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Abstract: A composite based on amino-containing humic acid with the immobilization of multi-
walled carbon nanotubes preliminarily tuned to a copper ion has been obtained. The synthesis of a
composite pre-tuned for sorption by the local arrangement of macromolecular regions was obtained
by introducing multi-walled carbon nanotubes and a molecular template into the composition
of humic acid, followed by copolycondensation with acrylic acid amide and formaldehyde. The
template was removed from the polymer network by acid hydrolysis. As a result of this tuning, the
macromolecules of the composite “remember” conformations that are favorable for sorption, i.e.,
adsorption centers are formed in the polymer network of the composite, capable of repeated, highly
specific interaction with the template and the highly selective extraction of target molecules from the
solution. The reaction was controlled by the added amine and by the content of oxygen-containing
groups. The structure and composition of the resulting composite were proven by physicochemical
methods. A study of the sorption properties of the composite showed that after acid hydrolysis,
the capacity increased sharply compared to a similar composite without tuning and a composite
before hydrolysis. The resulting composite can be used as a selective sorbent in the process of
wastewater treatment.

Keywords: composite; natural polymer; humic acids; template; tuning; sorption

1. Introduction

The pollution of reservoirs with toxic metals (TM) is an urgent environmental problem
for many regions of the world [1–3]. The main sources of TM intake into natural waters
are wastewater from various industries. Given the large volumes of wastewater and the
low concentration of TM in them, the methods of their treatment should be effective,
affordable and environmentally safe. Sorption methods meet these requirements to the
greatest extent [4–8]. Due to their efficiency, cost-effectiveness and environmental safety,
sorbents have become widely used technologically. Various materials, including composite
materials, are offered as sorbents for the extraction of toxic metals [9,10]. It is worth noting
a general pattern: the higher the concentration of surface functional groups (SFG) and the
specific surface of the composite material, the higher its sorption capacity. Thus, composite
materials with a high specific surface area and grafted SFG can act as highly effective
sorbents, but the difficulties of separating the solid and liquid phases limit their practical
application. Despite the obvious progress in this area over the past decade, the search for
highly effective means and methods of purification of water resources contaminated with
TM ions is relevant [11–15]. Recent studies by a number of authors have focused on the
development of composite materials as sorbents that combine the “desired” properties
(such as the presence of SFG, developed specific surface area, mechanical strength, chemical
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resistance, etc.) of each of the components [16–20]. One of the approaches is to use natural
polymers, such as humic acids, valuable products of the chemical processing of coal waste,
to obtain composite sorbents suitable for the sorption method.

Humic acids (HA) are a wide class of high-molecular compounds that differ in the
structure, composition and content of molecular fragments. Depending on the metamor-
phism, genesis and degree of oxidation, both low-molecular and high-molecular com-
pounds with different content of aromatic and aliphatic fragments and functional groups
may predominate in the composition of HA. It is known that the number of functional
groups in the structure of HA macromolecules is an important characteristic that deter-
mines their reactivity and physicochemical properties. The extraction of HA does not
present great economic and technological difficulties [21,22]. As for the multifunctionality
of HA, in this regard, the development of methods for obtaining composite material by
the structural modification of HA with new functional fragments in its macromolecules,
studying their composition and properties, is promising.

Recent studies have made it possible to identify amino-containing humic compounds
as the most promising objects that allow the creation of composite materials with fun-
damentally new properties. When combining a natural polymer and amino-containing
compound, it is possible to obtain unique composite materials [23,24].

Currently, the creation of polymer composites with molecular imprints due to their
ability to recognize metal ions and the ability to selectively sorb certain ions from solutions
has become one of the most important topics for scientific researchers. Research in this
direction opens the way for the synthesis of new composite materials based on HA and
expands the boundaries of knowledge about their structure, properties and applications.
It should be noted that HA is increasingly being used as a natural sorbent for cleaning
man-made environments of toxic metals. The presence of a variety of oxygen-containing
functional groups in combination with aromatic, heterocyclic and other groupings ensures
the ability of HA to enter into almost any type of interaction: ionic, redox, donor-acceptor
and sorption interactions. Numerous studies have proven that HA can bind almost all
types of ecotoxicants, including transition metal ions [25–28].

