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Abstract: Herein, we report the efficient preparation ofπ-electron-extended triazine-based covalent organic
framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule,
as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited
remarkable porosity, excellent crystallinity, high surface area of 724 m2 g−1, and massive thermal stability
with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from
water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g−1

is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh
COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant
of 4.1× 10−2 min−1 and an efficiency of 97.02% under ultraviolet–visible light irradiation. Furthermore,
without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for
reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 µmol g−1 h−1. This highly
active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as
solar energy processing and conversion.

Keywords: covalent organic framework; rhodamine B; dye removal; photodegradation; photocatalysis
H2 evolution

1. Introduction

The scarcity of clean water sources has long existed because of industrialization, rapid
development, and anthropogenic activity [1]. The development of feasible systems for
preventing water pollution and protecting the environment has attracted the attention
of researchers [2]. Among the most prevalent water pollutants are organic dyes. Due to
their chemical structures, dyes are resistant to light, water, and many synthetic substances,
making them non-biodegradable [3]. In addition, organic dyes are mutagenic and carcino-
genic substances that can potentially seriously harm human health and the environment [4].
Researchers recently invented several wastewater treatment technologies for eliminating
organic dyes from wastewater, including chemical, physical, and biological technolo-
gies [5–8]. Among them, sorption-based technologies received more attention due to their
cost-effectiveness [9,10]. Amorphous porous materials, such as natural zeolites, fibers,
and nanoscale-ordered porous materials, have been invented as dye adsorbents [11–18].
These porous sorbents, however, only adsorb contaminated dyes without degrading them,
causing regeneration and secondary pollution issues [19]. However, recent research has
focused on porous photocatalytic materials as potent new technological advances for re-
moving and degrading polluted organic dyes from water [20–24]. Many inorganic porous
materials, such as metal sulfides and oxides, have been investigated as photocatalysts for
organic dye photodegradation. Still, their minimal surface areas and rising toxic effects
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have severely restricted their practicality [25–30]. As a direct consequence, that is crucial to
create innovative sorbents that can effectively adsorb and photodegrade polluting dyes
under visible light.

In the last ten years, porous organic polymers have become an exciting subject of photo-
catalysts, due to their benefits in molecular and controllable electronic structures [31–33]. The
reported porous polymer photocatalysts include covalent triazine frameworks, conjugated mi-
croporous polymers, and porous aromatic frameworks [34–38]. In fact, researchers developed
several porous organic polymers with various topologies and morphological characteristics
for photodegrading organic polluted dyes [39–41]. Among these porous organic polymers,
covalent organic frameworks (COFs) have benefits of elevated crystallinity, high surface area,
low density, precisely controllable structural features, facilely tailored functionality, tunable
pore size and structure, and a gifted covalent combination of building units, and they can
absorb and move light energy via their own delocalized polymer backbones [41–45]. The ma-
jority of these COFs demonstrated significant characteristics. Then, they excelled in a variety
of uses in gas uptaking, energy storage, poisonous metal ion sensing and removing, detecting,
photocatalysis, optical devices, and solar energy [46–54]. Additionally, COFs are desirable
substances for the adsorptive and photocatalytic degradation of natural dyes in aqueous
media due to their significant absorption activities and extensive conjugation [55–57]. Only
a few reports have mentioned using COFs as photocatalysts to degrade organic pollutants,
even though COFs have been extensively studied as photocatalysts for organic reactions and
hydrogen production via water splitting [58,59]. Therefore, the creation of environmentally
friendly COFs as semiconductor materials for the adsorptive and photocatalytic degradation
of natural dyes in aqueous media is still a challenge.

It is believed that a 1,3,5-triazine unit correlated significantly with high photocatalytic
efficacy in organic photocatalysts [60]. According to reports, extending the π-electron delo-
calization system of COFs significantly improved their electronic and optical attributes [15].
Along these lines, we developed π-electron extended triazine-based COF (TFP-TPTPh COF)
through Schiff-base polycondensation of 1,3,5-triformylphloroglucinol (TFP-3OHCHO) with
π-electron-extended 4′,4′′′,4′′′′′-(1,3,5-triazine-2,4,6-triyl)tris(([1,1′-biphenyl]-4-amine)) (TPTPh-
3NH2) under solvothermal condition (Scheme 1). After that, the resultant triazine-based COF
was evaluated as a promising adsorbent and photocatalyst for the removal and photocatalytic
degradation of RhB dye molecules in water. In addition, the obtained triazine-based COF was
a photocatalyst for the photocatalytic reduction of water to yield H2.
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Scheme 1. Synthesis of TFP-TPTPh COF. Scheme 1. Synthesis of TFP-TPTPh COF.

