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Abstract: Biological macromolecules like polysaccharides/proteins/glycoproteins have been widely
used in the field of tissue engineering due to their ability to mimic the extracellular matrix of
tissue. In addition to this, these macromolecules are found to have higher biocompatibility and
no/lesser toxicity when compared to synthetic polymers. In recent years, scaffolds made up of
proteins, polysaccharides, or glycoproteins have been highly used due to their tensile strength,
biodegradability, and flexibility. This review is about the fabrication methods and applications of
scaffolds made using various biological macromolecules, including polysaccharides like chitosan,
agarose, cellulose, and dextran and proteins like soy proteins, zein proteins, etc. Biopolymer-based
nanocomposite production and its application and limitations are also discussed in this review.
This review also emphasizes the importance of using natural polymers rather than synthetic ones
for developing scaffolds, as natural polymers have unique properties, like high biocompatibility,
biodegradability, accessibility, stability, absence of toxicity, and low cost.

Keywords: nanotechnology; natural polymer; tissue engineering

1. Introduction

Nearly tens of thousands of individuals die each year as a result of the loss of organs
or tissues or their dysfunction. Tissue engineering is one the powerful strategies for treating
people who have lost or have failed organs or tissues [1]. Its triad relies on selecting the cells,
the appropriate 3D scaffolds (mostly biopolymers based), and the appropriate chemical
mediators required for tissue formation/regeneration (Figure 1) [2]. Tissue engineering is an
in-vitro process for creating bioengineered tissues and an in-vivo process when implanting
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into a living system (mostly animals). In the multidisciplinary field of tissue regeneration, a
lot of buzz is being generated, as it has proven to be a breakthrough therapeutic technique
for solving the drawbacks of current artificial organs, as well as restoring severely damaged
tissues or organs [3]. A scaffold is an artificial framework used for the formation of three–
dimensional (3D) tissues, cell attachment and migration, and cell transport and retention, as
well as the diffusion of essential nutrients and released products [4]. Scaffolds are expected
to meet certain parameters, including excellent biodegradability, biocompatibility, a porous
structure to facilitate cellular growth to help in tissue regeneration, and the controlled
stimulation of the anticipated biological response to produce the desired product, which
can be mostly tissue or organs [5,6] (Figure 1). These scaffolds can be altered to be formed at
the nanoscale or microscale, which is expected to favor or regulate biological factors/growth
factor releases [7,8].
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Most scaffolds used in tissue engineering are made of porous materials which act or
provide extracellular matrix or growth factors for cell growth; and they do have broader
mechanical properties and are metabolically active [9,10]. Smaller pores enable tissue
ingrowth, while larger pores (porous scaffolds) encourage cell seeding and migration. Many
scaffold designs opt for high porosity materials with a porosity of above 90% because they
allow for appropriate nutrient absorption during tissue culturing and offer enough surface
area for interactions between cells and biomaterials [11]. After growing on the porous
scaffold, cells/organs are transported from the laboratory to the real organism [12,13].
After the transfer of new tissue scaffolds to soft tissues in-vivo, do not necessarily need
to be destroyed, whereas, for hard tissues, the scaffold materials do persist forever or for
a certain duration. The scaffolds tend to stimulate the cells, and the tissue is eventually
reconstructed by the messages from the scaffold [14,15]. The use of biomaterials in the
tissue engineering field unlocks the innate regenerative potential of human tissues/organs,
restoring them to their former state and restoring their function to normal [16]. The use
of biomaterials, such as natural polymers, metals, ceramics, synthetic polymers, and their
composites, in biomedical fields has been widespread for decades. Scaffolds are substances
that are designed to encourage specific cellular interactions that aid in the development
of functioning tissues [17–20]. The most significant aspect of any scaffold used in the
tissue engineering field is that it must be biocompatible. An additional matrix must be
layered after cells have adhered to the surface, which enables them to function normally,
migrate through the scaffolds, and facilitate proliferation. A scaffold– or tissue–engineered
construct will not trigger an inflammatory response that would limit healing or lead to
rejection after implantation; rather, it will elicit a negligible immune response [17,19].

Biodegradable polymers used in tissue engineering are largely derived from medical
implants and devices that are clinically proven. Among the natural macromolecules,
agarose, collagen, alginate, derivatives of hyaluronic acid, fibrin glue, and chitosan have
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all been used as scaffolds [21–23]. The biologically active polypeptides called growth
factors (GFs) control the repairing of tissue by interacting with specific receptors found
on the cells. They play a major role in cell migration in the wound area, epithelialization,
and angiogenesis, as well as stimulating the matrix formation and remodeling of the
wound area. In addition to being short-lived and seeing rapid dissemination from the
delivery site, as well as being relatively inexpensive, growth factors are often limited in
their effectiveness [24,25].

In earlier days, potential biocompatible scaffold materials were extracted from donor
tissue, where these biocompatible surfaces allow cells to divide and regenerate [26,27].
Biopolymers/biomaterials derived from bone, skin, blood vessels, and cartilage are re-
garded as suitable choices for tissue engineering. Nowadays, there are more biologically
derived materials like polylactic acid (PLA), chitin, chitosan, collagens, polyether ether
ketone (PEEK), polycaprolactone (PCL), fibrin, polyurethane, polyethylene (PE), polylactic–
co–glycolic acid (PLGA), polyglycolic acid (PGA), and polyhydroxyalkanoates (PHAs)
and their copolymers are used in tissue engineering and drug delivery [28–32]. These
biomedical scaffolding requirements cannot be met by conventional single-component
polymer materials and hence require a multicomponent polymer system [33]. When these
polymers are made into nanocomposites, they can be used for imaging and targeting and
show enormous potential in tissue engineering as they improve mechanical and functional
properties and improve adhesion compared to conventional composites [34,35].

