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Abstract: A temperature-controlled electrochemical sensor was constructed based on a composite
membrane composed of temperature-sensitive polymer poly (N-isopropylacrylamide) (PNIPAM)
and carboxylated multi-walled carbon nanotubes (MWCNTs-COOH). The sensor has good tempera-
ture sensitivity and reversibility in detecting Dopamine (DA). At low temperatures, the polymer is
stretched to bury the electrically active sites of carbon nanocomposites. Dopamine cannot exchange
electrons through the polymer, representing an “OFF” state. On the contrary, in a high-temperature
environment, the polymer shrinks to expose electrically active sites and increases the background
current. Dopamine can normally carry out redox reactions and generate response currents, indicating
the “ON” state. In addition, the sensor has a wide detection range (from 0.5 µM to 150 µM) and low
LOD (193 nM). This switch-type sensor provides new avenues for the application of thermosensi-
tive polymers.

Keywords: PNIPAM; electrochemical sensor; dopamine

1. Introduction

Dopamine (DA) is an important neurotransmitter produced and released by the cen-
tral nervous system which plays an important role in many physiological activities, such
as emotions, learning, movement, behavior and memory [1,2]. Imbalances in human DA
levels are closely related to many diseases and addictions, such as Parkinson’s disease [3],
depression [4], senile dementia [5], and drug addiction [6]. Therefore, the rapid and accu-
rate determination of dopamine concentration in vivo is of great significance. At present,
there are many methods for the detection of dopamine, such as colorimetry [7], spectropho-
tometry [8], capillary electrophoresis [9], electrochemiluminescence [10], high-performance
liquid chromatography [11], and fluorescence [12]. However, most analytical techniques
have some shortcomings, such as high-performance liquid chromatography (HPLC), which
requires large equipment and is expensive, and fluorescence analysis, which has a complex
detection process and poor selectivity and effectiveness [12]. Based on the electrochemical
activity of DA, the molecule contains easily oxidized phenolic hydroxyl, which can be
detected by electrochemical analysis [13]. Electrochemical technology has many advan-
tages, such as simplicity of operation, fast response to DA, low cost, high sensitivity, good
stability, and availability of on-site monitoring [14]. However, the matrix contains some
substances whose oxidation potential isclose to DA, such as uric acid and ascorbic acid,
which may interfere with the detection of dopamine. When using electrochemical methods
to detect dopamine, the glassy carbon electrode (GCE) needs to be modified.

Stimulus-responsive polymers refer to materials that produce specific responses
to molecules or polymers as the external environment (temperature, light, humidity, mag-
netic field strength, pH, etc.) changes, thereby changing the chemical or physical properties
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of the materials themselves. They have received extensive attention [15–18] and have been
widely used in many fields, such as drug transportation [19], bionic materials [20], and
microfluidic devices [21]. The temperature-responsive polymer is the most widely used
stimulus-responsive polymer with the clearest mechanism at present. Thermosensitive
polymers are generally divided into two types: one where, when the temperature is lower
than the critical temperature and the polymer is in a state of hydrophilic dissolution; when
the temperature is higher than the critical temperature and the polymer is in a state of
hydrophobic turbidity. At this point, the critical temperature is referred to as the Lower
Critical Solution Temperature (LCST). The other where, polymer occurs phase transition
near the critical temperature from low-temperature insoluble to high-temperature soluble,
and the critical temperature at this point is called the Upper Critical Solution Tempera-
ture (UCST). When the temperature is changed near the polymer’s LCST or UCST, the
hydrophilicity and hydrophobicity of the polymer will change. A temperature-reversible
switching electrochemical sensor is prepared by combining the temperature-sensitive poly-
mer with the electrochemical sensor. However, due to the poor conductivity of polymers
they are usually combined with nanomaterials to form composite materials to improve
the stability and sensing performance of sensors. The LCST of PNIPAM is 32 ◦C, which
is close to the temperature of the human body. At the same time, PNIPAM is easy to
prepare and cheap. It has good biocompatibility and is widely used [22]. For example, Dan
prepared a temperature-switch electrochemical sensor based on a palladium–graphene
composite and PNIPAM for the detection of 4-nitrophenol in water, showing better sensi-
tivity, selectivity and long-term stability [23]. Mutharani used sonochemistry to prepare
WO2@PS-co-PNIPAM for the temperature-controlled reversible “ON-OFF” electrochemical
detection of β-Blocker metoprolol [24]. Carbon nanomaterials have excellent conductivity
and electrochemical catalytic effects. When used as electrode materials, they can accelerate
signal transduction through catalytic activity, conductivity and biocompatibility. Multi-
walled carbon nanotubes (MWCNTs) are one-dimensional carbon nanomaterials with good
conductivity, electrocatalytic activity and adsorption properties, which can accelerate signal
transmission, improve sensing ability and improve sensor sensitivity.