2. Materials and Methods
2.1. Materials

Chemicals were acquired from commercial sources and used as obtained. Phlorogluci-
nol (99%), potassium carbonate (K2CO3), nitrobenzene, 4-aminophenylboronic acid pinacol
ester, acetic acid (CH3COOH), and n-butanol were ordered from Sigma–Aldrich (St. Louis,
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MO, USA). Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), trifluoromethanesul-
fonic acid (≥98%), o-dichlorobenzene, and bromobenzonitrile (≥98%) were obtained from
Acros (Maribor, Slovenia).

2.2. Synthesis of 4′,4′′′,4′′′′′-(1,3,5-Triazine-2,4,6-triyl)tris(([1,1′-biphenyl]-4-amine)) (TPTPh-3NH2)

In a 250 mL glass bottle and under an inert atmosphere, 2,4,6-tris(4-bromopheny)-1,3,5-
triazine (TPT-3Br) (0.4 g, 0.73 mmol, one equivalent), 4-aminophenylboronic acid pinacol
ester (0.97 g, 4.43 mmol, six equivalent), Pd(PPh3)4 (86 mg, 0.073 mmol, 0.1 equivalent),
and K2CO3 (0.76 g, 5.5 mmol, 7.5 equivalent) were weighted. Then, dioxane/water (30 mL:
7.5 mL) was added, and the reaction was allowed to heat at 115 ◦C for three days. After
pouring into ice water (50 mL), the TPTPh-3NH2 was separated by filtration to obtain it as
a green-brown powder (0.34 g, 80%).

2.3. Synthesis of TFP-TPTPh COF

TFP-3OHCHO (40 mg, 0.19 mmol) and TPTPh-3NH2 (111 mg, 0.19 mmol) were weighed
into a Schlenk tube containing a co-solvent of n-butanol (5 mL)/o-dichlorobenzene (5 mL)
and AcOH (6 M, 1 mL). The reaction mixture was flame-sealed and allowed to heat at 120 ◦C
for three days. The solid TFP-TPTPh COF was filtered, washed twice with n-butanol, and
dried under vacuum at 120 ◦C to acquire TFP-TPTPh COF as a yellow powder.

3. Results
3.1. Design, Synthesis, and Crystallinity of π-Electron-Extended Triazine-Based COF

We synthesized the π-electron-extended TPTPh-3NH2 building monomer through
a simple Suzuki-coupling reaction of TPT-3Br with 4-aminophenylboronic acid pinacol
ester in the presence of Pd(PPh3)4 as a Pd-catalyst and K2CO3 as a basic catalyst at 115 ◦C
using a co-solvent of 1,4-dioxane and water (Scheme S1). Fourier-transform infrared (FTIR)
and nuclear magnetic resonance (NMR) spectroscopies were performed to figure out the
molecular structure of the TPTPh-3NH2 monomer (Figures S1–S3). The FTIR spectrum of
TPT-3PhNH2 displayed the N–H bond from 3446 to 3326 cm−1, the aromatic C–H stretching
at 3071 cm−1, the C=N bond at 1600 cm−1, the aromatic C=C bond at 1509 cm−1, and the
C–N bond at 1281 cm−1 (Figure S1). As shown in Figure S2, the characteristic 1H signals
of the aromatic ring were observed at 7.85 ppm (a), 7.56 ppm (b), and 6.69 ppm (c). The
signal appeared at 5.45 ppm for the NH2 group. The 13C NMR spectrum of TPT-3PhNH2
showed a signal at 171.46 ppm (a) that could be assigned due to the carbon of the triazine
functional group and a signal at 150.21 ppm (b) for the carbon nuclei attached to amino
groups (C–NH2). The peaks located around 145.71 ppm to 114.79 ppm (c-i) are derived
from the carbon atoms of the aromatic rings (Figure S3). Scheme 1 reveals the solvothermal
synthesis and construction of the π-electron extended triazine-based COF (TFP-TPTPh COF)
from the TPTPh-3NH2 and TFP-3OHCHO (Scheme S2, Figures S4–S6) building monomers.
Briefly, the polycondensation between TPTPh-3NH2 and TFP-3OHCHO in a mixed solvent
of o-dichlorobenzene, n-butanol, and acetic acid (6 M) (1:1:0.1) at 120 ◦C for three days
afforded the desired TFP-TPTPh COF in high yield.