2. Polysaccharides in Tissue Engineering

Polysaccharides, including chitosan, alginate, dextran, and hyaluronic acid, have
evolved lately in the field of scaffold research. They easily interact noncovalently to gen-
erate a loose viscoelastic gel in aqueous mediums and also have advantages like lower
cost, simplicity in derivatization, biocompatibility, and biodegradability. Due to prop-
erties like these, polysaccharides are found to be comparable with extracellular matrix
(ECM)-containing glycosaminoglycans, glycoproteins, and glycolipids [36]. The use of
polysaccharides for various tissue engineering applications depends on the polysaccharide
component as well as the biological aspects of the material’s interaction with the cells. Gly-
can units in polysaccharides have been associated with their capacity to provide biological
signals [37]. Scaffolds must reflect both the ECM and the complexity of the target tissue
through their composition and structure. The scaffold is commonly infused with angiogenic
agents such as Vascular Endothelial Growth Factor (VEGF), Fibroblast Growth Factor (FGF)
and Bone Morphogenetic Proteins (BMP2), Extracellular Matrix Proteins (ECM), and cell
types that work well together [36,38].

2.1. Chitosan Based Scaffold and Its Synthesis

Chitosan is the second most abundant deacetylated form of linear biopolymer of
chitin [29]. It has properties such as cell adhesion, cell survival, and cell interaction, and
can be modified or used in its native form to create membranes, gels, sponges, scaffolds,
and beads and can be used for a variety of applications like drug delivery and tissue
engineering [39,40]. In tissue engineering, chitosan scaffolds are effective at avoiding
fluid and nutrient loss due to their great water adsorption properties [41]. Chitosan-based
scaffolds are made using a variety of fabrication techniques. Some of these are (i) freeze
drying and subsequent gelation; (ii) salt leaching, and (iii) electrospinning [42]. Yang
et al. [41] prepared a scaffold by a freeze-drying method in which the pre-gelling chitosan
solution was mixed with dipotassium phosphate at 37 ◦C and pH was maintained at
7–7.2. The prepared chitosan scaffold showed 85 to 95% porosity. NIH/3T3 fibroblast cell
lines grown over the chitosan scaffold were metabolically active and evenly distributed
throughout the scaffold [41].

Chitosan incorporated with graphene oxide nanoparticles has shown good scaffolding
properties, and high stimulation of cell growth as the hydrophilic characteristics of chitosan
give it a favorable compatibility with regard to the formation of hydrogen bonds with
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graphene oxide nanoparticles. Chitosan-coated magnetic nanoparticles were used for
seeding cells into the central portion of the 3D scaffolds, which facilitated cell invasion [43].
Poly(acrylic acid)- chitosan-TiO2 are reported to be suitable for bone based tissue engineer-
ing [44]. Chitosan coated with bio ceramic on zirconium is used in various therapeutic
applications like surgical implants due to its better antimicrobial activity, low Young’s Mod-
ulus, and biocompatibility properties [45]. A 3D porous scaffold genipin crosslink matrix
combined with gelatin, chitosan, and freeze-dried cellulose nanofibers was fabricated by
Naseri et al. [46]. These scaffolds have nano/microscale pore wall roughness and linked
pores with an average pore width of 75–200 µm, which makes them ideal for cell interac-
tions in cartilage repair [46,47]. An ischemia-related disease can be treated successfully
with the use of chitosan and hyaluronic acid-based nanocarriers. These nanocarriers are
made using chitosan; they transport growth factors like vascular endothelial growth factor
and platelet-derived growth factor [48].

Modified chitosan also plays an important role in bone tissue engineering. In a study,
modified chitosan was freeze-dried at −20 ◦C, bearing imidazolyl groups that were cova-
lently connected to the glucosamine nitrogen via methylene. It then underwent sterilization
at a dose of 25 kGy, resulting in a soft, spongy, and hydrophilic final appearance. These
were particularly appealing as a bone scaffold material promoting osteoblast cell adhesion
and proliferation, as well as the in-vitro creation of a mineralized bone matrix. Additionally,
investigations have demonstrated that in-vivo osteoconductivity is displayed by modified
chitosan scaffolds in surgically induced bone lesions [39,49,50]. Due to its cationic char-
acteristics, chitosan is thought to be able to combine with anionic macromolecules like
glycosaminoglycans (GAGs) to modify the activity of cytokines and growth factors, and
helps in the application of bone tissue engineering [42].