In this paper, the temperature-sensitive polymer PNIPAM and carboxylated multi-
walled carbon nanotubes (MWCNTs-COOH) were used to construct an intelligent elec-
trochemical DA sensor with temperature control. Among them, multi-walled carbon
nanotubes provide excellent electrochemical and electrocatalytic properties for sensors.
The electrochemical process was successfully controlled by adjusting the temperature and
the sensitive detection of DA was realized. More importantly, we achieved satisfactory
results in drug analysis and the detection of actual human serum samples using this sensor.

2. Materials and Methods
2.1. Reagents and Apparatus

N-isopropylacrylamide (NIPAM), azodiisobutyronitrile (AIBN), n-hexane, acetone,
cyclohexane and potassium chloride were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Carboxylated multi-walled carbon nanotubes (with an outer di-
ameter of 20–30 nm and a length of 10–30 microns) were purchased from Chengdu Organic
Chemical Co., Ltd. (Chengdu, China), Chinese Academy of Sciences. Disodium hydrogen
phosphate and sodium dihydrogen phosphate were purchased from Tianjin Kemio Reagent
Chemical Co., Ltd. (Tianjin, China). Potassium ferricyanide was purchased from Tianjin
Kemio Reagent Chemical Co., Ltd. Dopamine hydrochloride was purchased from Shanghai
Meiruier Chemical Reagent Co., Ltd. (Shanghai, China). The serum was obtained from
Huada Forensic Identification Institute in Xixian New Area, Shaanxi Province.

We obtained CHI660D electrochemical workstation (Shanghai Chenhua Co., Ltd.
(Shanghai, China)), DZ-2BC vacuum-drying oven (Tianjin Taist Instrument Co., Ltd. (Tian-
jin, China)), DF-101S heat-collecting constant-temperature heating magnetic stirrer (Shang-
hai Lichen Bangxi Instrument Science and Technology Co., Ltd. (Shanghai, China)), 85-2
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digital display constant-temperature magnetic stirrer (Changzhou Yuexin Instrument Man-
ufacturing Co., Ltd. (Changzhou, China)), and a ZEISS Gemini 300 SEM.

Three-electrode system was adopted for electrochemical tests, and glassy carbon
electrode, platinum electrode and calomel electrode were purchased from Tianjin Aida
Hengsheng Technology Development Co., Ltd. (Tianjin, China). The ultrapure water used
in the experiment was prepared by Shuhuoquan’s YK-RO-B ultrapure water mechanism.

