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Abstract: The effect of argon (Ar) and oxygen (O2) gases as well as the treatment times on the
properties of modified bamboo fibers using dielectric barrier discharge (DBD) plasma at generated
power of 180 W were investigated. The plasma treatment of bamboo fibers with inert gases leads
to the generation of ions and radicals on the fiber surface. Fourier transform-infrared spectroscopy
(FTIR) confirmed that the functional groups of lignin and hemicellulose were reduced owing to
the removal of the amorphous portion of the fibers by plasma etching. X-ray diffraction analysis
(XRD) results in an increased crystallinity percentage. X-ray photoelectron spectroscopy (XPS) results
showed the oxygen/carbon (O/C) atomic concentration ratio increased with increasing treatment
time. The fiber weight loss percentage increased with increased treatment time. Scanning electron
microscopy (SEM) images showed that partial etching of the fiber surface led to a higher surface
roughness and area and that the Ar + O2 gas plasma treatment provided more surface etching than
the Ar gas treatment because of the oxidation reaction of the O2 plasma. The mechanical properties
of fiber-reinforced epoxy (FRE) matrix composites revealed that the F(tr)RE-Ar (30) samples showed a
high tensile strength, whereas the mechanical properties of the F(tr)RE-Ar + O2 sample decreased
with increased treatment time.

Keywords: bamboo fiber; composite; surface modification; plasma treatment; dielectric barrier
discharge (DBD) plasma

1. Introduction

Plasma is normally produced by the distinct separation of highly charged positive ions
and negatively charged electrons to create an electric field that produces electric currents
and magnetic fields [1]. Plasma contains highly charged particles such as electrons, ions,
radicals, and neutral atoms that can be excited and ionized [2]. These reactive species can
break the reactant molecules or change the surface structure of the material, depending on
the composition of the material and the plasma conditions [3].

Plasma technology has become an active, high-growth research field in recent years,
and it is widely used in the textile industry (natural protein, cellulose, and synthetic
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fibers) among all available material surface modifications [4,5]. Plasma technology can
produce a series of cleaning, etching, polymerization, cross-linking effects, as well as
other complex physical and chemical effects [6,7]. Normally, the interaction of plasma
affects only a very thin surface layer, where photons can modify the surface to a depth of
a few nanometers to several hundred nanometers [1,8]. The advantages of this method
are that it is a dry treatment and is considered a promising and environmentally friendly
method because it does not use harmful liquids or gases and leaves little or no waste [9,10].
Four types of cold plasma discharge methods are commonly used for fiber-reinforced
composites: corona discharge, atmospheric-pressure glow discharge (APGD), dielectric
barrier discharge (DBD), and atmospheric-pressure plasma jet (APPJ) [11,12].

Bamboo is the plant that grows the quickest on Earth, reaching full maturity within
three to five years [13,14]. Bamboo forests are abundant in Asian and South American
countries [15]. Bamboo is widely used for furniture, handicrafts, flooring, interior deco-
ration materials, composite materials, and civil building materials [13,16]. Therefore, a
significant amount of bamboo fiber waste is generated during the machining process. An
alternative method for bamboo fiber waste disposal is to use bamboo fibers as a polymer
mixture to reinforce composite materials, which would alleviate the environmental burden
of bamboo waste and provide economic benefits [13,17]. Bamboo fibers (BFs), have the
chemical composition of BFs as cellulose (36.8–54.9%), hemicellulose (62.0–79.9%), lignin
(23.1–33.5%), and waxes (1.93–7.95%) [18,19]. The extractive-free bamboo can be converted
to micro- or nanoscale cellulose materials by a chemical treatment process. The 2,2,6,6-
tetrametylpiperidine-1-oxyl (TEMPO)-mediated oxidation system is one potential and
efficient process to extract holocellulose from the original plant [20]. The BFs were oxidized
using a TEMPO oxidation; when oxidation occurs, they mostly disintegrate into individual
holocellulose after being removed from the undesired fraction [21]. The hydroxyl groups
of bamboo cellulose can be bonded with a functional monomer or copolymer, and bamboo
cellulose itself has a high crystalline cellulose volume, which provides the fibers with very
high tensile strength and modulus [22]. Therefore, they are used in a variety of applications,
particularly in the textile industry. Recently, natural fibers have received much attention as
reinforcements for composite materials to replace glass and carbon fibers because of their
low cost, lightweight, high strength and stiffness, renewability and biodegradability, and
low impact on the environment because they reduce the use of fossil energy and the release
of carbon dioxide into the atmosphere [13,15,23].