Previously, we [29] investigated methods for obtaining composites based on amino-
containing HA. The introduction of amino-containing compounds into HA, which are more
prone to the formation of donor–acceptor bonds, made it possible to increase both the
complexing properties of HA and, at the same time, give them polyampholytic properties.
However, the use of the obtained products in technological processes is complicated by
changes in the molecular structure of sorbents under the influence of chemical factors. In
this regard, it is of interest to increase the chemical stability and mechanical strength of
nitrogen-containing HA derivatives by modifying them with other reagents, in order to
obtain chemically resistant and mechanically strong products for the selective binding of
the target metal.

2. Materials and Methods
2.1. Materials

As a raw material in the synthesis of the composite, HA isolated from the oxidized
coals of the Shubarkol deposit by alkaline extraction with further precipitation with mineral
acid was used. HA had the following characteristics, %: humidity (Wa)—12.1, ash content
(Aa)—22.0, carbon (Cg)—36.3, hydrogen (Hg)—3.73, nitrogen (Ng)—0.70, sulfur (Sg)—1.02,
oxygen (Og)—58.9, (Σ(COOH + OH))—5.0 mg-eq/g. Multi-walled carbon nanotubes of
the Taunit brand (manufactured by Nanotechcenter LLC, Tambov, Russia) were used as
a modifier. The activation of multi-walled carbon nanotubes (MWCNTs) was carried out
according to the method developed earlier by us [30]. Acrylamide (A) was used as an
amino-containing compound (C3H5NO, M = 71.08 g/mol, produced by Sigma-Aldrich, St.
Louis, MO, USA). The crosslinking agent used was formaldehyde, (37% aqueous solution,
d = 1.09 g/cm3, produced by Sigma-Aldrich); the molecular template (M) was CuSO4·5H2O
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(GOST 19347-2014, M = 249.68 g/mol). A solution of 1 N HCl was prepared from a standard
titer (TU2642-001-33813273-97, produced by “Uralhiminvest” CJSC, Ufa, Russia).

2.2. Synthesis of a Composite Based on Amino-Containing Humic Acid, with Immobilization of
Multi-Walled Carbon Nanotubes, Pre-Tuned to Copper Ion

The synthesis of a composite based on amino-containing humic acid, with the immo-
bilization of MWCNTs, pre-tuned to a copper ion, was carried out according to the method
developed by us earlier in [30]. The content of copper ions introduced during tuning was
4 mg-eq per gram of composite. Further, this composite will be called HA:MWCNTs:M:A.

2.3. Study of the Stability of the Composite HA:MWCNTs:M:A for Acid Hydrolysis

Acid hydrolysis of the composite HA:MWCNTs:M:A was carried out as follows: the
suspension of the composite HA:MWCNTs:M:A was poured with 1 N HCl solution, heated
to 50 ◦C and kept for 30 min. Then, the composite was filtered, repeatedly washed with
distilled water to a neutral medium and dried to a constant mass. Further, the resulting
composite will be called HA:MWCNTs:A. Composite composition (%): HA 66.58, MWCNTs
0.13, A 33.29.

2.4. Study of the Sorption Properties of Composites

To study the sorption capacity of the obtained composites, experiments on the static
sorption of copper ions were carried out. Sorption purification processes were carried
out in static mode at 22 ◦C, in a liquid module, with a ratio of sorbent:sorbate = 1:25 and
stirring for 24 h. After reaching sorption equilibrium, the composite was separated from
the filtrate and the residual concentration of copper ions in the filtrate was determined
by atomic emission spectroscopy using an atomic emission spectrometer with inductively
coupled plasma, iCAR6500. The sorption capacity of composites was estimated by the
value of the static exchange capacity of SEC, mg/g, and the sorption value R, %.