2.2. Preparation of PNIPAM

PNIPAM was obtained through free-radical polymerization: first, recrystallize the
purchased NIPAM to remove the polymerization inhibitor, take an appropriate amount
of NIPAM and add it into acetone/n-hexane (v/v = 1:1), wait for the solution to saturate,
filter out the insoluble substances, seal it and put it in the refrigerator overnight, and the
crystals obtained are NIPAM. Add cyclohexane (18 mL), recrystallized NIPAM (1.25 g) and
AIBN (0.012 g) into the reaction flask, stir until completely dissolved, pass N2 for 30 min to
remove oxygen, react for 2 h under N2 at 70 ◦C, stop the reaction, cool down, add acetone
to dilute, drop the product into a large amount of n-hexane, generate white precipitate,
repeatedly dissolve and precipitate three times, put it into a vacuum-drying oven at 60 ◦C
and dry overnight, and the white product obtained is PNIPAM.

2.3. Preparation of Modified Electrode

First, polish the GCE with aluminum oxide powder (1 µM); then, clean ultrasonically
in ethanol and H2O for 30 s and dry it at room temperature. Then, dissolve PNIPAM in
ultrapure water (3 mg·mL−1) and ultrasonically treat the carboxylated multi-walled carbon
nanotubes in ultrapure water for 1 h to obtain a uniform dispersion (2 mg·mL−1). Then,
combine 10 µL carboxylated multi-walled carbon nanotubes dispersion and 10 µL PNIPAM
solution, mix and disperse ultrasonically for 30 min. Then, drop the obtained dispersion
onto the surface of the clean GCE. Finally, dry the prepared electrode at room temperature.

2.4. Main Test Methods

SEM characterization: Use a pipette gun to take the suspended liquid of the sample
and drop it on the silicon wafer, dry it naturally in the room, spray gold, and stick the
silicon wafer to the sample table with conductive adhesive for testing.

Electrochemical detection of DA: The traditional three-electrode system was used, in
which the modified GCE was used as the working electrode, the platinum electrode as
the auxiliary electrode, and the saturated calomel electrode as the reference electrode. The
electrochemical determination of DA in 0.1 mol·L−1 PBS (pH 7.0) was carried out by cyclic
voltammetry. The CV was carried out at a scan rate of 100 mV·s−1 in a scanning range of
−0.2~0.6 V with 2 s standing time. On this basis, DPV was used to further detect DA with a
potential range of 0–0.3 V and 2 s standing time. All water solutions were ultrapure water.

EIS analysis: The EIS measurements were carried out by applying the value of the
open-circuit potential and recorded over a frequency range of 0.1 Hz to 10 kHz with an ac
amplitude of 10 mV.

2.5. Analysis of Actual Samples

Take 200 µL serum and dilute to 20 mL with 0.1 M PBS (pH = 7). Test with DPV at
40 ◦C. In addition, a standard addition method was used to calculate the recovery rate.

3. Results
3.1. SEM Characterization

As shown in Figure 1, the surface morphology of different materials was characterized
by a scanning electron microscope (SEM). It can be seen that (a) the polymer PNIPAM
is irregular in shape and rough in surface, (b) MWCNTs (COOH) is a uniform tubular
structure, (c) PNIPAM in PNIPAM/MWCNTs is wrapped on the surface of MWCNTs
(COOH) and the two are successfully compounded.



Polymers 2023, 15, 1465 4 of 14

Polymers 2023, 15, x FOR PEER REVIEW 4 of 14 
 

 

2.5. Analysis of Actual Samples 
Take 200 μL serum and dilute to 20 mL with 0.1 M PBS (pH = 7). Test with DPV at 

40 °C. In addition, a standard addition method was used to calculate the recovery rate. 

3. Results 
3.1. SEM Characterization 

As shown in Figure 1, the surface morphology of different materials was character-
ized by a scanning electron microscope (SEM). It can be seen that (a) the polymer PNIPAM 
is irregular in shape and rough in surface, (b) MWCNTs (COOH) is a uniform tubular 
structure, (c) PNIPAM in PNIPAM/MWCNTs is wrapped on the surface of MWCNTs 
(COOH) and the two are successfully compounded. 

 
Figure 1. Scanning microscope characterization of different materials: (a) PNIPAM; (b) MWCNTs 
(COOH); (c) PNIPAM/MWCNTs (COOH). 