FTIR and solid-state 13C NMR (13C SS-NMR) spectroscopies were used to verify the
molecular composition of the as-prepared TFP-TPTPh COF. The FTIR spectrum of TFP-TPT
COF was expressed in Figure 1a–c, and there were spectra of the monomer comparison
to exhibit the growth and decline of the peak. TFP-3OHCHO displayed two intense
signals for CH=O and C=C units at 1644 and 1430 cm−1, respectively, as well as a robust
and broad absorption at 3455 cm−1 for the hydroxyl function groups (Figure 1a). The
FTIR spectrum of the TPTPh-3NH2 characterized signals at 3446–3326 cm−1 for the amine
function units, at 1600 cm−1 for imine (C=N) groups, at 1509 cm−1 for aromatic (C=C)
stretching, and at 1281 cm−1 for the C–N units (Figure 1b). The FTIR spectrum of the
TFP-TPTPh COF was short of any signal for the OH groups of the TFP-3OHCHO or the
NH2 groups of TPTPh-3NH2, indicating that they had been completely consumed. The
presence of a robust peak at 3424 cm−1 for the N–H function units, along with peaks
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at 1624 cm−1 for the C=O function units, 1576 cm−1 for the imine C=N function units,
1506~1454 cm−1 for the covalently C=C units, and 1298 cm−1 for the C–N function units,
verified that TFP-TPTPh COF existed in β-keto-enamine form (Figure 1c). The 13C SS-
NMR spectrum of TFP- TPTPh COF is displayed in Figure 1d–f. For compression, the
13C NMR spectrum of TFP-3OHCHO exhibited a signal at 192.05 ppm for the aldehydic
(CH=O) carbons and a signal at 173.59 ppm for the phenolic (C–OH) carbons (Figure 1d).
The 13C NMR spectrum of TPT-3PhNH2 showed a signal at 150.21 ppm for the carbon
nuclei attached to amino groups (C–NH2) (Figure 1e). The signal of C–OH carbon atom
disappeared after the polycondensation with the TPT-3PhNH2. In addition, the 13C SS-
NMR spectrum of TFP- TPTPh COF showed signals at 189.14–186.68 ppm for the keto
(C=O) units. The enamine (=C–NH) and α-enamine (C=C) carbon atoms appeared in the
range between 177.01–175.73 ppm and 107.48–107.16 ppm, confirming the consistency of
the β-keto-enamine-linked COF (Figure 1f). The exceptional thermal stability of the TFP-
TPTPh COF proved its high degree of polycondensation. Figure S7 and Table S1 show that
TFP-TPTPh COF is highly thermally stable, as evaluated by thermogravimetric analysis
at temperatures ranging from 40 to 800 ◦C in a nitrogen atmosphere. The as-synthesized
TFP-TPTPh COF retained approximately 90% of its original mass after heating to 414.33 ◦C;
after heating to 800 ◦C, the char yield was 63.41%.
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3.2. BET, XRD, FE-SEM, and TEM of π-Electron-Extended Triazine-Based COF

The surface area and pore size of adsorbents and photocatalytic materials are ex-
tremely important; therefore, we studied the porosity features of the TFP-TPTPh COF
by performing the N2 sorption isothermal analysis at 77 K (Figure 2a,b). The nitrogen
sorption isotherm of the TFP-TPTPh COF revealed a type I isotherm, with an accelerated N2
uptake at lower pressure (P/P0 > 0.05), pursued by unmemorable N2 uptake in the pressure
range (0.05 < P/P0 < 0.85) and a high N2 uptake in the pressure range higher (P/P0 > 0.85)
(Figure 2a). This sorption behavior of TFP-TPTPh COF confirmed its microporous structure.
Moreover, we used the Brunauer–Emmett–Teller (BET) model to investigate the surface area
and pore volume of the TFP-TPTPh COF, indicating that TFP-TPTPh COF had a surface
area of 724 m2 g−1 with a pore volume of 1.09 cm3 g−1 (Table S2). Furthermore, the pore
size distribution profile based on the NLDF theory clarified the microporous architecture
of TFP-TPTPh COF. Figure 2b and Table S2 show that TFP-TPTPh COF had a pore size
of 1.79 nm. To gain more knowledge about the crystallinity of the TFP-TPTPh COF, we
recorded its powder X-ray diffraction (PXRD) pattern (Figure S8). This pattern showed
that the TFP-TPTPh COF had a hexagonal network connection with lengthy architecture.
Figure S9 reveals that the most intense peak at 2θ = 3.91◦, which we assign to the (100) facet
of the lattice for TFP-TPTPh COF. The other minor diffraction peaks of at 2θ of at 7.45◦, 7.78◦,
11.76◦, and 21.84◦ were delegated to the (210), (200), (310), and (001) facets, respectively.
Based on Bragg’s law, the d100 spacing can predict the center-to-center spacing between
two pores in a diagonal position. In Table S2, the d100 spacing of TFP-TPTPh COF corre-
sponded to 2.26 nm. In addition, the 2θ of (001) could determine the interlayer spacing; for



