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Abstract: Here, a simple one-step hydrothermal-assisted carbonization process was adopted for
the preparation of nitrogen/phosphorous-doped carbon dots from a water-soluble polymer, poly
2-(methacryloyloxy)ethyl phosphorylcholine (PMPC). By the free-radical polymerization method,
PMPC was synthesized using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 4,4′-azobis
(4-cyanovaleric acid). The water-soluble polymers, PMPC, that have nitrogen/phosphorus moieties
are used to prepare carbon dots (P-CDs). The resulting P-CDs were thoroughly characterized by
various analytical techniques such as field emission-scanning electron microscopy (FESEM) with
energy-dispersive X-ray spectroscopy (EDS), high-resolution transmittance electron microscopy
(HRTEM), X-ray diffraction (XRD), Raman spectroscopy, attenuated total reflectance Fourier trans-
form infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible
(UV-vis) spectroscopy and fluorescence spectroscopy to determine their structural and optical proper-
ties. The synthesized P-CDs displayed bright/durable fluorescence, were stable for long periods, and
confirmed the enrichment of functionalities including oxygen, phosphorus, and nitrogen heteroatoms
in the carbon matrix. Since the synthesized P-CDs showed bright fluorescence with excellent pho-
tostability, excitation-dependent fluorescence emission, and excellent quantum yield (23%), it has
been explored as a fluorescent (security) ink for drawing and writing (anti-counterfeiting). Further,
cytotoxicity study results advised for biocompatibility and thus were used for cellular multicolor
imaging in nematodes. This work not only demonstrated the preparation of CDs from polymers that
can be used as advanced fluorescence ink, a bioimaging agent for anti-counterfeiting, and cellular
multicolor imaging candidate, but additionally prominently opened a new perspective on the bulk
preparation of CDs simply and efficiently for various applications.

Keywords: PMPC; hydrothermal; carbon dot; fluorescent ink; anti-counterfeiting; cellular multicolor
imaging

1. Introduction

Carbon dots (CDs) are 0-dimensional carbon materials that have a size less than
10 nm, and have been considered recently [1–3]. CDs are composed of sp2/sp3 hybridized
carbon atoms [1–3]. CDs have exhibited unique properties such as high water dispersibility,
tunable optical properties, flexibility surface modification, and biocompatibility [4,5]. These
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properties exist in the CDs because of the functional groups such as carbonyl, hydroxyl,
amine, carboxylic acid, amide, and so on [4,5]. Moreover, the existence of the functional
groups plays an important role in the optical properties. The surface functional groups of
synthesized CDs can be tuned with different heteroatoms using different carbon sources
that are enriched with different heteroatoms [6,7]. CDs find applications in a wide range,
including in catalysis for improving air pollution, such as photocatalysis [8–10]. The
turn-off and turn-on properties of CDs proposed the use of CDs in detecting heavy metal
ions and small molecules and dyes in polluted water [11–13]. CDs are employed as
electrocatalysts for the evolution of hydrogen, oxygen, carbon reduction, supercapacitors,
and batteries [14,15]. The biocompatibility properties of CDs encourage their use in many
bioapplications including bioimaging, biosensing, and drug delivery [16,17]. Due to the
high quantum yield, water-solubility, photostability, and ease of washing CDs, CDs are
used as fluorescent ink [18,19].

CDs are prepared using either top-down or bottom-up methods including laser ab-
lation [20], ultrasonication [21,22], arc discharge [23], simple heating [24], and solvother-
mal [25,26]. Chemical precursors such as acid derivatives, thiourea derivatives, and car-
bohydrates were employed to prepare CDs [27–29]. Recently much effort has been made
in the preparation of CDs from biowaste [30,31] and plant sources [32,33]. Apart from the
small molecules, polymers are employed as carbon sources for the synthesis of CDs [34–39].
Any functional group that is present in small molecules or polymers will be retained as
surface functional groups in CDs [40–42]. Thus, the existence of a higher concentration of
functional groups in CDs may alter the optical properties. As a result, CDs from polymers
or small molecules show improved optical properties and high quantum yield compared to
CDs obtained from plant sources [39,43,44]. This high quantum yield and optical properties
play a vital role in applications such as fluorescent ink, bioimaging, sensing, and so on.