3.2. EIS Analysis 
Electrochemical impedance spectroscopy (EIS) is a crucial electrochemical-measure-

ment technology. It is used to describe changes in the electron-transfer rate at the interface 
of different modified electrodes and can reflect the conductivity of modified electrode ma-
terials. The EIS spectrum is generally composed of semicircles and straight lines: the di-
ameter of the semicircles in the high-frequency area represent the electron-transfer re-
sistance; the straight lines in the low-frequency area represent diffusion control. 

As shown in Figure 2, the EIS spectrum of different materials was investigated, and 
Fe (CN)63−/4− acted as the electroactive probe containing 0.5 M KCl at the frequency range 
from 0.1 Hz to 10 kHz. The EIS of the GCE, the MWCNTs (COOH)/GCE, PNIPAM/GCE, 
and PNIPAM/MWCNTs (COOH)/GCE were tested (Figure 2A). In order to explore the 
change in R value, we used a software to fit the curve (the equivalent circuit diagram is 

Figure 1. Scanning microscope characterization of different materials: (a) PNIPAM; (b) MWCNTs
(COOH); (c) PNIPAM/MWCNTs (COOH).

3.2. EIS Analysis

Electrochemical impedance spectroscopy (EIS) is a crucial electrochemical-measurement
technology. It is used to describe changes in the electron-transfer rate at the interface of
different modified electrodes and can reflect the conductivity of modified electrode materi-
als. The EIS spectrum is generally composed of semicircles and straight lines: the diameter
of the semicircles in the high-frequency area represent the electron-transfer resistance; the
straight lines in the low-frequency area represent diffusion control.

As shown in Figure 2, the EIS spectrum of different materials was investigated, and
Fe (CN)6

3−/4− acted as the electroactive probe containing 0.5 M KCl at the frequency
range from 0.1 Hz to 10 kHz. The EIS of the GCE, the MWCNTs (COOH)/GCE, PNI-
PAM/GCE, and PNIPAM/MWCNTs (COOH)/GCE were tested (Figure 2A). In order to
explore the change in R value, we used a software to fit the curve (the equivalent circuit
diagram is shown in Figure 2C). In the equivalent circuit, R2 is the charge–transfer resis-
tance; R1 is the electrolyte resistance; Cdl is a double-layer capacitor; and W1 is Warburg
impedance. Overall, PNIPAM/GCE has the largest impedance value—its impedance
value is 28,010 ohm through fitting—because PNIPAM is a macromolecular polymer with
poor conductivity, which greatly hinders the electron transfer at the electrode interface
and reduces the electron-transfer rate, so the impedance value is greater than that of
the GCE. On the contrary, carboxylated carbon nanotubes have good conductivity and
promote the electron-transfer rate on the electrode surface, so the impedance of MWC-
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NTs (COOH)/GCE is very small and its impedance value is close to 0. The impedance
value of PNIPAM/MWCNTs(COOH)/GCE (110.7 ohm) is between that of the GCE (1010
ohm) and the MWCNTs (COOH). This shows that, compared with PNIPAM/GCE, PNI-
PAM/MWCNTs(COOH)/GCE introduced the MWCNTs(COOH), which improved the
conductivity of the composite membrane and reduced the obstruction in the electron trans-
mission. This also shows that the temperature-sensitive polymer with poor conductivity
and the MWCNTs(COOH) with excellent conductivity have a very good synergy, which
was proof that the two successfully formed composite materials with a good electrochemical
performance.
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Figure 2. (A) EIS spectra observed in 5 mM [Fe(CN)6]3-/4- redox probe containing 0.5 M KCl at 40 ◦C.
(a) PNIPAM/GCE; (b) GCE; (c) PNIPAM/MWCNTs(COOH)/GCE; (d) MWCNTs(COOH)/GCE.
(B) EIS spectra of PNIPAM/MWCNTs (COOH)/GCE in 5 mM [Fe(CN)6]3−/4− redox probe containing
0.5 M KCl at various temperatures (26−40 ◦C). (C) equivalent electrical circuit.