Polymers 2023, 15, 1685 5 of 16

TFP-TPTPh COF, the 2θ value of (001) was 21.84◦, and the interlayer distance was obtained
as 4.06 Å (Table S2). We observed the morphology of the as-synthesized TFP-TPTPh COF
using field-emission scanning electron microscopy (FE-SEM) and transmission electron
microscopy (TEM). After solvent exfoliation in ethanol, the TEM images confirmed the
assembly of the as-synthesized TFP-TPTPh COF into a considerable number of long rods
with lengths made of several micrometers, and such micro-rods were tied by their meso-
porous sidewalls (Figure 2c,d). The hexagonal polycrystalline state of the as-synthesized
TFP-TPTPh COF was noticeable in the low-magnification TEM image (Figure 2e), which
is comparable to the geometric lattice determined by PXRD. It has been reported that the
degree of planarity of the building monomer can significantly affect the morphology of the
resultant COF [46]. We also documented that the planar building monomer used to con-
struct COFs frequently results in the formation of tubes, rods, or fibers [46,61]. Therefore,
the high planarity of the TPTPh-3NH2 building monomer is thought to have contributed to
the formation of the rod morphology of the TFP-TPTPh COF. On the other hand, the FE-SEM
images exhibited that the TFP-TPTPh COF possessed an aggregated micro-rod with a smooth
surface (Figure 2f); it also confirmed that the diameter and length of the as-synthesized COF
were estimated to be 620 ± 30 nm and 5 ± 0.5 µm, respectively.
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3.3. Photophysical and Photoelectric Properties of π-Electron-Extended Triazine-Based COF

The physicochemical characteristics of light-absorbing polymers determine their capac-
ity to both absorb light and carry out the photocatalytic reaction [15,62,63]. In addition, due
to their modulated π-electron delocalization and density, triazine derivatives have a solid
reputation as fluorescent materials [64,65]. Triazine derivatives have attracted the attention
of researchers in a wide range of photo-based applications, including organic light-emitting
diodes, solar cells, and photocatalysts [66–68]. As a result of the unique electronic and
optical features of triazine units, along with the elongated π-electron-delocalized skeleton
arising from the inclusion of a phenyl ring, we investigated the photophysical and photo-
electric features of the as-synthesized TFP-TPTPh COF by measuring its solid-state UV–Vis
diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL) emission, transient
photocurrent measurements, and electrochemical impedance spectroscopy (EIS). UV–Vis
DRS spectrum of the TFP-TPTPh COF revealed visible light absorption with a maximum
absorption intensity at 518 nm and absorption borderlines prolonging into the near-infrared
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ambit (Figure 3a). Such a feature suggested that TFP-TPTPh COF could absorb a signif-
icant amount of visible radiation for photocatalytic reactions. The optical band gap for
TFP-TPTPh COF, computed using the Tauc plot, was estimated to be 1.96 eV (Figure 3b
and Table S3). Due to the triazine unit and the extended π-electron-delocalized framework,
which improves the planarity of the COF skeleton and reduces the bandgap, TFP-TPTPh
COF has a low bandgap [68]. A photoelectron spectrometer was applied to assess the
energy level of the highest occupied molecular orbitals (HOMO) of the as-synthesized
TFP-TPTPh COF (Figure 3c). The HOMO energy level was −5.91 eV for TFP-TPTPh COF
(Figure 3c). The LUMO was calculated using the below equation (Equation (1)) to be
−3.95 eV (Figure 3d and Table S3).

ELUMO = EHOMO + Eg (1)
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Figure 3. (a) UV–Vis DRS spectrum of TFP-TPTPh COF. (b) Tauc plot of TFP-TPTPh COF. (c) Photo-
electron spectrum of TFP-TPTPh COF. (d) Electronic band level of TFP-TPTPh COF. (e) Periodic on/off
photocurrent response of TFP-TPTPh COF. (f) EIS spectrum of TFP-TPTPh COF. All measurements
were carried out at 25 ◦C.