Thus, we utilized poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC) as a carbon
source for the synthesis of CDs. This polymer was prepared from the 2-(methacryloyloxy)
ethyl phosphorylcholine monomer by free radical polymerization. PMPC is a biocompatible
polymer and is used widely in bioapplication, enriched with nitrogen, phosphorus, and oxy-
gen [45,46]. Since PMPC has heteroatoms it was believed that CDs from this polymer will
exhibit excellent optical properties with low toxicity. Carbon dots from PMPC (P-CDs) were
prepared using a simple hydrothermal method. As expected, the resulting P-CDs showed
good optical properties with excellent stability and were suggested for the bioapplication.
The prepared P-CDs were carefully characterized using field emission-scanning electron
microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), high-resolution
transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy,
attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray pho-
toelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) spectroscopy and fluorescence
spectroscopy. After confirmation of the formation of P-CDs and their chemical composition,
they were utilized as fluorescent ink for drawing, writing, and as a fingerprint tracer.
Moreover, by confirming the low toxicity of P-CDs, they were employed as a bioimaging
agent for nematode cells.

2. Materials and Methods
2.1. Materials

The 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) (97%), S-basal buffer, sodium
azide (NaN3), and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
were purchased from Sigma-Aldrich, Republic of Korea and used as received. 4,4′-Azobis(4-
cyanovaleric acid) (ACVA) was purchased from Merck, Republic of Korea, and used as
received. Distilled water was used throughout this study.

2.2. Synthesis of Poly 2-(methacryloyloxy)ethyl Phosphorylcholine

PMPC was prepared as shown in Scheme 1. To 3.38 mmol of MPC in 70 mL, 0.16 mmol
of ACVA was added in 200 mL of degassed water. The solution was further purged with
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nitrogen gas for 30 min and the reaction vessel was sealed well. Then, the solution was
sonicated at 70 ◦C for 6 h, and after 6 h the reaction mixture was dialyzed in water for 3 days
using a cellulose membrane with 3 k molecular weight. Then, the solid white powder
was obtained by lyophilization of the dialyzed reaction mixture. The number molecular
weight of the prepared PMPC was measured as 57,520 g/mol, with PDI as 2.52 using
size-exclusion chromatography.
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Scheme 1. Synthesis of P-CDs from PMPC by one-step hydrothermal-assisted carbonization process.

2.3. Synthesis of Nitrogen/Phosphorous-Doped Carbon Dots

Nitrogen/phosphorous-doped carbon dots were prepared hydrothermally using the
above-synthesized PMPC. Typically, 250 mg of PMPC was dissolved in 50 mL of distilled
water and then transferred into a Teflon-lined stainless steel autoclave with a capacity
of 100 mL. The tightly closed autoclave was heated at 200 ◦C for 24 in a hot air oven to
complete the formation of carbonized products. Post-completion of the hydrothermal
carbonization, the autoclave was naturally cooled down to room temperature and dried
to obtain a solid product by using a freeze drier. The resulting product was denoted as
polymer-derived carbon dots (P-CDs) and the corresponding detailed synthesis route is
shown in Scheme 1. The final P-CDs were utilized for further structural, optical, and
biological analyses.