Figure 2Bshows the EIS of the composite modified electrode at different temperatures.
It is obvious that with the increase in temperature, the semicircle radius decreases and
the impedance value decreases. When the temperature remains lower than 32 ◦C—that
is, lower than the LCST of PNIPAM—the impedance value does not decrease significantly
when the temperature is raised; however, when the temperature is higher than 32 ◦C, the
hydrogen bond between PNIPAM and the water molecules is broken, the polymer segment
shrinks, reducing the distance between the MWCNTs(COOH) and the electrode surface,
the electron-transfer rate increases, and the impedance value decreases.

3.3. Dopamine-Detection Behavior of Different Materials

As shown in Figure 3, the CV of DA in the GCE and PNIPAM/MWCNTs (COOH)/GCE
showed that both of them had an electrochemical response to DA, but there was a pair of
redox peaks on the composite modified electrode, while the GCE only had a weak oxidation
peak, which showed that the composite modified electrode had good electrocatalytic activ-
ity for DA and could improve the electron-transfer rate on the electrode surface. However,
although the redox response of PNIPAM/MWCNTs (COOH)/GCE occurred at 26 ◦C and
40 ◦C, the peak value of PNIPAM/MWCNTs (COOH)/GCE’s oxidation peak was higher at
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40 ◦C and the peak value was also more obvious. The composite modified electrode was
temperature-sensitive, which was consistent with the above AC impedance test.
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3.4. Effect of Scan Rate and pH

Figure 4a explores the cyclic voltammetry of DA on the composite modified electrode
at different scan rates. It can be seen that in the range of 0.05–0.20 V/s, the electrochemical
response gradually increases with the increase in scan rate. Further analysis shows that
the oxidation-peak current and the reduction-peak current have a good linear relationship
with the scan rate (Figure 4b). The relationship is as follows:

Ipa = 54.143V (mV/s) + 0.7154 (R2 = 0.9993)

Ipc = −36.946V (mV/s) + 0.3263 (R2 = 0.9992)

This shows that the redox process of DA on the composite electrode is controlled by
adsorption.

Figure 4c shows the CV voltammograms of DA on the composite modified electrode
at different pHs. It can be seen that the redox peak potential of DA shifts negatively with
increases in solution pH, indicating that protons participate in the redox reaction of DA.
By exploring the relationship between pH values and peak-potential values, we can find
the oxidation-peak potential value Epa, the reduction-peak potential Epc and the formula
potential Eθ. The linear equation with pH values is:

Epa = 0.63241 − 0.06663 pH (R2 = 0.9976)

Epc = 0.51612 − 0.05977 pH (R2 = 0.9918)

Eθ = 0.57417 − 0.0632 pH (R2 = 0.9973)

The slopes of Epa, Epc and Eθ are −66.63, −59.77 and −63.2 mV/pH, respectively.
According to the relationship between pH values and peak potential [25], the number of
protons and electrons involved in the redox reaction of DA are the same. This proves
that the redox reaction of DA on the surface of the composite material is an “isoelectronic-
isoproton” process. In accordance with the literature [1], the feasible electrochemical-
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reduction mechanism of DA is shown in Figure 5. Since the oxidation-peak current at
pH = 7 is the largest and it is close to the pH of the human body, we chose pH = 7 as the
optimal condition.
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3.5. Temperature Response of DA on Composite Modified Electrode