Chitosan-based scaffolds are generally made by a salt-leaching method or electrspin-
ning method. In the salt-leaching method, water-soluble salt particles, such as sodium
chloride, sodium acetate, etc., and a chitosan solution are mixed together for solidification,
after which salt flakes are leached off (Figure 2), whereas, in the electrospinning method,
charged chitosan threads are drawn into tiny chitosan nanofibers by electrostatic forces
(Figure 3) [51–53]. The electrospinning method involves the usage of a polycaprolactone
(PCL) solution along with the ascorbic acid loaded with a chitosan solution, which is pre-
pared by mixing chitosan with acetic acid and ascorbic acid. A chitosan scaffold is made by
electrospinning a PCL solution at first, and then the ascorbic acid-loaded chitosan solution
is electrosprayed, and then finally electrospun using a PCL solution [54]. The addition of
PCL to other polymers enhances their hydrophilicity, cell adhesion, stress crack resistance,
and degradation rate. Chitosan with PCL is said to speed up hydrolytic degradation,
increase wettability and permeability, and improves PCL cell recognition sites [55]. These
chitosan scaffolds are found to be a prime candidate to be used as a sponge scaffold for
orthopedic applications and regenerative bone therapy [53]. Good pore interconnectivity,
better fiber thickness, a higher surface-to-volume ratio, and easier bioactive molecules
(for incorporation) are considered to be the advantages of chitosan-based scaffolds. These
are also utilized in regenerative medicine, where chitosan-based scaffolds make bioactive
chemicals easily accessible to injured tissue, promoting wound-healing and regenerative
effects with the least amount of morbidity and higher levels of biocompatibility [56,57]. In
the case of bone tissue engineering, the disadvantages include poor mechanical properties,
high rates of degradation, and low osteoinductivity [56].
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2.2. Agarose Based Scaffold

Agarose is made up of linear, neutral polysaccharides, such as D–galactose and
3 á 6–anhydro–L–galactopyranose, and is commonly used in biological experiments like
electrophoresis and bacterial cell culture due to their low interaction with biomolecules,
physical and chemical stability, and thermoreversible gelation behavior. The biocompati-
bility of agarose makes it a promising biomaterial for tissue engineering and medication
delivery. Biocompatibility and biodegradability characteristics are the most crucial ele-
ments in promoting tissue regeneration [58]. In order to create biological scaffolds that
are adaptable to different kinds of soft tissues, agarose has also been mixed with other
biomaterials. Agarose-based hydrogels are having good clinical applications for generation
of human skin and other organs [59]. Agarose allows water to diffuse enough oxygen and
vital nutrients for cells through its network. Agarose-based scaffolds for bone regeneration
have recently been studied as the macromolecular structural characteristics of agarose and
are similar to those of an extracellular matrix [60]. In addition, when subjected to static or
dynamic loading, agarose behaves similarly to articular cartilage. Agarose and cartilage
are both hydrating materials, so their hydraulic permeabilities are strain-dependent. This
indicates that the hydrogel’s resistance to water transport increases as it is deformed and its
pores collapse [61]. Agarose is an injectable polymer, which is eventually capable of being
polymerizable in situ and is gaining popularity because of its reduced invasiveness during
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surgery, ability to be molded into the desired shape in situ, and potential for transporting
cells and signaling molecules to the desired location [62]. Agarose scaffolds have also
been found to improve the management of surgery and have increased cell phenotype
consistency [61].

In a study, it was proposed that the regeneration of cartilage with a chondrocyte-
encapsulated agarose scaffold maintains chondrocyte’s phenotypes and improves proteo-
glycan and glycosaminoglycan precipitation [62,63]. Despite the fact that agarose is an
excellent cell carrier for tissue regeneration, few studies have explored its use in 3D tumor
models. Its ability to provide a biocompatible 3D microenvironment that is favorable to
tumor development is also investigated. Xu et al. [64] showed that examination of unique
in-vivo ovarian cancer behaviors that are associated with the development of the disease,
as well as testing for chemoresistance to anticancer medications, can be carried out by using
agarose hydrogels/scaffolds. It was also demonstrated that the biomechanical properties of
fibrin–agarose tissue-like hydrogels significantly improved than fibrin hydrogels, especially
when chemical crosslinkers were utilized; it made it possible to successfully biofabricate a
variety of biological alternatives with both ex-vivo and in-vivo results [65].

The most widely used method for the synthesis of agarose scaffold is the thermal
crosslinking method. This method involves the usage of the gelation method, which can
be carried out by microwaving. Varoni et al. [62] synthesized an agarose scaffold by a
thermal crosslinking method, where 1.5% weight agarose was dissolved in an aqueous
solvent by microwaving at temperatures varying between 60 ◦C and room temperature
at a quenching rate of 30 ◦C/min. It showed improved cellular fibrous capsules and
neutrophil development, for which the density was better than the commercially available
gel materials, such as hyaluronic acid implants and collagen gel. The cellular activity and
regeneration of the cells increased when the agarose was blended with other polymers. A
combination of agarose and silk was used by Singh et al. [66] to rebuild cartilage. It was
produced by mixing a dissolved agarose solution with a silk fibrin solution, followed by
the lyophilization of the solution for 24 h. As a result of the silk/agarose scaffold, sulfated
glycosaminoglycans (sGAG) and collagen deposition were more abundant, which implies
the preservation of the chondrogenic phenotype. In blended hydrogels with collagen
and fibronectin colocalization, the cartilage-specific marker genes aggrecan, sox–9, and
collagen Type II were found to be upregulated to enhance the agarose microenvironment
for chondrocyte culture. The interaction of collagen or fibronectin with chondrocytes
and chondrocytes with living cartilage also improved matrix cohesion, which enhanced
cartilage regeneration [59,67]. Yamada et al. [58] synthesized aldehyde-functionalized
agarose hydrogels (CHO–agarose) by the oxidation of 2,2,6,6–(tetramethylpiperidin–1–
yl)oxyl. Additionally, peptide–agarose microgel scaffolds were created by utilizing CHO-
agarose and were successfully loaded with a cysteine residue present in peptide at the N
terminus via thiazolidine polymerization. It has been found that a peptide–agarose microgel
scaffold-based 3D cell culture system is a suitable biomaterial for tissue engineering due to
the promotion of cell proliferation in a 3D environment [58].