The production and migration of photoinduced holes and electrons are crucial steps
in photocatalytic reactions. Therefore, the PL spectrum examined how well the charge
carrier generation and transfer performed. The as-synthesized TFP-TPTPh COF demon-
strated an elevated PL emission maximum of around 525 nm in its PL emission spectrum
(Figure S9). In addition, the generated electrons within the photocatalyst can be directly
measured by the photocurrent. Therefore, we measured the photocurrent density of the
as-synthesized TFP-TPTPh COF using a standard three-electrode instrument and under
ultraviolet and visible light irradiation. Figure 3e reveals that the TFP-TPTPh COF had
a transient photocurrent as the light of the solar simulator was on. The photocurrent
response was carried out in five on/off cycles (per the 30 s). Furthermore, the EIS of
as-synthesized TFP-TPTPh COF was investigated to evaluate its charge migration and
charge carrier recombination properties. Figure 3f shows that the EIS spectrum of the
TFP-TPTPh COF presented a typical semicircle Nyquist plot at high frequencies, revealing
low interfacial impedances and high permeability conductivities for electrolyte ions. To
better understand the conductivities of the intrinsic ohmic resistances, the intercept of the
Z′ axis in the region of high frequencies was evaluated (Rs). The Rs value of the TFP-TPTPh
COF was 58 Ω. These findings explained a lower resistance of TFP-TPTPh COF, due to its
elongated π-electron-delocalized framework.
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3.4. Dye Adsorption of π-Electron-Extended Triazine-Based COF

We anticipate that our TFP-TPTPh COF will be a promising adsorbent, due to its
high surface area, appropriate pore size, and elongated π-electron-delocalized framework.
Therefore, the cationic dye rhodamine B (RhB) was employed as the standard adsorbate to
evaluate the adsorption performance of the TFP-TPTPh COF adsorbent [69]. We studied
the physical adsorption behavior of the TFP-TPTPh COF by observing the adsorption
variability of RhB at a maximum wavelength of 554 nm at different intervals (from zero to
60 min) after adding the TFP-TPTPh COF. Figure 4a shows that the addition of a sorbent
quantity of TFP-TPTPh COF (4 mg) to an aqueous RhB solution (10 mL, 18 mg L−1) led to
the complete adsorption of RhB dye molecules within 60 min. The removal efficiencies of
RhB were nearly 84.84 and 94.5% within 30 and 60 min for TFP-TPTPh COF, respectively
(Figure 4b), proving that our COF had a quite good adsorption capability for removing
RhB organic dye. The adsorption of adsorbate on the adsorbent surface is time dependent.
Adsorption isotherms define the adsorbate-adsorbent relationship when the adsorption
process achieves equilibrium. Adsorption Langmuir kinetic isotherms are frequently
employed to define the relationship between the concentration of adsorbed dye and the
solution concentration at equilibrium [70,71]. The adsorption kinetic data were fitted to
a Langmuir isotherm model to investigate the adsorption behavior of RhB organic dye
on the surface of the TFP-TPTPh COF. With a correlation coefficient (RL

2) of 0.9961 for
TFP-TPT COF, Figure 4c represents that the Langmuir isothermal model had a good linear
fit (Ce/Qe with respect to Ce). The maximum adsorption capacity (Qm) of TFP-TPTPh COF
was 480 mg g−1, which ranks among the greatest Qm values for porous polymers ever
to be recorded (Table S4 and Figure 4d). There are several factors that strongly affect the
adsorption performance of the adsorbents, including surface area, π-π stacking interaction
between the adsorbent and dye molecules, and porosities [72]. For surface area, it has
been reported that the effectiveness of organic dye removal increases with adsorbent
surface area. For π-π stacking interaction, we documented that expanding the π-electron
delocalization system in the adsorbent improves its adsorption performance [15]. For
porosity, it has been demonstrated that the dye was effectively absorbed by adsorbent
materials with pores that matched the molecular size of the organic dye [15,73]. The
pore size of the TFP-TPTPh COF is 1.79 nm, which is close to the molecular size of RhB
(1.59 × 1.18 × 0.56 nm). Therefore, the high surface area, elongated π-electron-delocalized
framework, and porosity of the TFP-TPTPh COF may account for its high adsorption
performance. We investigated the recyclability of TFP-TPTPh COF in an aqueous solution of
RhB using cyclic adsorption/regeneration tests. According to Figure S10, when the number
of regeneration cycles was increased, the adsorption efficiency of the TFP-TPTPh COF
slightly decreased, suggesting that TFP-TPTPh COF might be used as effective adsorbents
for the removal of organic dyes from wastewater.