However, the interfacial adhesion between BFs and the composite matrices is poor
because of the mismatch between the high hydrophilicity of BFs and the hydrophobicity of
the polymer matrices, resulting in poor performance of the composites [24]. The compati-
bility, interfacial adhesion, and reinforcement capability of natural fibers and the matrix are
related to the surface energy and specific surface area of the fibers, and interfacial bonding
between the fiber and matrix impacts the performance of the composites [25]. Therefore,
surface improvement of the fibers is important for increasing the compatibility between
the fibers and the polymer matrix to improve the mechanical properties of the composites.
Many techniques have been applied to modify fiber surfaces to improve the adhesion
properties between the fibers and the matrix. Common chemical methods include alkaline
treatment, acetylation, benzoylation, treatment with silanes, and the addition of coupling
agents, among others [26]. Physical methods include plasma treatment, γ-ray irradiation,
corona treatment, and ultraviolet (UV) irradiation [27,28].

DBD plasma is one of the most effective nonthermal atmospheric plasmas; thus, it
is preferred for low-voltage applications [29]. It is widely used for surface modification
in the textile and polymer composite industries [30,31]. DBD is a class of plasma source
that provides an insulating cover over the electrodes [32]. The specific advantages of
atmospheric-pressure processing techniques, such as low-pressure treatment, offer much
better stability, control, reproducibility, easy formation of a stable discharge and discharge
scalability, and elimination of expensive vacuum equipment [30,33,34]. According to recent
research, atmospheric plasma treatment is useful for modifying surface properties such as
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wettability, surface energy, and surface morphology without affecting the bulk properties
of the material [35,36]. This surface modification method can remove lignin, hemicellulose,
waxes, and other extractable substances, which increases the fiber surface roughness and
contact area, thus improving the compatibility and interfacial adhesion between the natural
fibers and the polymer matrix [37–39].

This study focuses on the preparation and modification of BFs using DBD plasma
treatment, and the various properties of the BFs before and after plasma treatment were
investigated. The morphology and microstructure of the fiber surfaces were examined
using scanning electron microscopy (SEM). Fourier transform-infrared (FTIR) spectroscopy
was used to characterize the surface chemical properties of the BFs [40]. The chemical
bonds were analyzed using X-ray photoelectron spectroscopy (XPS). X-ray diffraction
(XRD) analysis was used to analyze the crystallinity [41]. The specific surface areas were
determined using the Brunauer–Emmett–Teller (BET) method and the mechanical proper-
ties of the bamboo–FRE matrix composites were evaluated [42]. In addition, a model of
the relationship between the response variables and experimental factors was determined
using response surface analysis.

2. Materials and Methods
2.1. Materials

Bamboo trunks (Bambusa longispatha) were obtained from the Samoeng District,
Chiang Mai Province, Thailand. Acetic acid, sodium hydroxide (NaOH), and sodium
chlorite (NaClO2) were purchased from Merck & Co., Inc. (Darmstadt, Germany) and
used for the alkaline treatment and sodium chlorite bleaching processes, respectively. All
chemicals were of reagent grade and used as received.

2.2. Materials Preparation

The bamboo fibers were peeled off to obtain a pure trunk, which was cut into pieces
(2 × 6 in). These pieces were then dried in a hot air oven at 80 ± 3 ◦C for 12 h. Later,
they were ground into a rough powder by using a grinder (Grinder ML-SC5-III, Ming Lee
Industrial Ltd., Hong Kong, China). The ground bamboo was dried in a hot air oven at
105 ± 3 ◦C for 6 h. Next, the bamboo particles were crushed with a high-speed blender
(Dxfill machine, DXM-700-F, Shanghai, China) at a speed of 35,000 rpm for 15 min. The
bamboo powder was dried in a hot air oven at 80 ± 3 ◦C for 12 h. The powder was weighed
until it was stable by measuring the moisture of dried bamboo powder to less than 1%. The
percent dryness (%) of the dry bamboo powder was calculated using Equation (1).

% Dryness =
Weight o f cellulose without moisture content

Weight o f cellulose content
× 100 (1)

2.3. Preparation of Cellulose from Bamboo

In the alkaline treatment process, the bamboo powder (100 g) was placed in a beaker
and treated at 80 ◦C with 20% w/v NaOH (2000 mL) under continuous stirring (Bethai
Bangkok Equipment & Chemical Co., Ltd., Bangkok, Thailand) at 1000 rpm for 5 h. The
extracted bamboo was filtered and washed with distilled water until the pH became 7.
The product was then dried in an oven at 80 ◦C for 12 h. The bamboo pulp was bleached
with NaClO2 to remove hemicellulose, lignin, and other noncellulosic substances from the
alpha-cellulose. The dried pulp (100 g) was mixed with an acetate buffer comprising 5.4%
NaOH w/v (850 mL) and 150 mL of acetic acid in 1000 mL of distilled water. The mixture
was boiled in 3.4% NaClO2 (1000 mL) at 85 ± 5 ◦C for 3 h with continuous stirring at
500 rpm [43]. The final product was then filtered and washed with distilled water until the
pH became 7. The cellulose obtained from the bleaching process was dried in a dry oven at
80 ± 3 ◦C for 12 h. The bleaching procedure was repeated twice. Finally, the cellulose was
stored in a desiccator.
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2.4. Chemical Constituents Analysis