3. Results and Discussion
3.1. Structural Studies of Synthesized P-CDs

The prepared PMPC by free radical polymerization was utilized to prepare P-CDs by
the hydrothermal method. The prepared PMPC was confirmed using a nuclear magnetic
resonance spectrum (NMR) that measured 500 MHz (Figure S1). The broad peaks (g)
between 0.8 and 1.2 ppm are responsible for the methyl group. A broad peak (f) around
2 ppm is attributed to the backbone of PMPC. The presence of three methyl groups from
quaternary ammonium groups confirms a sharp peak (e) around 3.2 ppm. –CH2 attached
to quaternary ammonium groups shows a peak (d) between 3.6 and 3.8 ppm. –CH2
attached to oxygen atoms of phosphate (c and d) and methacrylate (a) groups appeared
between 4 and 4.4 ppm. The absence of impurity peaks other than the peaks that are
responsible for the functional group that exists in PMPC confirms the purity of PMPC.
P-CDs were characterized by several techniques to confirm their structural and chemical
compositions. The surface morphologies of the P-CDs were examined using FESEM and
TEM. The morphology studies using FESEM at different magnifications are shown in
Figure 1. As observed from the FESEM images (Figure 1a–e), the P-CDs result in smooth
surfaces. The existence of the smooth surface is of the aggregation of small-size P-CDs.
EDX mapping (Figure 1f–i) strongly indicates that the synthesized P-CDs are successfully
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loaded with elements such as carbon (C), nitrogen (N), oxygen (O) and phosphate (P). The
existence of these elements confirms that P-CDs are formed by the decomposition of PMPC.
Further, the distributions of C, N, O, and P are uniform. Additionally, the ratios of elements
of C, N, O, and P were obtained from EDX spectral results, which were 61, 28, 7, and 4,
respectively. The measurement of the size of P-CDs exceeds because of the resolution of
the FESEM, which suggests that the TEM measurement has high-resolution power. Thus,
the prepared P-CDs were observed using TEM. Figure 2 shows that the TEM images of
P-CDs reveal spherical shaped P-CDs. The average diameter of P-CDs was estimated as
~5 nm by randomly counting the particle size on the HRTEM images (Figure 2a–c). The
inset of Figure 2d (HRTEM) displays the crystalline structure with a lattice spacing of about
0.21 nm corresponding to the graphite (100) plane [47].
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Figure 2. (a–d) TEM/HRTEM images with different magnifications of P-CDs synthesized
from PMPC.

X-ray diffraction patterns reveal the crystallinity of a material. The powder XRD
pattern of P-CDs (Figure S2) depicts a broad peak centered at 20◦ corresponding to the (002)
lattice, which indicates the presence of disordered carbon atoms with amorphous nature
due to the presence of many functional groups [48,49]. Moreover, the broad diffraction peak
(2θ = 20◦) of synthesized P-CDs reveals that the synthesized carbon particles are smaller in
nature. The size of the P-CDs was calculated as 4.5 nm using an XRD pattern ((0 0 2) plane),
which shows a consistent size with that measured using HRTEM. In addition, five sharp
peaks at 16.8, 23.9, 29.2, 33.9 and 45.2◦ show the crystalline nature of the materials. This is
believed to be because of the presence of heteroatoms in P-CDs [50]. Figure S3 shows the
Raman spectrum of the synthesized P-CDs. The Raman spectrum in Figure S3a exhibits
a noisy peak centered at ~1560 cm−1 (Raman wavelength ranges from 750 to 1750 cm−1).
Noticeably, there is no clear separation for D- and G-bands in the Raman spectrum of
synthesized P-CDs. These peaks overlapping might be due to the wealthy functional
groups accumulated on the surface of the synthesized P-CDs. However, Figure S3b shows
two peaks on deconvolution that correspond to D- and G-bands positioned at 1170 and
1500 cm−1, respectively. The presence of D- and G-bands confirms the presence of sp2

carbon and sp3 defects, respectively [51,52]. The intensity of the D-band is less than the
G-band (ID < IG), indicating that the P-CDs are well graphitized. The ID/IG ratio for the
synthesized P-CDs was calculated as 0.6, and this suggests that the carbon structures
present in P-CDs have a smaller amount of defects [52].
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Figure 3 depicts the FTIR spectrum of P-CDs; stretching vibrations of O–H, N–H,
asymmetric C–H and symmetric C–H are observed at ~3215, 3050, 2840, and 2950 cm−1,
respectively. The presence of strong absorption peaks at 1695 and 1480 cm−1 are revealed
for C=O/C=C and C–N groups, respectively. The presence of the C–N–C functional group
confirms that the nitrogen atoms bonded with carbon atoms, which means they chem-
ically bonded with the carbon matrix. The bending vibration of O–H was observed at
1386 cm−1. A stretching vibration of C–OH at 1228 cm−1, stretching vibration of P=O/C–
O–C at 1100–1030 cm−1, and strong bands for the stretching vibration of P–OH at 948 cm−1