3.5. Photocatalytic Degradation of RhB over the π-Electron-Extended Triazine-Based COF

We evaluated the photocatalytic activity of TFP-TPTPh COF for the degradation of
RhB under exposure to ultraviolet and visible light, taking into account its high surface
area, porosity, elongated π-electron-delocalized framework, and narrow band gap. First, a
UV–Vis spectroscopy of an aqueous environment of RhB (10 mg L−1, 56 mL), as a control
test, was measured in the absence of a TFP-TPTPh COF photocatalyst. Figure S11 verifies
that the degradation of such dye was challenging to carry out without such a photocatalyst
under ultraviolet and visible light irradiation (Figure S11). Then, for photodegrading of RhB
in water over TFP-TPTPh COF, the photodegradation performance of this COF (7 mg) was
evaluated using an aqueous solution of RhB (10 mg L−1, 56 mL). Figure 5a,b shows that the
dye molecules over the TFP-TPTPh COF photocatalyst were fully degraded within 75 min
under ultraviolet and visible light. For assessing the photodegradation efficiency of RhB
over TFP TFP-TPTPh COF photocatalyst, we used the following equation (Equation (2))
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and plotted the graph of photodegradation efficiency versus different radiation times
(Figure 5c).

Photodegradation efficiency (%) =
C0 − Ce

C0
× 100 (2)

where C0 was the initial concentration of the organic dye (mg L−1), and Ce was the equilib-
rium concentration of the organic dye (mg L−1) at different irradiation times [15].
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Figure 4. (a) UV–Vis spectra of an aqueous RhB solution (10 mL, 18 mg L−1) at various time intervals
(from 0 to 60 min) after the addition of TFP-TPTPh COF (4 mg), all measurements were carried out
at 25 ◦C, stirring speed = 800 rpm, pH = 7. (b) Rates of adsorption of RhB (10 mL, 18 mg L−1) onto
the TFP-TPTPh COF (4 mg), all measurements were carried out at 25 ◦C, stirring speed = 800 rpm,
pH = 7. (c) Langmuir isothermal model and (d) adsorption isothermal curve for the adsorption of
RhB (10 mL, from 12.5 to 200 mg L−1) onto TFP-TPTPh COF (4 mg), all measurements were carried
out at 25 ◦C, stirring speed = 800 rpm, stirring time = 24 h, pH = 7.

The photodegradation efficiency of RhB in water attained 92.03, 96.82, and 97.02%
within 60, 75, and 90 min, respectively, of starting the ultraviolet and visible irradiation.
This expressed that the TFP TFP-TPTPh COF photocatalyst had an excellent performance
of photocatalytic activities for RhB degradation in water under ultraviolet and visible light.
This high potential of TFP TFP-TPTPh COF photocatalyst for dye photodegradation could
also be attributed to the ELUMO of photocatalyst (−3.95 eV) being close to the reduction
potential for superoxide radicals (O2˙−) (−4.10 Ev) Figure 5c. Under comparable pho-
tocatalytic conditions, our TFP TFP-TPTPh COF demonstrated an RhB degradation rate
similar to, and in several cases higher than, that of a number of newly identified porous
polymers (Table S5). To illustrate the degradation reaction kinetic of our TFP TFP-TPTPh
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COF photocatalyst, we fitted the kinetic data of the photocatalytic response according to
the Langmuir–Hinshelwood kinetic model (Equation (3)).

ln
(

C0

Ct

)
= kt (3)

Ct represents the final concentration in the solution of the organic dye (mg L−1), k is
the pseudo-first-order rate constant, and t is irradiation time, respectively [74].
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Figure 5. (a) UV–Vis spectra for the photodegradation of an aqueous RhB solution (56 mL, 10 mg L−1) at
various time intervals (from 0 to 180 min) after the addition of TFP-TPTPh COF (7 mg), all measurements
were carried out at 25 ◦C, stirring speed = 600 rpm, pH = 7. (b) Photocatalytic efficacy of TFP-
TPTPh COF (7 mg) for the degradation of photodegradation of an aqueous RhB solution (56 mL,
10 mg L−1) under ultraviolet and visible light irradiation, all measurements were carried out at
25 ◦C, stirring speed = 600 rpm, pH = 7. (c) Pseudo-first-order kinetic curve for the degradation of
photodegradation of an aqueous RhB solution. (d) Photodegradation efficiency for the adsorption of
RhB (56 mL, 10 mg L−1) onto TFP-TPTPh COF (7 mg), all measurements were carried out at 25 ◦C,
stirring speed = 600 rpm, pH = 7.