The amount of holocellulose was obtained from the extractive-free bamboo using the
T203 om-99 acid chlorite test method. The obtained holocellulose was extracted using
17.5% w/v sodium hydroxide, following TAPPI T203 om-93, to remove hemicellulose and
leave only alpha-cellulose. The extractives, which were wall substances in cells mainly
consisting of ground bamboo, were analyzed according to TAPPI T204 om-97, 95% ethanol
extraction (TAPPI T264 om-97), and hot water (TAPPI T207 om-93) before composition
analysis. Extractive-free fibers were extracted using a 24 N solution of H2SO4 following
TAPPI T222 om-98 to determine the lignin content of the residue that was not hydrolyzed
by acid. These measurements were repeated three times for each sample and the average
value is reported.

2.5. Plasma Treatment Process

A three-level full factorial design was used for the plasma treatment of the extracted
BFs. The samples were randomly divided into two groups: an untreated group and a
group treated with different plasma gases for various treatment times. A schematic of
a fiber treated with the DBD plasma system is shown in Figure 1. The first step was to
place the extracted bamboo fiber on an aluminum tray and then treat it with DBD plasma
(Mini-smart, Republic of Korea, www.plasmart.com, accessed on March 2022). DBD plasma
was generated between two parallel electrodes: a powered electrode and a grounded
electrode. A schematic of the atmospheric-pressure DBD cell is shown in Figure 1. The
electrodes were connected to an RF power supply source at a frequency of 13.56 MHz
to ensure plasma radiation exposure, the sample tray was moved back and forth under
the grounded electrode at a rate of 30 cm/s. The distance between the powered electrode
and the sample tray (discharge gap) was set to 1 mm. In this study, the plasma discharge
power was set to 180 W (3.45 W/cm2). When a plasma system is operated at a low plasma
frequency, longer wavelengths are created that give ions a large amount of kinetic energy.
This higher ion density results in the sample position in this space everywhere will have
a similar result. Ar and O2 gases were used, with an Ar flow rate of 8 L/min and an O2
flow rate of 10 L/min. The treatment times were 10, 20, and 30 min. After completing the
treatment under each condition three times, the samples were stored in a foil bag before
analyzing their various properties. The plasma-treated samples were labeled after each
plasma treatment as shown in Table 1.

2.6. Fourier Transform-Infrared Spectroscopy (FTIR)

The functional groups of the untreated and treated plasma bamboo fiber samples
were analyzed using an FTIR spectrometer (FT/IR-4700, JASCO International Co., Ltd.,
Pfungstadt, Germany), Spectra Manager™II software for data processing and instrument
control. The samples and KBr were mixed and prepared as sheets by compression in a
sample holder. The FTIR spectra were measured over a range of 500–4000 cm−1.

2.7. X-ray Photoelectron Spectroscopy (XPS)

The surface chemical composition was analyzed using XPS (AXIS Ultra DLD, Kratos
Analytical Co., Ltd., Manchester, UK). The XPS parameters were a monochromatic Al X-ray
at 150 W anode power and survey spectra from 0 to 1200 eV with a pass energy of 160 eV
for a full survey and 40 eV for the core-level spectra. The plasma-treated bamboo fiber
powder was dispersed onto carbon tape, which was then placed on a stainless-steel sheet
in the ultrahigh vacuum chamber for XPS analysis. Data acquisition and processing were
performed using ESCApe software VISION II by Kratos analytical Co., Ltd.

www.plasmart.com
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Table 1. Plasma-treatment parameters for untreated and treated samples.

Conditions Ar Gas Flow Rate
(L/min)

O2 Gas Flow Rate
(L/min)

Treatment Time
(min)

Untreated - - -
Ar 10 min 8 - 10
Ar 20 min 8 - 20
Ar 30 min 8 - 30

Ar + O2 10 min 8 10 10
Ar + O2 20 min 8 10 20
Ar + O2 30 min 8 10 30

2.8. X-ray Diffraction Spectroscopy (XRD)

The crystallinity of the BFs was analyzed using XRD (SmartLab X-ray Diffractometer
(Rigaku, Ltd., Tokyo, Japan), MDI JADE (6.8.0) software was used for data analysis. The
XRD patterns were measured in the range 2θ = 10◦ to 60◦. The fiber crystallinity index (C.I.)
was calculated using Equation (2).