A nanocomposite consisting of agarose–gelatin–glass nanoparticles was depicted by
Ali et al. [60]. It was synthesized by freeze gelation method, where agarose and gelatin were
dissolved separately and stirred at 45 ◦C in distilled water. Then the glass nanoparticles
were added to the gelatin mixture and mixed together with an agarose solution, which
was followed by lyophilization in order to obtain a scaffold. These scaffolds could be used
in the treatment of osteomyelitis and increase the hydroxyapatite layer present in body
fluids, which promotes tissue regeneration and can be used as an excellent biomaterial [60].
Electrophoresis could also be employed for the synthesis of nanocomposites. A graphene
oxide-containing agarose nanocomposite was prepared by mixing an agarose solution and
a phosphate-containing graphene solution (a mixture of graphene oxide and calcium phos-
phate solution). This solution was further proceeded by electrophoresis for five cycles until
layer formation occurred. This biomaterial exhibited promising results on antibacterial
properties and excellent MC3T3–E1 cell adhesion (promotes high osteoblast differentiation),
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which can act as strong candidates for bone tissue engineering [68] (Figure 4). A modifica-
tion of a chitosan–agarose–gelatin nanocomposite synthesized via gelation was carried out
by using heparin nanoparticles by an ultrasonication method. This was found to have a
high cytokine-loading capacity and prolonged the release of SDF–1 and BMP–2 cells, which
makes it an excellent candidate for the repair and regeneration of bone [69]. Agarose-based
scaffolds have strong physical crosslinking, thermoresponsiveness, and greater stability at
lower concentrations as advantages. A drawback is that they are less soluble [70].
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Figure 4. Synthesis of a graphene oxide/agarose biomaterial antibacterial activity and MC3T3–E1
cell attachment.

2.3. Cellulose-Based Scaffold

Cellulose is produced by joining D–glucose repeating units via glycosidic bonds. It is
the most prevalent naturally occurring polymer on Earth, which is considered to be the
primary component of plant cell walls. In addition to plants, some bacteria, including
Acetobacter xylinum, Pseudomonas sp., Agrobacterium sp., etc., and fungi, tunicates, and green
algae have/produce cellulose [71]. Using nanocellulose, a hybrid material that combines
cellulose and nanomaterials, can have unique physicochemical characteristics. They, there-
fore, have exciting applications in biomedical sectors, including wound healing, drug
transporters, 3D printing, bone tissue engineering, and medical implants [72–74]. Some
of the other cellulose nanocomposites, such as nanowhiskers and nanofibers, are being
applied as bio-nanocomposites to achieve antibacterial properties alongside matrices and
fillers, such as metal oxide nanoparticles. Filler materials, such as clay, CNTs, and graphene
oxide, can be added to the cellulosic matrix to demonstrate intracellular capabilities similar
to tissue engineering and regenerative medicine [75]. Nanocellulose–based materials offer
various benefits, such as biocompatibility, high optical transparency, water absorption,
water retention, high performance, and outstanding mechanical qualities, which help it to
act as a scaffold for tissue engineering. These also meets several essential requirements,
including being biocompatible to mimic native tissue’s extracellular matrix (ECM) and
supports in growth, proliferation, and the differentiation of cells [76]. Because of their
adaptable surface chemistry and mechanical characteristics, cellulose scaffolds also act as a
good material for 3D nerve cell growth and differentiation. Integrin-based attachment and
cell–scaffold interactions in cellulose materials can be achieved by chemical modification
and protein coating [77]. The benefits of this variety of scaffold include minimal manufac-
turing costs, biodegradability, nontoxicity, and biocompatibility. Despite its benefits, cell
transport via cellulose-based scaffolds lacks cell recognition sites [78,79].

Synthesis of Cellulose Scaffold

In nerve tissue engineering, electrical stimulation is a problem that is specific to a sub-
set of cell types, such as neurons and myocytes. As a result, 3D nanostructured, electroactive
biomaterials are needed. These requirements are achieved by the modification of cellulose
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scaffolds coated with conductive substances, like poly (3,4–ethylenedioxythiophene) (PE-
DOT), with the carbonization of multiwall carbon nanotubes [16,77–80] (Figure 5). Novotna
et al. [81] synthesized oxidized cellulose scaffolds by oxidizing it using organic solvents,
such as Perfluorosol PFS–1 and nitrogen tetroxide. It was then followed by biofunction-
alization using chitosan by exposing the scaffold to room temperature for a period of
2 h. Oxidized cellulose containing 2.1 wt% of –COOH is found to be relatively stable and
biocompatible, and its allows the addition of other biomolecules such as chitosan. These
may be appropriate for tissue engineering applications due to its relatively high stability
under manipulation and exposure to cell culture conditions, as well as in the formation of
bioartificial tissues due to their capacity for phenotypic maturation [81].
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Similarly, 3D nanocomposite scaffolds made up of cellulose nanofibers blended with
a chitosan/gelatin system were synthesized and used for cartilage regeneration. The
synthesis of this nanocomposite was carried out using a freeze-drying technique, where
the solution containing the nanofiber suspension and the gelatin/chitosan matrix were
mixed together and dried at a temperature of −30 ◦C. This scaffold was found to have high
porosity, moisture stability, and excellent cell–cell interactions. Thus, it can be used for
ECM formation, which retains moisture in the interconnected pores, mimicking the natural
cartilage in bone tissue engineering [47].