were observed. The strong absorption band at 506 cm−1 was attributed to P–O stretch-
ing [53]. These results reveal that there are abundant functional groups such as C=O,
O–H, N–H, C=C/C=O, C–N, P=O, C–O–C, P–OH and P–O. These presented hydrophilic
functional groups make the P-CDs have excellent water dispersibility, which reorganizes
their preferred modifications to diverse applications.
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Figure 3. ATR-FTIR spectrum of P-CDs synthesized from PMPC.

Further, the chemical composition of P-CDs was confirmed from XPS measurements.
Figure S4 reveals the presence of C, N, O and P. The XPS spectrum of P-CDs shows two
strong and three weak peaks at 132 (P 2p), 190 (P 2s), 285 (C1s), 401 (N 1s) and 531 eV (O
1s). The inset of Figure S4 shows the atomic percentages of C, O, N and P as 57, 30, 8 and
5%, respectively. These values are comparable with those obtained using EDX from FESEM.
Figure 4a shows that the high resolution of C 1s exhibits four peaks at 283.7, 284.9, 285.7
and 287.3 eV that are associated with C–H, C=C/C–C, C–N/C–P/C–O and C=O/O=C–OH,
respectively [54]. The deconvolution of the O 1s (Figure 4b) displays three peaks at 529.7,
531.0 and 531.8 eV, suggesting the presence of C=O, C–O/P–O, and O=C–OH groups,
respectively. The N 1s spectrum of P-CDs (Figure 4c) shows two prominent peaks at 398.9
and 401.2 eV, which can be attributed to C–N–C and C–N–H/C3–N, respectively. The
high-resolution P 2p spectra can be deconvoluted into two peaks, namely P 2p3/2 (132.1 eV)
and P 2p1/2 (133.0 eV). The presence of functional groups such as C–H, C–N/C–P/C–O,
C=O, O=C–OH, C=C/C–C, C–N–C, C–N–H/C3–N in the synthesized P-CDs is confirmed
form FTIR and XPS studies. These functional groups are expected to play an important role
in water dispersibility, optical properties and biocompatibility.
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3.2. Optical Studies of Synthesized P-CDs

The optical properties of P-CDs were studied using UV-Vis and fluorescence spec-
troscopy. The UV-Vis spectrum of the water-diluted solution from P-CDs (Figure 5a) shows
three absorption peaks at 220, 260 and 320 nm. The strong peak at 220 nm is due to the
π − π* transition of the C=C from the sp2 carbon of P-CDs [55,56]. The shoulder peak at
260 nm is ascribed to the n − π* transition from the functional groups such as C=O [56,57].
The shoulder peak around 320 nm is responsible for exciting surface defects because of
the presence of hetero atoms in P-CDs [58,59]. An enlarged UV-Vis spectrum of P-CDs
(Figure 5a) between the range of 240–420 nm was provided for clear observation of the
shoulder peak (320 nm), shown in Figure S5. The inset of Figure 5a shows the photographic
images of diluted samples of P-CDs in water under visible light (left) and UV light (right).
The colorless solution under visible light turns to bright blue fluorescence under UV light.