% C.I. =
I002 − Iam

I002
× 100 (2)

where I002 is the maximum intensity of the 002 crystalline peak and Iam is the minimum
intensity of the amorphous material between the 101 and 002 peaks [44].
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2.9. Scanning Electron Microscopy (SEM)

The microstructures of the plasma-treated bamboo fiber samples were examined using
SEM (JSM-IT300, JEOL., Ltd., Tokyo, Japan). The fiber samples were placed on metal stubs
with carbon tape and then sputter-coated with an Au film for 45 min prior to SEM analysis.
The acceleration voltage was 10 kV at 1000× and 15,000×. Microstructural characterization
was used to reveal the differences between the physical properties of the bamboo fiber
samples before and after plasma treatment.

2.10. Brunauer–Emmett–Teller (BET)

The fiber surface areas before and after plasma treatment were determined using the
BET equations, which were the values obtained from a Quantachrome apparatus (Nova
Instruments, Anton Paar Quanta Tec Inc., Boynton Beach, FL, USA). Data acquisition and
analysis were performed using Quantachrome NovaWin software version 11.06. Three
samples were analyzed from each condition.

2.11. Mechanical Properties

Bamboo-fiber-reinforced epoxy matrix composite (FRE) samples were prepared for
tensile testing using a casting process. The composite samples were prepared using un-
treated and plasma-treated BFs (Ftr) mixed with an epoxy matrix. The amount of fiber used
to prepare the composite mixtures was 5 wt% of the sample. The labels and compositions
of the FRE samples are listed in Table 2. The composite fluid was then poured into a mold
using the vacuum technique. The dimensions of the bone-shaped samples were measured
according to the JISK-6251-7 standard. The tensile tests were performed using a universal
testing machine (MCT-1150, Hounfield Test Equipment, Surrey, UK) at a crosshead speed
of 10 mm/min as per the JIS standard, MCT-Logger 7Pro (32bit version) was used for
data analysis. The tests were repeated five times for each sample to determine the tensile
strength, elongation at break, and energy absorption.

Table 2. The labels and composition of the FRE resin composite samples.

Treatments
Composition (wt/wt%)

Fiber Epoxy Resin

FRE-Untreated 5 95
F(tr)RE-Ar (10) 5 95
F(tr)RE-Ar (20) 5 95
F(tr)RE-Ar (30) 5 95

F(tr)RE-Ar + O2 (10) 5 95
F(tr)RE-Ar + O2 (20) 5 95
F(tr)RE-Ar + O2 (30) 5 95

2.12. Statistical Analysis

Data were analyzed using one-way analysis of variance (ANOVA), followed by Dun-
can’s multiple range test. The different letters are the significant level of p ≤ 0.05 by LSD
test. Statistical analyses were performed using IBM SPSS software version 26.

3. Results and Discussion
3.1. Chemical Constituents of Extracted BFs

Table 3 presents the chemical constituents of bamboo. The BFs consisted of 41.67%
alpha-cellulose, 73.10% holocellulose, 28.88% lignin, 3.17% extractive, and 2.04% ash, as
previously reported [19]. The chemical constituents of the bamboo are slightly different
from those previously reported because of the difference in species, but there is generally
good agreement [45]. This can be explained by analyzing the morphology of the BFs and
parenchyma cells, which show the morphology of several macerated BFs [46].
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Table 3. Chemical constituents (%) of bamboo fiber.

Holocellulose (%) Alpha-Cellulose (%) Linin (%) Extractive (%) Ash (%)

73.10 ± 0.21 41.67 ± 0.35 28.88 ± 0.14 3.17 ± 0.07 2.04 ± 0.08

3.2. Morphology of Extracted BFs

Figure 2 shows the macroscopic images of the bamboo at different stages: after the
crushing process (Figure 2a), the pulp after the alkaline treatment process (Figure 2b),
and the cellulose after the bleaching process (Figure 2c). Figure 2c clearly shows the
micromorphology of the cellulose. The fiber particles consist of both irregularly shaped
and long, stick-like fragments. The average size of the bamboo particles was 90 µm
whereas that of the pulp after the alkaline treatment process was 60–50 µm, and that of
the cellulose after bleaching was 10–50.4 µm. It was also observed that the cellulose fibers
became thinner and cleaner after treatment with sodium hydroxide and chlorite solutions
(Figure 2b,c), respectively.
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3.3. Analysis of Reactive Radical Species via Optical Emission Spectroscopy

The plasma species generated in the DBD plasma were determined using optical
emission spectroscopy (OES) under different plasma gas operational conditions. The OES
spectra for the argon gas plasma and Ar + O2 gas plasma in the wavelength range of
200–900 nm are shown in Figure 3a,b, respectively. The main peak emitted by the excited
atoms of the feed gas (argon) was between 300 and 900 nm. Peaks corresponding to N2 were
detected between 330 and 400 nm and were presumably presented because of the mixing of
argon gas with nitrogen in the atmosphere surrounding the DBD plasma. Oxygen atomic
peaks are observed at 406.3 and 777.1 nm for the argon gas plasma, but those peaks are
higher for the Ar + O2 plasma treatment (Figure 3b). In addition, hydroxyl (OH) radicals
are observed at 309.7 nm, probably as a result of O2 and H2O isolation [47–49]. Inert gas
plasma treatment initiates surface activation by generating reactive species (ions, radicals,
etc.,) on the cellulose surface. Free radicals formed during the argon plasma treatment
on the surface of the fiber reacted with atmospheric oxygen, nitrogen, and moisture [50].
Reactive radical species, reactive oxygen species (ROS), and reactive nitrogen species (RNS)
interacted with the surface by cleaning, etching, and breaking bonds, and the recombination
of these radicals allowed crosslinking at the treated surface of the materials [51].
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3.4. Analysis of Functional Groups via FTIR