In order to investigate the temperature-response characteristics of the composite mod-
ified electrode, the electrochemical response of DA on PNIPAM/MWCNTs (COOH)/GCE
at different temperatures was studied by cyclic voltammetry. It can be seen from Figure 6a,b
that PNIPAM/MWCNTs (COOH)/GCE has good temperature-response characteristics.
When the solution temperature is 32 ◦C and below, the oxidation peak is small. With
the increase in temperature, the oxidation-peak current also increases. This is because
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when the temperature is lower than 32 ◦C, PNIPAM and water molecules form hydrogen
bonds and the chain segment extends, which increases the thickness of the composite film,
thus hindering electron transfer. With the increase in temperature, the hydrogen bonds
break and the chain segment of PNIPAM shrinks. With the decrease in the thickness of the
composite film, the electron-transfer rate and oxidation-peak current increase. This shows
that the detection of dopamine by PNIPAM/MWCNTs (COOH)/GCE has the properties
of a temperature-responsive zipper switch. Furthermore, DPV with a higher sensitivity
was used to study the temperature-switching effect of DA. It can be seen from Figure 6c,d
that when the temperature is lower than 32 ◦C the peak current is small, indicating that
the electrode surface is in the “OFF” state; when the temperature is higher than 32 ◦C, the
redox peak current is significantly increased, the electron-transfer rate is accelerated, and
the electrode surface presents an “ON” state, which is consistent with the results obtained
by cyclic voltammetry. The above phenomena explain how temperature can control the
electrochemical reaction state of DA on the composite modified electrode.
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DA at different temperatures, and (b,d) the broken line diagrams of their respective peak currents
and corresponding solution temperatures—DA concentration: 30 µM.; scan rate: 0.1 V/S; electrolyte
solution: 0.1 mol·L−1 PBS (pH = 7.0).
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3.6. Temperature-Reversible Switch Response of DA on Composite Modified Electrode

Figure 7 shows that the composite modified electrode has a reversible “ON-OFF”
characteristic controlled by temperature. The switching reversibility of DA is studied at
26 ◦C and 40 ◦C by CV (Figure 7a) and DPV (Figure 7c), respectively. It can be seen from
Figure 7b,d that the peak current is small at 26 ◦C and the electrochemical reaction is in
the “OFF” state; when the temperature is at 40 ◦C, the peak current increases significantly
and the detection of DA is in the “ON” state. When the solution temperature is raised
and lowered repeatedly, the electrochemical detection of DA shows that the CV and
DPV response signals of DA are not significantly attenuated at high temperatures, which
indicates that the modified electrode has a reversible temperature-switching response.
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of DA at 26 ◦C and 40 ◦C for ten cycles—DA concentration: 30 µM; scan rate: 0.1 V/s; electrolyte
solution: 0.1 mol·L−1 PBS (pH = 7.0).

In order to further explore the reasons why PNIPAM/MWCNTs/GCE detects the
temperature-response switch property of DA, the temperature-sensitive behavior of MWC-
NTs (COOH) was investigated and the MWCNTs (COOH)/GCE were prepared. It can be
seen from Figure 8 that the oxidation-peak current and reduction peak do not change signif-
icantly with changes in temperature, which further indicates that the temperature-response
behavior of PNIPAM/MWCNTs (COOH)/GCE depends on the presence of PNIPAM in
the composite film. The temperature-switching mechanism can be explained as follows:
PNIPAM is a polymer with temperature-switching effects. When the solution temperature
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is low, the polymer chain is in a stretched state, which prevents DA in the solution from
conducting electron transfer on the electrode surface; when the temperature is high, the
polymer segment structure shrinks into clusters, MWCNTs (COOH) give full play to the
conductive role, improving the electron-transfer rate, and the electrode is in the “ON” state.
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Figure 8. CVs of MWCNTs (COOH)/GCE to DA at different temperatures—DA concentration:
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3.7. Determination of DA on PNIPAM/MWCNTs(COOH)/GCE

DPV was used to investigate the relationship between DA oxidation-peak currents
and concentration at a solution temperature of 40 ◦C. As can be seen in Figure 9a, when
DA concentration increases, the peak current also changes. The oxidation-peak current of
DA rose linearly with DA concentration in the range of 0.5–150 µM (Figure 9b), and the
linear equation is:

Ipa = 3.2505 + 7.4206 CDA
1/2 (µM)(R2 = 0.9988)

The detection limit is 0.193 µM. Compared with previously reported detection methods
(Table 1), these methods proved that the modified electrode has a good linear range and
detection limit, which can better enable the detection of DA.