2.4. Alginate-Based Scaffold

Alginates are natural polymers found in brown seaweeds, such as Ascophyllum, Durvil-
laea, Ecklonia, Laminaria, Lessonia, Macrocystis, Sargassum, and Turbinaria. They are linear
copolymers of D–mannuronic acid and L–guluronic acid that are connected by β(1á4)
bonds [82]. These polymers, being naturally occurring multifunctional polymers with dis-
tinct physicochemical properties, have drawn increasing attention as desirable compounds
in the biomedical and pharmaceutical industries over the past few decades due to their
unique physicochemical properties and a broad range of biological activities [83]. The
special ability of alginate to form a gel in aqueous environments led to this crosslinked
hydrogel being used in tissue engineering, as well as in the delivery of bioactive molecules.
These scaffolds are used to control the structure and function of engineered tissues, dis-
tribute cells to the desired spots, and facilitate the formation of new tissues because of the
structural similarity of the alginate scaffold to that of ECM [84].

Alginate hydrogel is also an excellent choice for wound dressings due to its porosity,
high water content, biocompatibility, and permeability to gases and water and its ability
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to enhance monocytes to produce high levels of cytokines like Interleukin–6 and tumor
necrosis factor, which activate anti-inflammatory factors [85]. Additionally, antibiotic
distribution in wound dressings is greatly influenced by the structural activity of the
scaffold. The ability of the alginates to be changed or converted into biomaterials like
hydrogels, wafers, fibers, biofilms, and foams helps to maintain a moist environment and
to speed up the healing of wounds [86].

Depending on the type of crosslinking and density, alginate has different mechanical
properties [87]. Alginate scaffolds are produced using one of two crosslinking techniques:
chemical or physical methods. The physical crosslinking of alginate hydrogels is the
crosslinking of anionic polymer chains that can be connected by divalent cations such as
calcium ions (Ca2+), strontium ions (Sr2+), and barium ions (Ba2+). The chemical method
includes (i) energy irradiation; (ii) radical polymerization; (iii) enzymatic crosslinking, and
(iv) chemical interactions between complementing groups (Figure 6) [87,88].
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Alginate is often combined with other multifunctional materials, such as graphene
oxide, polyvinyl alcohol, gelatin, hyaluronic acid, and skin fibroin, which can be used as
ideal dressings for skin damage. These materials enhance various essential properties like
cell adhesion ability, mechanical properties, and the hydrophilicity of the scaffolds [89]. In
the field of regenerative therapeutics, these offer greater biocompatibility, ionic crosslinking,
excellent vascularization, as well as faster wound healing capabilities that provide moist
wound environments and have minimal inflammatory effects [70,90,91]. Despite their
benefits, these molecules lack cellular interactions, which reduces their bioactive properties
and their ability to support cell metabolism [91].

2.5. Dextran-Based Scaffold:

Dextran is an exopolysaccharide produced by lactic acid bacteria using sucrose as
a substrate. This molecule is composed of a linear D–glucopyranose chain linked by α
(1á6) bonds as the main chain with variable amounts of branching linkages, like α–(1á2),
α–(1á3), and α–(1á4), with molecular weights around 40 kDa [92,93]. It can be modified
with different functional groups to form spherical, tubular, and 3D networks because of its
chemically reactive hydroxyl groups. Biodegradable dextran-based scaffolds can function
as bioactive carriers for a variety of protein biomolecules for effective regulated release and
tissue regeneration [94]. Dextran-derived hydrogels can also be used as bioartificial cardiac
tissue matrix (BCT) for in-vitro cardiac tissue regeneration [95].

Dextran hydrogel scaffolds have been determined to be advantageous as scaffolds that
can be used only for soft tissue engineering because they exhibit high resistance towards
protein adsorption and cell adhesion, enabling the design of scaffolds with specific recogni-
tion sites. Lévesque et al. [96] depicted the synthesis of a crosslinked network of dextran
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hydrogels with radical methacrylate group polymerization. The immiscibility between
the dextran matrix and poly(ethylene glycol) in aqueous solutions made macroporous,
beaded-wall morphology scaffolds that can manage liquid–liquid phase separations and
were found to increase cell penetration and nutrient diffusion [96]. They can act as bioactive
carriers for numerous protein biomolecules that are inherently biodegradable but are said
to be higher in cost and have less bioavailability [97,98].

3. Proteins Based Scaffolds

Proteins obtained from plants, such as zein, soy protein, and wheat gluten, are used
in the field of tissue engineering as they have low immunogenicity when compared to
animal proteins [99]. Further, they are more polar and have a lower molecular weight
than animal proteins, making them naturally hydrophilic and effective cell attachments.
The characteristics of plant tissues make them uniquely suited for use as scaffolds, with
pre-existing vascular networks, including high surface areas, good mechanical proper-
ties, interconnected porosity, and excellent water absorption [100]. The fabrication of the
scaffolds using plant protein can be carried out by using physical, chemical, crosslinking,
and electrospun methods [99]. Zein is the main storage protein found in corn endosperm
and accounts for 40–50% of the total endosperm proteins. Zein is biocompatible with
human umbilical vein endothelial cells, mouse fibroblast cells, and human liver cells. Zein,
therefore, has the potential to be used both as an engineered scaffold and a vehicle for
medication delivery [100]. Scaffolds fabricated using soy protein (3% soy protein isolate
crosslinked with transglutaminase) increased cell spreading, with the cells integrating into
the scaffold within two weeks, demonstrating the ability of the porous scaffolds for tissue
regeneration projects [99–102].