The FTIR spectra of the untreated and plasma-treated fibers are shown in Figure 4.
The band in the region of 3200–3600 cm−1 is strong in cellulose and hemicellulose and
corresponds to the hydrophilic hydroxyl (OH) stretching vibration [52,53]. The band
at 2904 cm−1 is the C–H stretching vibration of the hydrocarbon structure in hemicellu-
lose [54]. The band at 1640 cm−1 represents the adsorbed water molecules in noncrystalline
cellulose. It is attributed to the H–O–H stretching vibration of the adsorbed water owing
to the strong interaction between adsorbed water and the hydrophilic surface O–H group
of cellulose because of the hydroxyl groups in cellulose [55,56]. The spectra at 1428, 1370,
1167, and 1056 cm−1 represent the C–H deformation (methoxyl group in lignin), C–H
deformation (symmetric), C–O stretching of ester groups, and C–OH stretching vibration
in cellulose, respectively [28,57–59]. The band at 895 cm−1 represents the C–H deformation
in cellulose [60].
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From the results, after plasma treatment, the BFs have functional groups and chemical
bonds such as those of the untreated BFs. However, as the plasma treatment time increased
to 30 min, the intensities of the FTIR spectra of the functional groups of hemicellulose,
lignin, and noncrystalline cellulose decreased to 3420, 2904, 1640, 1428, and 1370 cm−1.
Free radicals in plasma, especially oxygen radicals, are highly reactive, which is important
for modifying cyclic cellulose chains. Because of the oxidation reaction by oxygen radicals,
activated oxygen radicals may also interact with the hydroxyl groups of the lignocellulosic
chain [61]. Surface etching by plasma resulted in the removal of hemicellulose, lignin, and
noncrystalline cellulose, which is consistent with the SEM morphology and microstructure
analysis results.

3.5. Determination of Element Composition and Chemical Bonds

A low-energy-resolution scan of the bamboo fiber revealed a surface composed of
carbon and oxygen atoms (Table 4). This indicates that the fiber surface was predominantly
composed of hydrocarbon compounds. DBD plasma treatment had a positive effect on
the fiber surfaces compared with the untreated plasma fibers. The fibers treated with
Ar + O2 gas plasma showed a higher O/C ratio than those treated with Ar gas plasma,
confirming that the oxygen gas plasma increased the oxygen atomic content. As the
treatment time increased, the O/C ratio also increased. The results showed an increase in
oxygen content and a decrease in carbon content because plasma treatment with inert gas
improved the surface activity of the fibers, allowing free radicals to react with oxygen to
form peroxides, and the atomic percentage of carbon decreased as the atomic percentage
of oxygen increased [11]. The presence of ROS caused an oxidation reaction that etched
and oxidized the cellulose surface, resulting in the removal of hemicellulose, lignin, and
amorphous portions of the fiber surface [8,37]. These results are consistent with the FTIR
analysis results.

Table 4. Chemical composition of the untreated and treated BFs.

Treatments
Compositions (%) a,b

O/C
C O

Untreated 61.16 38.84 0.64

Ar 10 min 60.36 39.64 0.66
Ar 20 min 58.48 41.52 0.71
Ar 30 min 58.17 41.83 0.72

Ar + O2 10 min 57.61 42.39 0.74
Ar + O2 20 min 56.18 43.52 0.77
Ar + O2 30 min 55.12 44.88 0.81

a Atomic %. b C: carbon, O: oxygen.

XPS analysis was performed to determine the elemental bonding of the carbon and
oxygen atoms and to compare the energy levels and fiber intensities of the untreated and
plasma-treated fiber samples (Figure 5). The XPS spectrum of carbon atoms on the fiber
surface showed the highest intensity, where energy levels of approximately 285.0, 286.7,
and 287.5 eV indicate the characteristics of C1s forming C–C or C–H, C–O, and C–OH
bonds, respectively [8,62,63]. The C–OH bond is absent in the untreated plasma fibers, but
it appears after the plasma treatment of the BFs. It was found that with every increase in
treatment time, the intensity of the C–OH bonds increased, whereas the intensity of the
C–C or C–H bond decreased because of the plasma etching of the hydrocarbon bonds in
the fibers. Ar+ ions, which are highly energetic ionic species with sufficient energy to break
the C–C or C–H bonds, subsequently react to form various oxygen functional groups on
the treated fiber surface [61,64].
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3.6. The Crystallinity Property