The fluorescence of the P-CDs is associated with surface defects that were confirmed
by XRD and Raman analyses. However, P-CDs show fewer surface defects, and thus it
was expected to have a better fluorescence performance [52,60]. The fluorescence spectra of
P-CDs exhibited excitation and emission peaks at 330 and 400 nm, respectively (Figure 5b).
As shown in the fluorescence excitation and emission, a shift of 75 nm was observed
between the excitation and emission wavelengths. The Stoke shift is the difference between
the energy of the absorbed and released photon. Figure 5c depicts the fluorescence emission
spectrum; when P-CDs are excited with different wavelengths they emit light at different
wavelengths with different intensities. On excitation between 280 and 500 nm with an
increase of 10 nm, P-CDs show emission at every wavelength. The emission intensity
increases from excited wavelength 280 to 330 nm. A high emission intensity is observed
at an excitation wavelength of 330 nm, with an excellent quantum yield of 23%. After
this excitation wavelength, the emission intensity decreased. Additionally, the excitation
wavelength gradually increased from 280 to 500 nm, and the emission peak position of P-
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CDs became redshifted from 390 to 535 nm. The excitation-dependent was due to the minor
intersection between the excitonic absorption and emission of the material; this favorable
for efficient fluorescence emission [61]. The stability of fluorescence is very important for
the application. Thus, stability was examined by the continuous irradiation of the P-CDs
solution with UV light for 150 min. Figure 5d reveals that the fluorescence intensity remains
unchanged even after 150 min irradiation of UV light at 365 nm. Further, the solutions of
P-CDs with 0 and 150 min irradiation of UV light remain the same (Figure 5d inset). This
confirms the stable fluorescence properties of the synthesized P-CDs.
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Figure 5. (a) UV–Vis absorption spectrum of the synthesized P-CDs. Inset (a): Digital photographic
image of the P-CDs aqueous dispersion under visible light (left) and UV light (right). (b) Fluorescence
excitation and emission spectra of synthesized P-CDs. (c) Fluorescence emission spectra of synthe-
sized P-CDs at excitation wavelength from 280 to 500 nm in 10 nm increments. (d) Fluorescence
emission spectra of synthesized P-CDs at UV irradiation time from 0 to 150 min in 50 min intervals.
Inset (d): Digital photographic image of the P-CDs aqueous dispersion under UV light (365 nm) at
UV irradiation time 0 min (left) and 150 min (right).

Generally, the fluorescence spectra of P-CDs are normalized to show the excitation at
different wavelengths. Figure S6 depicts the normalized fluorescence intensity obtained for
P-CDs at different wavelengths. Normalized spectra disclose the redshift of the intensity
with an increase in the excitation wavelengths. This shift might account for the existence of
several functional groups [62] in P-CDs that are confirmed by FTIR and XPS studies.

3.3. Fluorescent Ink and Anti-Counterfeiting Studies of Synthesized P-CDs

The P-CDs were further employed as fluorescent ink based on their high dispersibility
in water and stable photostability. The aqueous solution of P-CDs was injected in the
writing pen and facilitated for drawing pictures, as shown in Figure 6a, for writing text, as
shown in Figure 6b, and for tracing fingerprints, as shown in Figure 6c, on the Whatman
filter paper. The drawing, text, and fingerprints were visible under UV light with an
excitation wavelength of 365 nm. This suggests that the synthesized P-CDs can be a
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promising candidate in many applications, including secret file labeling, printing stamps,
ink pads for fingerprints, and so on.
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Figure 6. Digital photographic images of P-CDs ink-loaded commercial Whatman filter paper
under 365 nm UV light; (a) hand-drawn pattern image, (b) handwritten words, and (c) P-CDs-formed
fingerprints; (d) hand-drawn pattern and (e) handwritten letter images at the time of drawing/writing
and the corresponding (f) hand-drawing pattern and (g) handwritten letter images after 4 months.

Moreover, the stability of the pattern application was examined by storing the hand-
drawing pattern image and text for a long time. The hand-drawing pattern image and
handwriting text on Whatman filter paper shown in Figure 6d,e were obtained immedi-
ately after drawing and writing and were stored for 4 months. After the storage time,
the fluorescence intensity of the hand-drawn pattern image and handwritten text shows
an insignificant change (Figure 6f,g). Further, the handwritten letters and hand-drawn
patterns are easily washable with water. This suggests that P-CDs can be used in practical
applications because they can be simply washed out with water, have stable fluorescence
intensity, and are eco-friendly and cost-effective compared to commercially available dye
agents and polymer composites that are utilized in pattern applications [61,63–65].
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3.4. Biological Studies of Synthesized P-CDs

Using many techniques, the synthesized P-CDs were studied well and the presence
of many functional groups such as C=O, C=C, O–H, N–H, C–N and C–N–H/C3–N was
confirmed. The presence of these functional groups plays an important role in the op-
tical properties. Thus, it was expected that the prepared P-CDs will be a promising
bioimaging agent.