The degradation process induced by TFP TFP-TPTPh COF photocatalyst is shown in
Figure 5d as pseudo-first-order reaction kinetic. In addition, our TFP-TPTPh COF photocat-
alyst displayed photocatalytic solid performance in the degradation of RhB, along with
a reaction rate constant (4.1 × 10−2 min−1), indicating that TFP-TPT COF is a potential
photocatalyst for removing RhB dye under ultraviolet–visible light irradiation. We mea-
sured the reusability of TFP-TPTPh COF photocatalyst in the degradation of RhB through
three cycles to ensure its suitability for economic applications. Figure S12 reveals that the
TFP-TPTPh COF photocatalyst exhibited superior photocatalytic stability throughout its
recycling and high photocatalytic activity, up to 96%, after the third recycling.
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During photocatalytic degradation of organic dye, photogenerated holes (h+), super-
oxide radicals (O2˙−), and singlet oxygens (1O2) are generally reactive species. Therefore,
to explore the mechanism of the photocatalytic reaction of TFP-TPTPh COF photocatalyst,
we studied the influence of different charge carrier scavengers (ethylenediaminetetraacetic
acid disodium salt (EDTA-2Na) for holes (h+), benzoquinone (BQ) for (O2˙−), and sodium
azide (NaN3) for (1O2)) on the photodegradation reliability of RhB. Figure S13 shows that
the addition of NaN3 or EDTA-2Na to the RhB solution resulted in only a slight decrease in
degradation efficiency. At the same time, the lack of O2˙− and the existence of BQ led to a
substantial decline in photocatalytic activity. These findings confirmed that the TFP-TPTPh
COF photocatalyst is an excellent photocatalyst for generating O2˙−, which is produced
when electrons react with oxygen dissolved in water.

3.6. Photocatalytic Hydrogen Evolution from Water

We evaluated TFP-TPTPh COF photocatalyst for H2 evolution from water at 25 ◦C
for four hours that used a Xe lamp as an ultraviolet and visible illumination source. In a
Pyrex photoreactor with a suitable sacrificial electron donor (SED), the TFP-TPTPh COF
photocatalyst was dispersed in H2O/DMF (9:1 v/v %) co-solvent to establish a photocat-
alytic system. The temperature of the photocatalytic system was maintained at 25 ◦C by
using flowing water, and a gas chromatograph (GC) was used to monitor and record the
produced gas from the system once every hour. Several parameters were investigated,
including the SED, amount of photocatalyst, and illumination source. To determine the
best SED, we measured the hydrogen evolution rate (HER) in solutions containing ascorbic
acid (AA), triethanolamine (TEOA), and triethylamine (TEA). Figure S14 exhibits that the
highest HER was obtained in the presence of AA; as a result, we selected AA for further
studies. The protonation of N–H function units may have contributed to the greatest HER
of the TFP-TPTPh COF photocatalyst utilizing AA. According to reports, the protonation
of COF improves the hydrophilicity of COF and decreases its bandgap, which causes it to
absorb a considerable amount of light [75,76]. The photocatalyst mass has been shown to
seriously influence photocatalytic performance, due to saturation light absorption when
an adequate amount of photocatalyst is added [77–79]. Consequently, the influence of
photocatalyst mass on the photocatalytic HER was examined by changing the mass (from
2.0 to 5.0 mg). The best COF performance was attained with 2.0 mg of TFP-TPTPh COF
photocatalyst (Figure 6a and Figure S15). As a result, we selected a photocatalyst mass of
2.0 mg for further studies. The illumination source was also studied using visible and full
(ultraviolet and visible) illumination sources. Figure 6b exhibits that the obtained photo-
catalytic HER under ultraviolet and visible illumination is slightly higher than that under
visible illumination. As a result, we used ultraviolet and visible illumination for further
studies. Through the optimized photocatalytic reaction, the amount of H2 increased with
increasing the irradiation time and reached approximately 10,849 µmol g−1 after four hours
(Figure 6c). Furthermore, our TFP-TPTPh COF photocatalyst exhibited an HER efficiency
of 2712 µmol g−1 h−1. This high HER efficiency of TFP-TPTPh COF could be attributed to
its high surface area, elongated π-electron-delocalized framework, and suitable band gap.

Overall, our TFP-TPTPh COF photocatalyst exhibited excellent photocatalytic perfor-
mance for the reduction of H2O to produce H2, without the need for additional co-catalysts.
Table S6 provides an overview of the HERs of several photocatalytic polymeric materials;
our COF had comparable, and in several cases higher, photocatalytic efficiency. The re-
sults of the control photocatalytic study proved that COF is required for photocatalytic
hydrogen activity because no hydrogen could be detected in pure distilled water in the
absence of a COF photocatalyst (Figure S16). The apparent quantum yield (AQY) for pro-
ducing hydrogen was tested as a variable of light source wavelength using bandpass filters
with wavelengths of 420, 460, and 500 nm to evaluate the photocatalytic activities of the
TFP-TPTPh COF across the wavelength spectrum. Figure 6d reveals that the AQYs of TFP-
TPTPh COF photocatalyst were 0.75, 1.09, and 0.28% at 420, 460, and 500 nm, respectively,
which matches with the absorption spectrum of the TFP-TPTPh COF. After measuring the
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photocatalytic H2 evolution, the FTIR analysis of the recovered TFP-TPTPh COF was used
to examine the structural stability of a photocatalyst. The remarkable structural stability
of our TFP-TPTPh COF was demonstrated in Figure S17, which showed no discernible
alterations of the COF before or after the photocatalytic processes.
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Figure 6. (a) Effect of TFP-TPTPh COF photocatalyst amount on the hydrogen production activity.
(b) Effect of illumination source on the hydrogen production activity. (c) Hydrogen production
activity over four hours of using TFP-TPTPh COF photocatalyst under ultraviolet and visible light
irradiation. (d) AQYs of the TFP-TPTPh COF photocatalyst that measured at different wavelengths
of light.