2.5. Studying the Composition of Composites

Elemental analysis of the initial HA and the obtained composites for the content of
carbon, hydrogen, nitrogen, sulfur and oxygen was performed on the Elementar Unicube
elemental analyzer.

The content of oxygen-containing groups in HA and composites was determined by
direct and reverse conductometric titration using laboratory conductometer Anion-4100.
(Ufa, Russia). Graphs of the dependence of the electrical conductivity on the volume of
added acid were plotted and the number of oxygen-containing functional groups was
calculated from the equivalence points and the corresponding volumes. Measurements
were carried out sequentially on three hitches, and the average value of three experiments
was taken as the final value. The measurement error was ±0.2%.

The IR spectra of the obtained composites were taken on the FSM-1201 IR Fourier
spectrometer in KBr tablets. The range of wavenumbers was 4000–400 cm−1, and the error
in determining the wavenumbers did not exceed 2 cm−1. Mathematical processing was
carried out using a program for curve approximation and data analysis: Fityk 1.3.1 [31].

X-ray phase analysis (XRPhA) of the obtained composites was carried out on a
D8 ADVANCE ECHO diffractometer using radiation from an X-ray tube with a Cu anode
and a graphite monochromator on a diffracted beam. Diffractograms were recorded in the
range of angles 15–100◦ 2θ, step 0.02◦ 2θ. Bruker AXS DIFFRAC.EVA v.4.2 software and
the international databases ICDDPDF-2 and COD were used to identify phases and study
the crystal structure.

The thermal stability of the composites was studied by differential thermal analy-
sis (DTA) using a synchronous thermogravimetric differential analyzer, the Perkin Elmer
STA 6000, in the measurement range: temperature up to 900 ◦C in a nitrogen atmosphere,
υ = 10◦/min.



Polymers 2023, 15, 1346 4 of 13

The surface morphology of the obtained composites was studied using a MIRA 3
scanning electron microscope (TESCAN, Czech Republic, Brno). The scanning electron mi-
croscope (SEM,) is equipped with a system of detectors that register various signals formed
as a result of the interaction of an electron beam with the sample surface. The secondary
electron detector allows one to obtain images with topographic contrast. Meanwhile, the
X-ray energy-dispersive microanalysis system X-Act (Oxford Instruments) allows one to
locally determine the elemental composition on the sample surface.

The porosity characteristics of HA and the obtained composites were determined
by obtaining isotherms of the low-temperature sorption–desorption of nitrogen on the
Sorbi-MS (META, Novosibirsk, Russia) measuring complex using the SorbiPrep device
at a liquid nitrogen temperature of 77 K, high purity Grade A (99.99%), by a dynamic
method in the nitrogen current. To determine the specific surface area of the adsorption
isotherm in the region of relative nitrogen pressure, the data were processed using the
Brunauer–Emmett–Teller (BET) method, and the pore distribution by radii was determined
by processing the points of the desorption isotherm using the Barrett–Joyner–Halenda (BJH)
method. The specific surface of mesopores was determined by the STSA method.

3. Results and Discussion

The synthesis of the composite HA:MWCNTs:M:A included three stages (Figure 1).
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Figure 1. Scheme of synthesis of composites HA:MWCNTs:M:A and HA:MWCNTs:A (the scheme
was created using a program available online: https://app.biorender.com/ (accessed on 2 December
2021)).

At the first stage, a pre-polymerization complex based on humic acid (HA) was ob-
tained with the immobilization of MWCNTs and a molecular template (M). Due to the
formation of a pre-polymerization complex (HA:MWCNTs:M), polymer molecules are
arranged and fixed in a certain way around the template molecule. The immobilization
of the MWCNTs into the pre-polymerization complex was carried out using ultrasonic
dispersion. Ultrasound helps to increase and regulate the porous structure, changing
the chemical nature of the surface. At the second stage, by copolycondensation of the
pre-polymerization complex (HA:MWCNTs:M) with acrylic acid amide (A) and formalde-
hyde, the synthesis of a composite (HA:MWCNTs:M:A) was performed, preconfigured
for sorption by the local location of macromolecule sites. The introduction of a nitrogen
atom into the composition of the pre-polymerization complex, which is more prone to
the formation of donor–acceptor bonds with metal ions compared to oxygen atoms, will
increase both the complexing properties of the composite and at the same time give them
polyampholytic properties. The mechanism of composite (HA:MWCNTs:M:A) formation
consists in the interaction of the modified polymer and the sorbed ion under conditions