To evaluate the bioimaging application of P-CDs, the cytotoxicity of P-CDs was
performed with an MTT assay. The nematode cells were cultivated with different concen-
trations of P-CDs between 0 and 250 µg mL−1 for 48 h, without P-CDs (0 µg mL−1) used
as control. The cell viability of nematodes with and without P-CDs is shown in Figure 7a.
As shown in Figure 7a, nematode cell survival percentages are above 90% independent of
P-CD concentration. The cell deaths of nematodes were insignificant even at high concen-
trations of P-CDs, such as 250 µg mL−1 for 48 h. This result advises the use of synthesized
P-CDs for bio applications.
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Figure 7. (a) Cell viability values (%) estimated by MTT assay versus incubation concentrations of
P-CDs (0, 50, 100, 150, 200 and 250 µg mL−1) at 25 ◦C for 48 h. The confocal fluorescence microscopy
images of nematodes (Caenorhabditis elegans) treated with 100 µg mL−1 P-CDs for 24 h under
excitation of (b) 400 nm, (c) 470 nm, (d) 550 nm, (e) bright-field and (f) overlap. Live Caenorhabditis
elegans were immobilized using 0.05% NaN3 for imaging under fluorescence filters.
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Thus, P-CDs were further utilized as bioimaging agents. The nematode cells that
are immobilized with 0.05% of sodium azide (NaN3) were incubated with 100 µg mL−1

P-CDs for 24 h and were observed under a confocal microscope with different filters. Blue,
green, and red filters with a wavelength range of 400–470 nm, 470–550 nm and 550–620 nm,
respectively, were used for the confocal microscope imaging. Cells were observed with
excitation wavelengths of 400 (blue), 470 (green) and 550 (red) nm (Figure 7b–d). The
confocal images demonstrate that the cells were coated with a uniform distribution of
P-CDs. The uniform distribution of P-CDs over cells results in strong fluorescence intensity
with a change in color, with a change in excitation wavelengths compared to the bright
field (Figure 7e). The overlay image (Figure 7f) further confirms the uniform distribution of
P-CDs over nematode cells.

4. Conclusions

In summary, we have successfully synthesized P-CDs from the PMPC polymer through
a simple and cost-effective hydrothermal method. FESEM measurement reveals the uniform
distribution of C, N, O and P in P-CDs. The HRTEM analysis of the synthesized P-CDs
revealed a spherical shape with an average particle size of about 5 nm. Further, FTIR,
XRD and XPS confirmed P-CDs enriched with functionalities and well graphitization. The
optical studies revealed the excitation-dependent emission and stable fluorescence intensity
of P-CDs. In addition, the P-CDs delivered an excellent quantum yield of 23%. Thus, P-CDs
can be utilized as ink for hand drawing images, and handwriting texts, and as pads for
tracing finger prints. The images, texts, and finger prints were stable for a long storage
of about 4 months. The P-CDs showed low toxicity in the MTT assay. Thus, the prepared
P-CDs was utilized as a bioimaging agent, and for the first time P-CDs in nematode cells
with stable and strong fluorescence intensity were observed with blue, green and red
emission. This study opens up new avenues for the development of bioimaging agents
from polymers by hydrothermal treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym15061352/s1. Instrumentation methods, quantum yield measurement, photostability
measurements, nematode killing assay, fluorescent staining, and imaging of the synthesized P-CDs,
Figure S1. 1H-NMR (500 MHz) of PMPC in D2O; Figure S2. XRD pattern of synthesized P-CDs;
Figure S3. (a) Raman spectrum and (b) deconvoluted with fitted Raman spectrum of synthesized
P-CDs; Figure S4. XPS survey scan spectrum with atomic percentages of presented elements in the
synthesized P-CDs; Figure S5. Enlarged UV–Vis absorption spectrum of the synthesized P-CDs;
Figure S6. Fluorescence excitation-dependent emission normalized spectra of synthesized P-CDs.
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