The results of the crystallinity analysis and the XRD patterns of the fibers, shown
in Figure 6, show the typical crystal lattice of cellulose. The presence of two peaks of
cellulose fiber is seen at 2θ = ~15.5◦ and ~22.8◦, corresponding to (101) and (002) planes,
respectively [44]. The (002) peak is the major crystalline peak of cellulose I. The low
intensity of the peaks could be associated with the noncrystalline portion of cellulose and
amorphous compounds in the fiber (lignin, hemicellulose, and wax) [37]. The presence
of another typical peak of cellulose at 2θ = ~34.5◦ in the plane (040) is also observed.
Analysis of the constant location of the peak indicated that the treatments did not modify
the crystalline structure of cellulose. The crystallinity results indicated that the crystallinity
of the plasma-treated fiber increased with increasing the treatment time as compared to
the untreated fiber, which had a C.I. percentage of 59.65%. The treatment times of 10, 20,
and 30 min for the Ar gas plasma-treated fibers revealed C.I. percentages of 59.79, 60.94,
and 61.36%, respectively, whereas those of the Ar + O2 gas plasma-treated fibers had C.I.
percentages of 61.63, 62.25, and 62.91%, respectively. The crystallinity of the fibers treated
with Ar + O2 gas plasma was therefore higher than that of the fibers treated with Ar gas
plasma. The increased C.I. can be attributed to the removal of the amorphous portions
and noncellulosic components of the fibers, which led to an increase in the percentage of
cellulose during the fiber surface modification process. These results are consistent with the
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SEM and FTIR results. Plasma-treated fibers with relatively high crystallinity are beneficial
for the manufacture of biocomposites and can improve their mechanical strength [65].
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3.7. Comprehensive Weight Loss Percentage

The weight of the treated fiber was significantly lower than that of the untreated fiber.
Figure 7 shows the percentage of fiber weight loss versus treatment time for fibers treated
with the two types of gas plasma. In the case of Ar gas plasma, the weight loss did not
significantly increase with treatment time. The highest weight loss shown is 6.7% after
30 min, followed by 5.2 and 3.3% after 20 and 10 min, respectively. In the case of Ar + O2
gas plasma, the weight loss did not significantly increase with treatment time for 10 and
20 min, but it significantly increased with the 30 min treatment time. The highest weight
loss was observed to be 9.8% after 30 min, followed by 6.6 and 4.2% after 20 and 10 min,
respectively. This result can be attributed to the Ar plasma cleaning and slow etching of
the fiber surface, whereas the Ar + O2 plasma etching was faster owing to the oxidation
reaction of oxygen radicals, which resulted in oxidation of the fiber surface, thinning the
fiber surface [1,66]. This result is consistent with the SEM results.

3.8. Morphology of Treated BFs

The morphologies of the untreated bamboo cellulose fibers and the fibers treated with
different gas plasmas for various treatment times are shown in Figures 8 and 9, respectively.
The surface characteristics of the plasma-treated BFs are visibly different from those of the
untreated BFs. The BFs treated with Ar and Ar + O2 gas plasma show partial etching of
the fiber surface, which increased with increasing treatment time. The plasma treatment
caused the etching of lignin and hemicellulose on the fiber surface, which was left over
from the bleaching process, exposing the crystalline cellulose fibers. The plasma treatment
with Ar + O2 gas resulted in more surface etching than that with Ar gas because of the
oxidation–reduction of oxygen gas, which oxidized the fiber surface [67]. Furthermore, the
fiber was composed of cellulose microfibrils linked with hemicellulose and lignin. When
the lignin and hemicellulose were removed, microfibrils appeared in the cellulose, as shown
in Figure 9, resulting in a higher surface roughness. The roughness and increased contact
area improved the adhesion between the fiber and matrix interface, allowing the matrix to
spread, penetrate, and interlock onto the fiber surface [28,68].



Polymers 2023, 15, 1711 12 of 19Polymers 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 7. Comprehensively reduced weight loss percentage of fiber surface treated with plasma at 
various treatment times compared with the untreated fiber. Note: values indicated with the same 
letters are not significantly different at p ≤ 0.05. 