Proteins such as collagen, fibronectin, silk protein, elastin, and albumin, are also
used in the synthesis of nanoparticles [103]. Almost all human and animal tissues contain
collagen as their primary structural protein, a component of extracellular matrix (ECM)
and tissues for their structural support and to maintain their biological integrity [104].
When used as a scaffold, collagen offers a wide range of benefits for cell-based tissue
repair. A porous collagen scaffold made from pepsin-digested (e.g., telopeptide–free)
bovine skin collagen was found to be biocompatible when implanted into healthy rat
subcutaneous pockets than scaffolds made from acid-soluble bovine skin collagen [105,106].
Soy protein is known for its biocompatibility and stability and, hence, can be used in tissue
engineering [107]. In bone tissue, collagen is the most abundantly found polymer. When
collagen is incorporated into composites, more cell recognition sites are provided, as well
as a faster rate of biomaterial degradation, ensuring rapid bone regeneration [108]. In a
study, nano-HA (hydroxyapatite) crystals were positioned along the collagen molecules in
the HA–Type I collagen nanocomposite. An HA–collagen composite was found to promote
bone remodeling and has high osteoconductive activity. The highest concentration of
rhBMP–2 (400 g/mL) reduced the length of time needed for bone union when the implants
were grafted at weight-bearing sites [108,109].

Carbon nanoparticles that are made using proteins like hydroxyapatite/collagen
(C)/poly(lactic–co–glycolic acid)/graphene oxide (nHAp/C/PLGA/GO) have greater me-
chanical strength and material longevity, which plays a main role in the design of tissue
engineering scaffolds and helps in the proliferation of MC3T3–E1 cells aided by composite
scaffolds [110]. In photodynamic therapy applications, high-density lipoprotein nanoparti-
cles may be beneficial because they possess excellent tumor targeting and internalization
capabilities. Albumin, the most abundant plasma protein, were employed to promote
bone regeneration by releasing Bone Morphogenetic Protein–2 over time (BMP-2) [111]. In
earlier studies, the nano–HA crystals were positioned along the collagen molecules in the
HA–Type I collagen nanocomposite.

The common method used for the production of protein-based scaffolds are electro-
spinning, freeze drying, solvent casting, sol-gel methods, etc. Silva et al. [112] produced
porous scaffolds using chitosan and soy protein via a sol-gel and freeze-drying method.
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Tetraethyl orthosilicate is a linker that links chitosan and soy protein and enhances their
mechanical stability, water uptake, porosity, etc. [113]. Zhao et al. [114] produced hydrox-
yethyl cellulose–soy protein using epichlorohydrin (ECH) as a crosslinking agent; the
resultant copolymers showed good biodegradability and biocompatibility and allowed
L929 fibroblast cells to adhere and grow well (Figure 7).
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Zein-Based Scaffold

Zein, a type of alcohol-soluble prolamine that is found in maize endosperm, is com-
posed mainly of three compounds: (i) α–zein, (ii) β–zein, and (iii) γ–zein. It was recognized
as a structural protein for gluten-free systems due to its ability to create viscoelastic net-
works similar to gluten [115]. Plath et al. [116] depicted the synthesis of zein scaffolds with
a weight percentage of 40 by blending it with PCL (poly(ε–caprolactone) via an electro-
spinning method and a binary solvent system consisting of acetic acid and formic acid.
These scaffolds appeared to have a decreased microbial adhesion in tissues or biomate-
rial components during the repair phase of tissue regeneration, thus being a promising
application for wound healing and skin repair properties. The antibacterial activity of the
scaffold was exhibited by the cationic ion –NH3

+ present in the scaffold provided by the
binary solvent system [116] (Figure 8). In a study, it was discovered that all PCL/zein/gum
arabica scaffolds had porosity levels higher than 77%, making them appropriate and ad-
visable for cell infiltration. In addition, this composite scaffold displayed antibacterial
characteristics as a result of the cyanogenic glycosides found in gum arabic, along with
improved hydrophilicity. The hydrophilicity of a scaffold is important because it promotes
cell viability and growth [117,118].

Similarly, a zein scaffold made using both higher concentrations (70–80%) and lower
concentrations (70–80%) exhibited high compressive and tensile strength, a good bending
modulus, and high elasticity. It showed an excellent repair efficacy in rabbits with bone de-
fects of size 15 mm when compared to commercially available β–tricalcium phosphate [119].
Changing the blending ratio showed variable surface wettability, mechanical strength, fiber
diameter, and in-vitro degradation capabilities, as well as cell adhesive properties in elec-
trospun membranes. The application of zein protein improves electrospinnability and fiber
tensile strength, while collagen promotes surface wettability, in–vitro degradability, and
cell adhesion [120].