Table 1. Comparison of different detection methods for DA.

Electrode Technique Linear Range of
DA (µM)

Linear Range of
DA (µM)

LOD of HQ
(µM) Ref

PtNCs-MWCNTs-GNPs/GCE DPV 2–50 0.5 [26]
Pt-MWCNTs/SPE DPV 0.005–1 0.002 [27]

CNTs/CFE DPV 5–120.6 0.03 [28]
PNIPAm-GO/GC DPV 3.9–174 1.3 [29]

PNIPAM/MWCNTs(COOH)/GCE DPV 0.5–150 0.119 This work
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Figure 9. (a) DPVs of different concentrations of DA on composite modified electrode and (b) linear
relationship between oxidation-peak current and corresponding DA concentration. The concentra-
tion of DA is 0.5–150 µM, electrolyte solution: 0.1 M PBS (pH = 7.0), scan rate: 0.1 V/s, solution
temperature: 40 ◦C.

3.8. Stability, Reproducibility and Anti-Interference Test

As can be seen in Figure 10a, under the same experimental conditions, the same
PNIPAM/MWCNTs (COOH)/GCE-modified electrode was used for 10 equilibrium experi-
ments (DA concentration: 30 µM). It was found that the current value was not significantly
weakened and the relative standard deviation (RSD) was 2.88%. This shows that the
electrode has good repeatability. Under the same experimental conditions, five different
PNIPAM/MWCNTs (COOH)/GCE-modified electrodes were used to detect DA (DA con-
centration: 20 µM) and the RSD was only 4.43. This shows that the reproducibility is good
(Figure 10b).
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Figure 10. (a) PNIPAM/MWCNTs (COOH)/GCE was used for 10 equilibrium experiments; (b) DPV
responses of five independent electrodes prepared under the same conditions—electrolyte solution:
0.1 M PBS (pH = 7.0), scan rate: 0.1 V/s, solution temperature: 40 ◦C.
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DPV was used to discuss the influence of interfering substances on DA detection.
We added DA to 0.1M PBS solution (DA concentration: 30 µM), before adding more than
5 times’ worth of other substances, including K+, Cl−, Na+, Ca2+, Glucose, ascorbic acid
and uric acid. As shown in Figure 11, the oxidation-peak current of these substances did not
change significantly, indicating that the composite modified electrode has good selectivity
for DA.
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3.9. Actual Sample Detection

In order to explore whether the composite modified electrode can be applied to the de-
tection of actual samples, the recovery rate of DA in serum was calculated using a standard
addition method. The experiment found that the recovery rate was between 98.7 and 104.4
(Table 2), indicating that the composite modified electrode has clear application ability.

Table 2. Detection of dopamine in serum.

Sample Added/µM Found/µM Recovery/%

1 25 24.7 98.8
2 50 49.35 98.7
3 60 62.64 104.4

4. Conclusions

In this paper, a temperature-reversible switching electrochemical sensor based on
the thermosensitive polymer PNIPAM and MWCNTs (COOH) was constructed for the
detection of dopamine. The experimental results show that the sensor can trigger the
DA temperature-switch control, which is very sensitive and completely reversible. In
addition, the sensor has high stability and a good detection performance for DA and
obtained good detection and recovery results in human serum samples. This new switch-
type sensor also provides new avenues for the application of thermosensitive polymers.
Due to the poor conductivity of polymers, we will focus on developing polymers with
better conductivity and heat sensitivity and establish ultra-sensitive and ultra-low LODs
for temperature-controlled electrochemical sensors.
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