3.8. Morphology of Treated BFs 
The morphologies of the untreated bamboo cellulose fibers and the fibers treated 

with different gas plasmas for various treatment times are shown in Figures 8 and 9, re-
spectively. The surface characteristics of the plasma-treated BFs are visibly different from 
those of the untreated BFs. The BFs treated with Ar and Ar + O2 gas plasma show partial 
etching of the fiber surface, which increased with increasing treatment time. The plasma 
treatment caused the etching of lignin and hemicellulose on the fiber surface, which was 
left over from the bleaching process, exposing the crystalline cellulose fibers. The plasma 
treatment with Ar + O2 gas resulted in more surface etching than that with Ar gas because 
of the oxidation–reduction of oxygen gas, which oxidized the fiber surface [67]. Further-
more, the fiber was composed of cellulose microfibrils linked with hemicellulose and lig-
nin. When the lignin and hemicellulose were removed, microfibrils appeared in the cellu-
lose, as shown in Figure 9, resulting in a higher surface roughness. The roughness and 
increased contact area improved the adhesion between the fiber and matrix interface, al-
lowing the matrix to spread, penetrate, and interlock onto the fiber surface [28,68]. 

Figure 7. Comprehensively reduced weight loss percentage of fiber surface treated with plasma at
various treatment times compared with the untreated fiber. Note: values indicated with the same
letters are not significantly different at p ≤ 0.05.

Polymers 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. SEM images of the morphology of BFs treated with difference gas plasmas for various 
treatment times at 1000×. 

 
Figure 9. SEM images of the morphology of BFs treated with different gas plasmas for various treat-
ment times at 15,000×. 

Figure 8. SEM images of the morphology of BFs treated with difference gas plasmas for various
treatment times at 1000×.



Polymers 2023, 15, 1711 13 of 19

Polymers 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. SEM images of the morphology of BFs treated with difference gas plasmas for various 
treatment times at 1000×. 

 
Figure 9. SEM images of the morphology of BFs treated with different gas plasmas for various treat-
ment times at 15,000×. 
Figure 9. SEM images of the morphology of BFs treated with different gas plasmas for various
treatment times at 15,000×.

3.9. BET Specific Surface Area

The physical adsorption and desorption of nitrogen gas on the fiber surface were
analyzed using the specific surface area as determined from the BET equations. The surface
areas of the BFs treated with the different gas plasmas for various treatment times were
higher than those of the untreated bamboo fiber samples (Table 5). The surface area after
treatment with the Ar + O2 gas plasma showed a significant increase with increasing plasma
treatment time (p ≤ 0.05) compared to that of the untreated fiber. The surface area of the
BFs treated with the Ar + O2 gas plasma for 30 min had the largest surface area, which was
statistically significant. This result is consistent with the SEM results. Etching of the fiber
surface reduced the amount of lignin and hemicellulose, which increased the number of
microfibrils, thereby increasing the roughness of the cellulose surface [68]. The higher the
fiber surface area, the greater the fiber interface area, which resulted in better adhesion
between the fiber and the matrix [69,70].

Table 5. Surface area of bamboo fiber treated with plasma via BET experiment.

Type of Gas Treatment Time (min) BET Surface Area (m2/g)

Untreated - 0.99 a

Ar 10 min 3.04 ab
Ar 20 min 3.96 abc
Ar 30 min 7.38 cd

Ar + O2 10 min 5.68 bcd
Ar + O2 20 min 8.86 d
Ar + O2 30 min 15.36 e

The mean values indicate that the different letters show significant difference according to LSD test at p ≤ 0.05.
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3.10. Mechanical Properties

Figure 10a shows the tensile properties observed using the tensile tester, where the
FRE matrix composite fabricated using the untreated fibers was used as a control. The
control showed tensile strength and elongation at a break of 36.94 MPa and 6.02%, re-
spectively. The tensile strength, elongation at break, and energy absorption (EA) of the
F(tr)RE composites fabricated using treated fibers were calculated and are reported in
Table 6. The tensile strength of the plasma-treated F(tr)RE composites was significantly
higher than that of the untreated composite (control). The tensile strength of F(tr)RE com-
posites treated with Ar gas plasma increased with increasing treatment time; the F(tr)RE-Ar
(30) composite exhibited a high tensile strength of 46.30 MPa. The Ar + O2 gas plasma
F(tr)RE composites also showed a high tensile strength, particularly the F(tr)RE-Ar + O2 (10)
composite, which decreased with increasing treatment time. Furthermore, the elongation
at break of the F(tr)RE composites decreased as the treatment time increased, but it was
not significantly different from that of the other treatments. The prolonged treatment
time of the Ar + O2 plasma treatment affected the fiber structure, causing damage and
cracking of the fiber. The oxidation reaction of oxygen gas resulted in the oxidation of the
fiber surfaced, making it thinner, which led to the brittleness of the fiber [71]. The EA of
the F(tr)RE composites during tensile strain is a highly desirable property, in addition to
tensile strength. The EA was calculated from the area under the stress–strain curve, and
the results are shown in Figure 10b. The EA of the Ar gas plasma F(tr)RE composites in-
creased with increasing treatment time, in which the F(tr)RE-Ar (30) composite showed the
highest EA of 129.22 MPa·mm/mm, which is a significant increase when compared with
the FRE-untreated composite (98.25 MPa·mm/mm). Plasma etching of the fiber surface
increased the roughness, resulting in better diffusion and penetration at the fiber–matrix
interface and creating interlocking bonding [28,72]. Furthermore, Ar gas plasma cleaning
of the fiber surface resulted in a decreased contact angle, which enhanced the polarity [73].
This improved the surface energy of the fiber surface, leading to good interface adhesion,
allowing it to absorb energy and resulting in the gradual growth of cracks until final failure
occurred by exceeding the fracture toughness [74–76]. Composites with a large area under
the stress–strain curve are more effective energy absorbers. Therefore, the plasma-treated
fibers improved the mechanical properties of the composite matrix. Although the EA of
the Ar + O2 gas plasma F(tr)RE composites did not significantly decrease with increasing
treatment time because of the brittleness of the fibers, the plasma etched the fiber surface,
which thinned the fibers and led to the fracture.
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Table 6. Mechanical properties of untreated FRE and plasma-treated F(tr)RE composites.

