation of
the adhesive interface, and the shrinkage residual stress affects the stability of the adhesive
interface [42]. A suitable secondary press process could reduce the shrinkage stress of the
panel bonding interface and ensure the mechanical strength of the plywood. Therefore,
accurate control of the secondary press process is a key factor for maintaining the stability
of the mechanical mesh structure of the interface layer and the mechanical properties of
the panel. A literature search showed that most researchers have systematically studied



Polymers 2023, 15, 1834 11 of 14

the hot-press process of thermoplastic plywood [17,22,29,43], but there is no in-depth
discussion on the secondary press process. Based on the hot-press process, the effect of
the secondary press process on the tensile shear strength of EVA wood–plastic plywood
was studied. In this study, the optimum conditions for preparing the EVA thermoplastic
plywood were a hot-press temperature of 110 ◦C, hot-press pressure of 1 MPa, hot-press
time of 1 min/mm, EVA film dosage of 163 g/m2, and secondary press time of 5 min,
varying with the secondary press temperature and secondary press pressure.

At low temperatures, the crystalline curing of the meshing structure at the glued
interface of the sheet was complete. At a lower secondary press temperature, the dry and
wet strength of the EVA thermoplastic plywood was relatively large, because the EVA
film was completely crystallized at 25 ◦C, and the glued interface of the adhesive nail
structure maintained a stable state (Figure 10a). With increasing cold press temperatures,
the EVA film at a certain cold press time was not completely crystallized, but a part of
the crystallization process was complete under no pressure conditions; moreover, the
interface layer of the EVA film was damaged by shrinkage stress (Figure 11). At a cold
press temperature of 85 ◦C, close to the melting point of EVA, the increased hot-press times
without cold press could not eliminate the contraction stress of the glued interface of the
EVA film.
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Figure 11. The bonding interface of nonsecondary press plywood. (a) ×150; (b) ×600.

A suitable secondary press pressure could resist the shrinkage stress of the panel
bonding interface and ensure the mechanical strength of the plywood. Figure 10b shows
the influence of the secondary press pressure on the bonding strength of the panel. The
bonding strength of the secondary pressed panels was higher than that of nonsecondary
pressed panels; particularly, a significant difference was observed between the bonding
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strengths of the secondary pressed panels (0.5 MPa) and nonsecondary pressed panels.
With increasing secondary press pressures from 0.5 to 2 MPa, the dry and wet bonding
strength of the panel decreased, because the greater the secondary press pressure, the faster
the plate cooling rate, resulting in a highly intense shrinkage of the EVA film, and the
interface layer gaps partly caused the glue nail failure; moreover, the panel from the hot-
press to the secondary press processes without pressure caused the EVA film to rebound.
With excessive secondary press pressure, the molten EVA film from the glue interface
overflow formed a thin glue layer, which reduces the bonding strength of the panel.

4. Conclusions

EVA film can be used as an ideal wood adhesive to produce formaldehyde-free wood–
plastic plywood. The hot-press and secondary press conditions have a significant impact
on the physical and mechanical properties of EVA wood–plastic plywood. The hot-press
temperature and hot-press time have an interactive effect on the EVA wood–plastic plywood
tensile shear strength. With a hot-press temperature of 110–120 ◦C and a hot-press time
of 1 min/mm, EVA melted fully and did not overpenetrate, and poplar veneer formed a
good mechanical interlock structure. With the increased EVA film dosage, the number of
bonded joints formed also increased. With a film dosage of 163 g/m2, the plywood bonding
strength was optimal. Moreover, to reduce the shrinkage stress of the panel interface layer,
a secondary press temperature of ~25 ◦C and a secondary press pressure of 0.5 MPa should
be selected. According to the GB/T 9846-2015 standard, the tensile shear strength of the
plywood should meet the type III plywood standard. EVA wood–plastic plywood can be
used as a green panel for an indoor environment. Compared with thermoplastic plywood,
such as PE, PP, and PVC plywood, the hot-press temperature of EVA plywood is 40 to 60 ◦C
lower than other thermoplastic plywoods, which is more energy saving and consumption
reducing. However, it also led to EVA plywood samples showing evidence of delamination
and degumming after immersion in hot water at 63 ◦C for 3 h. In order to improve the
mechanical properties of EVA plywood, chemical modification or using EVA/PE blends
as plywood adhesives can be used to improve the interfacial adhesion of plywood in a
subsequent work.
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