Zein scaffold blended with gelatin was synthesized via an electrospinning method.
In this method, different concentrations of gelatin were obtained by using 1,1,1,3,3,3–
hexafluoro–2–propanol, and both the zein and gelatin solution were electrospun in order
to obtain a nanoporous scaffold. Better electrospinnability was achieved between zein
and gelatin, which resulted in improved mechanical properties, hydrophilicity, and cell
adhesiveness of the zein membranes [121]. In bone tissue engineering, zein-based scaffolds
have a number of benefits, including the development of osteogenic properties and good
mucoadhesive properties for drug delivery applications [122–124].
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4. Metallic Nanoparticles for Tissue Engineering

Metal nanoparticles have been extensively used in tissue engineering. Several metal
nanoparticles, such as gold, silver, iron, aluminum, nickel, copper, and zirconium, as well
as magnetic nanoparticles, have been investigated for this purpose. Metallic nanoparticles
are highly recommended for bone implants since they are well-established in the field,
long-lasting, sturdy, and biocompatible [121]. Scaffolds made from silver have various
advantages, such as high cell adhesion and spreading, high proliferation, osteoconduc-
tivity, capability with bridging oxygen molecules, improved osteogenic properties, good
cytocompatibility, good mechanical strength, effective antibacterial activity, and also low
toxicity [125]. Metallic nanoparticles are useful for bone tissue engineering because they ac-
tivate osteoblasts, inhibit osteoclasts, provide mechanical strength and antibacterial action,
and, in some circumstances, stimulate angiogenesis [126]. Furthermore, the magnetization
of nanoparticles used in orthopedics repair scaffolds may be achieved via mechanostimula-
tion. The nanomotion produced by the magnetic field on the scaffolds produces forces in
the pH range, and cells respond to these mechanical stimuli by releasing ATP, contracting
cytoplasmatic actin, and expressing FAK (Focal Adhesion Kinase), which is the source of
chemical signals promoting cell growth and differentiation. In this case, mechanotransduc-
tion using magnetic scaffolds help in transmitting impulses deeper into the tissue [127].
Magnetic iron oxide nanoparticles are frequently used in the promotion of bone growth,
drug loading, stem cell-based bone development, and scaffold-based bone formation by
their magnetic stimulation [128–134]. In a study, magnetite nanoparticles were employed
to build multilayered cell-sheet-like structures and also tubular structures. These function-
alized magnetite nanoparticles were reported to boost tissue engineering procedures [135].
SPIONs (Superparamagnetic Iron Oxide Nanoparticles) have also been used as a contrast-
ing agent in X-ray imaging and magnetic resonance imaging (MRI) [129,130]. It provided
a better contrast to the background and showed the egg yolk’s distinct boundaries; it is
reported to enhance the effect of X-rays. In a study, novel super paramagnetic iron oxide
nanoparticles with monoclonal antibodies were developed and used for the detection of
endothelial inflammation, which is a defining characteristic of many illnesses connected to
endothelial dysfunction, including atherosclerosis, diabetes, and cancer metastasis [130].
Studies also suggest the usage of Superparamagnetic Iron Oxide Nanoparticles (SPIONs)
and quantum dots in tracking cell biodistribution [33,136]. The super paramagnetic iron
oxide nanoparticle (SPION)-labeled mesenchymal stem cell’s (MSC) tumor tropism and
biodistribution in the orthotopic model of C6 glioblastoma in Wistar rats were evaluated.
When SPION-labeled MSCs were administered intravenously in living organisms, the
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tagged cells accumulated inside the tumor site. This dramatically improved the tumor’s
contrast on high-field magnetic resonance imaging [137].

5. Nanotechnology in Tissue Engineering

The increased surface area of nanoparticles can improve the bioactivity of scaffolds,
and can be functionalized with proteins or other biopolymers to stimulate bone cell adhe-
sion, proliferation, and differentiation [138]. Due to van der Waals forces, nanoparticles
can form clusters, which can lead to the formation of uniformly dispersed scaffolds. Since
bone cells have a rough surface and holes of roughly 2100 nm, they are claimed to react
organically with nanostructured materials. Generally, nanoparticles such as gold, silver,
magnetic, ceramic, bioresorbable nanoceramics, titanium dioxide, polymeric nanoparticles,
etc., are used in the implantation of tissues and in the delivery of the growth factors re-
quired for tissue generation [111]. As nanomaterials can be incorporated into all proteins,
such as fibronectin, collagen laminin, and vitronectin, that are responsible for osteoblast
function (over conventional-sized materials), their use in bone regeneration has been urged
on by the growth of cells and the adhesion of nanocomposites [139]. In addition to their
chemical composition and similarity in structure to natural bone, they also possess unique
functionalities (like a large surface area) and superior mechanical strength compared to
their single-phase counterparts. On the other hand, nanoparticles that are functionalized
with an appropriate biopolymer can simulate such roughness [140]. Nanoparticles with
antibacterial and antifungal properties, such as zirconium, gold, titanium, and silver oxides,
are useful in preventing infections caused by micro-organisms [141]. Carbon nanotubes
(CNTs) are cylindrical carbon derivatives with a length/diameter ratio of 28,000,000/1,
where single-wall CNTs and multiwall nanotubes CNTs are utilized to make scaffolds [142].
Graphene oxide-coated collagen scaffolds have shown improved cell proliferation, bioactiv-
ity, and differentiation both in-vivo and in-vitro with low GO inclusion [143]. The addition
of a carbonyl group to a zinc oxide/carboxylated graphene oxide nanocomposite was stud-
ied, and it showed increased ALP activity, extracellular matrix mineralization, up-regulated
osteogenic–related genes (OCN, ALP, and RUNX2) in MG63 osteoblast–like cells, and also
antibacterial activity against Streptococcus mutans [16].