Sample Tensile Strength
(MPa) *

Elongation
(%) *

Energy Absorption
(MPa·mm/mm) *

FRE-untreated 36.94 ± 0.46 a 6.02 ± 0.49 ab 98.25 ± 11.78 a

F(tr)RE-Ar 10 min 39.80 ± 0.72 ab 6.77 ± 0.74 a 116.76 ± 15.65 ab
F(tr)RE-Ar 20 min 42.12 ± 1.11 bc 4.97 ± 0.45 b 100.30 ± 13.73 ab
F(tr)RE-Ar 30 min 46.30 ± 0.29 d 6.33 ± 0.21 ab 129.22 ± 5.28 b

F(tr)RE-Ar + O2 10 min 45.19 ± 0.67 cd 5.92 ± 0.23 ab 116.38 ± 2.84 ab
F(tr)RE-Ar + O2 20 min 40.95 ± 1.53 ab 5.09 ± 0.22 b 107.54 ± 7.94 ab
F(tr)RE-Ar + O2 30 min 42.66 ± 0.59 bcd 5.12 ± 0.17 b 98.24 ± 4.43 a

* Values in the same column with the same letters are not significantly different at p ≤ 0.05.

Figure 11 shows the fracture characteristics of the untreated fibers and the fibers
plasma treated with Ar gas and Ar + O2 gas plasma for various treatment times after
use as reinforcements in the epoxy composites. The plasma-treated F(tr)RE composites
show better interfacial bonding between the treated fiber and the epoxy matrix than the
FRE-untreated composite. The plasma discharge enhanced the migration of free radicals,
which increased the cleaning and etching of the fiber surface, decreased the extent of voids
in the composites, generated links between the two different material phases, and increased
their interfacial adhesion properties [11]. The fiber surface etching with plasma treatment
exhibited increased surface roughness, which improved the interfacial adhesion between
the fiber and matrix because of the interdiffusion of molecules between the matrix and the
fiber, resulting in an increase in the EA of the F(tr)RE-Ar samples. However, the interfacial
bonding of the F(tr)RE-Ar + O2 composites decreased with increasing treatment time, and
the oxygen plasma-treated fibers showed brittle breakage because prolonged etching of the
fiber surface by plasma discharge caused thinning of fibers, and thus they fractured.
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3.11. The Effect of Plasma Treatment on the Fiber Surface on the Energy Absorption Property of the
FRE Composite Samples

Figure 12a shows the two main factors influencing the response variable, EA. The
effects of the gas type and treatment time on the EA values were not significantly different,
but they did interact to affect the EA, as shown in Figure 12b. The EA value depends on
the relationship between the gas type and treatment time. With increased treatment time,
the mean EA of the Ar gas-plasma-treated F(tr)RE composites increased, whereas that of
the Ar + O2 gas plasma-treated F(tr)RE composites decreased. The oxidation reaction of
ROS resulted in faster etching and thinning of the fiber surface, which led to the brittleness
of the fiber and the rapid propagation of cracks until final failure occurred.
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4. Conclusions

Plasma technology was used to successfully modify the surface of bamboo fiber. The
DBD plasma treatment improves fiber surface energy, interface adhesion, and compatibility,
as measured by contract surface area, surface chemical composition, and tensile strength.
The bamboo fiber was etched onto the fiber surfaces after the plasma treatment, which
increased roughness and surface area in the BET result. Plasma treatment removes an
amorphous portion of the fibers and results in an increase in their percentage of crystalline
cellulose. Treating the fiber by plasma with Ar for 30 min was found to be the optimum
condition because it improved the mechanical properties of the FRE composites. Plasma
treatment can therefore facilitate high surface interactions and improve the interfacial adhe-
sion between natural fibers and the particles of a polymer matrix. The surface treatments
transform the fibers into raw materials for the manufacture of multi-benefit compounds
and matrices commonly used in the biocomposites sector.
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