4. Conclusions

In summary, a π-electron-extended triazine-based COF (TFP-TPTPh COF) was syn-
thesized through the polycondensation reaction of TPTPh-3NH2 and TFP-3OHCHO in
a mixed solvent at 120 ◦C for three days in the presence of acetic acid (6 M). FTIR and
solid-state 13C NMR (13C SS-NMR) spectroscopies were used to confirm the molecular
structure of the triazine-based COF. The TGA, BET, and PXRD measurements revealed
that triazine-based COF had massive thermal stability with a char yield of 63.41%, a high
surface area of 724 m2 g−1, and outstanding crystallinity. The triazine-based COF also
exhibited a narrow band gap of 1.96 eV, indicating its effective photophysical and photo-
electric properties. In addition, we tested the applicability of our triazine-based COF for the
removal and photocatalytic degradation of RhB dye molecules, as well as the photocatalytic
activity of hydrogen production from water. The triazine-based COF performed well in
the adsorption and photocatalytic degradation of the RhB, with a Qm of 480 mg g−1 and
a photocatalytic degradation reaction rate constant of 4.1 × 10−2 min−1. In addition, the
triazine-based COF showed a great capacity for producing H2 from water with an HER
of 2712 µmol g−1 h−1 of under ultraviolet–visible light irradiation without needing for
a co-catalyst. The triazine-based COF also showed an AQY of 1.09% at 460 nm. Thus,
our COF offers the chance to develop innovative organic photocatalyst, which could be
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used to remove and photo-catalytically degrade RhB dye from water, as well as potentially
generate H2 from water.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15071685/s1, Scheme S1: Synthesis of TPTPh-3NH2;
Scheme S2: Synthesis of 1,3,5-triformylphloroglucinol (TFP-3OHCHO); Figure S1: IR spectrum
of TPTPh-3NH2; Figure S2: 1H-NMR spectrum of TPTPh-3NH2; Figure S3: 13C-NMR spectrum of
TPTPh-3NH2; Figure S4: IR spectrum of 1,3,5-triformylphloroglucinol (TFP-3OHCHO);
Figure S5: 1H-NMR spectrum of 1,3,5-triformylphloroglucinol (TFP-3OHCHO); Figure S6: 13C-NMR
spectrum of 1,3,5-triformylphloroglucinol (TFP-3OHCHO); Figure S7: TGA analysis of TFP-TPTPh
COF; Figure S8: PXRD pattern of TFP-TPTPh COF; Figure S9: Fluorescence spectrum of TFP-TPTPh
COF; Figure S10: Reusability of TFP-TPTPh COF for the removal of RhB within 60 min; Figure S11:
(a) UV–Vis spectra and (b) Photocatalytic efficacy of the control experiment of RhB upon UV and
visible light irradiation without catalyst; Figure S12: Reusability of TFP-TPTPh COF for the pho-
todegrading of RhB; Figure S13: Effect of different scavengers, NaN3, BQ, and EDTA-2Na on the
photocatalytic degradation of RhB (10 mg L−1) by TFP-TPTPh COF under UV and visible light
irradiation; Figure S14: Effect of sacrificial electron donors the hydrogen production; Figure S15:
Effect of TFP-TPTPh COF photocatalyst amount on the hydrogen production activity; Figure S16:
Control experiment of the TFP-TPTPh COF; Figure S17: FTIR spectra of TFP-TPTPh COF before and
after the photocatalytic H2 evolution measurement; Table S1: Values of Td10%, and Char yield of
TFP-TPTPh COF; Table S2: BET and PXRD parameters of TFP-TPTPh COF; Table S3: Absorption
maxima and energy levels of the TFP-TPTPh COF; Table S4: Maximum adsorption capacities of RhB
on the TFP-TPTPh COF, compared with those of other reported materials; Table S5: Photodegradation
performance of RhB on the TFP-TPTPh COF, compared with those of other reported materials; Table
S6: HERs of TFP-TPTPh COF, compared with those of other reported materials [80–102].
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