A number of other 2D nanomaterials exist, such as hexagonal boron nitride (hBN),
black phosphorus, and graphitic (C3N4), and elemental monolayers, such as anti-monene,
germanene, silicone, and arsenic [144]. The thinness of 2D nanomaterials also makes them
ideal for a range of optical applications (such as imaging), as their thinness enables them to
react swiftly to external stimuli [145–147].

In cardiac tissue engineering, electrophysiological impulses are sent by the my-
ocardium, making excellent conductivity one of the most crucial characteristics for bioma-
terials used to treat cardiac damage. Graphene oxide plays a great role in ECM hydrogel
therapies for treating myocardial injury. Graphene hydrogels made from the coprecipita-
tion of tricalcium silicate showed higher cell viability and proliferation of cardiomyocytes
and fibroblasts through great adhesiveness, self-healing properties, and conductivity [148].
In addition, regarding hydrophobic contacts, electrostatic forces, and hydrogen bond-
ing, GO can take up ECM proteins. When MSCs and GO were cocultured with ECM,
improved cell adhesion and survival under ROS conditions were seen in-vitro [149]. A
graphene oxide scaffold developed by the incorporation of silk fibroin had increased sur-
face roughness and high protein adsorption, and high electrical conductivity, helping in the
culturing of neurons [150]. It has also been evidenced that graphene improves mechanical
strength and cytocompatibility. In addition, it accelerates hMSC adhesion, proliferation,
and differentiation toward osteogenic cell destiny [145–151]. A graphene scaffold made
by crosslinking collagen via freeze-dying showed better growth of mesenchymal stem
cells [143,152] (Figure 9).
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The modification of reduced graphene oxide with hydroxyapatite was found to en-
hance the regeneration of new bone formation. Similarly, reduced grapheme oxide func-
tionalized with chitosan and silk fibrin showed improvements in the hydrophilicity and
growth of cells such as G–292 cells [153–155]. TMDs are layered materials with a structure
resembling that of grapheme that are made of transition metal atoms sandwiched between
layers of chalcogen atoms [156]. TMDs, like molybdenum disulfide functionalized with
chitosan, were found to cavity-up the joint in the condition of osteoarthritis and showed no
sign of erosion in the cartilage [157].

Limitations of Using Nanoparticles in Tissue Engineering

In recent years, advances in nanotechnology have led to significant changes in tissue
engineering, including the development of smart drugs, the repair and reconstruction of
injured tissues [158,159]. In nanotechnology, tissues can be engineered at the nanoscale,
allowing complex three-dimensional architectures to be developed. It is also possible to
precisely control material properties, such as stiffness, elasticity, and permeability, which are
important for tissue engineering [111,160]. It is therefore essential to choose the appropriate
nanomaterial for different applications due to tissue heterogeneity [161,162]. There are
still many challenges to overcome in order to make them available for clinical use in
large numbers. The limitations of nanotechnology in tissue engineering are the lack
of understanding of complex interactions between biomaterials and cells, the difficulty
of controlling the precise arrangement of biomaterials and cells, and the difficulty in
reproducing nanoscale features in tissues [163–165]. These limitations are due to the fact
that the nanoscale features of tissues are very complex, and the interactions between
cells and biomaterials are not well understood [149,161]. While using these nanoparticles
for certain period it might lead to accumulation in body which could cause negative
impact [166–168]. Still more research on cytotoxicity, nanoparticle accumulation, and early-
stage regulatory criteria are required [169]. The precautionary principle should be followed
during the development, testing, and clinical application of these materials. There is still a
long way to go in the biosafety, utilization, and stability of nanomaterials [163,170,171].

6. Advantages and Disadvantages of Using Biopolymers in Scaffold Synthesis

The use of biopolymers, with the parameters of wall morphology, pore size and shape,
pore interconnectivity, porosity, and surface area, allows scaffolds to be manufactured with
the characteristics of better cell seeding, migration, growth, mass transport, and tissue
development [172]. In addition, the usage of natural polymers in scaffold synthesis includes
biological renewability, biodegradability, biocompatibility, nonantigenicity, nontoxicity,
biofunctionality, acting as good bioadhesive material, improved cellular interaction, and
good cell recognition [173,174]. In contrast, the disadvantages of using natural polymers
include poor mechanical properties, rapid degradation in-vivo, difficulty in maintaining
structural integrity, etc. [174,175].
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7. Conclusions

Generally, natural biodegradable polymeric materials have the essential physicochem-
ical, biological, and mechanical capabilities to make them suitable candidates for tissue
engineering. Additionally, they possess a number of special qualities, like biocompatibility,
absorbability, and bioavailability. They can be used as scaffolds, sutures for the regen-
eration of new tissue, tissue adhesives, hemostats, and other tissue engineering-related
devices, making them a superior alternative to traditional scaffolds. In the future, the main
focus will be drug delivery scaffolds, which are considered to be innovative substitutes for
traditional formulations that enable regulated spatiotemporal releases of active ingredients,
which includes the usage of both natural and synthetic polymers.
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