https://app.biorender.com/
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wherein the links of macromolecules still have sufficient mobility, with subsequent fixa-
tion of the resulting conformations optimal for sorption, which, in turn, should lead to
a significant improvement in the sorption characteristics of the composite. At the third
stage, a molecular template (M) was removed from the polymer mesh by acid hydrolysis to
form a composite (HA:MWCNTs:A). The reaction was controlled by the attached amine
using an elemental analyzer and by the content of oxygen-containing groups determined
by conductometric titration methods. The results of the study are presented in Table 1.

Table 1. Characteristics of synthesized composites.

Sample Cg, % Hg, % Ng, % Og, % Yield, % Σ(COOH +
OH), mg-eq/g

HA 36.30 3.73 0.70 58.25 75.01 5.0
HA:MWCNTs:M:A 44.58 2.83 1.13 50.42 80.00 4.6

HA:MWCNTs:A 46.74 2.66 1.39 48.44 81.50 4.8

As can be seen from Table 1, with the introduction of MWCNTs and A into the
composite, the carbon content increased by 8–10%, and nitrogen by 0.4–0.7%. There was
also a change in the content of oxygen-containing groups in the composites before and
after hydrolysis. The yield of the composite HA:MWCNTs:M:A was 80.00%, and that of
composite HA:MWCNTs:A was 81.50%.

Based on the CHN analysis data (Table 1), the atomic fractions and atomic ratios of
the elemental composition were calculated for the studied samples. Thus, for the studied
samples, the atomic fractions of the elements are equal to HA (C—0.29, H—0.35, N—0.005,
O—0.35), HA:MWCNTs:M:A (C—0.38, H—0.29, N—0.008, O—0.32), HA:MWCNTs:A
(C—0.40, H—0.27, N—0.010, O—0.31).

Atomic ratios (Table 2) calculated based on the atomic fractions of H/C, O/C,
N/C show the number of hydrogen, oxygen and nitrogen atoms per molecule (HA,
HA:MWCNTs:M:A, HA:MWCNTs:A) per a carbon atom. The smaller these ratios, the
greater the role played by carbon atoms in the construction of the molecular structure. By
the ratio of each of these pairs, one can judge the relative branching of the side chains, the
degree of oxidation and their role.

Table 2. Atomic ratios of elements in the studied samples.

Sample H/C N/C O/C

HA 1.21 0.02 1.21
HA:MWCNTs:M:A 0.76 0.02 0.84

HA:MWCNTs:A 0.68 0.03 0.78

The H/C and O/C atomic ratios make it possible to estimate the content of unsaturated
fragments and oxygen-containing functional groups in the structure of the studied samples.
The ratio H/C < 1 indicates the predominance of aromatic fragments in the structure of
the sample, and if this ratio is in the range 1.0 < H/C < 1.4, then the structure of the
sample is predominantly aliphatic. In accordance with this provision and the data of
Table 2, the structure of the studied HA contains mainly fragments with a linear structure,
and fragments with an aromatic structure predominate in the structure of the composite
samples, which indicates the immobilization of MWCNTs in the composition of HA and the
occurrence of the copolycondensation process. It should also be noted that, unlike HA, the
composites are characterized by lower content of oxygen-containing functional groups. The
decrease in oxygen-containing functional groups in the structure of the composites indicates
their interaction with copper cations, not only through the ion exchange mechanism, but
also with the formation of complexes with various oxygen-containing groups associated
with both the alkyl chain Calk-O and the aromatic chain Car-O.
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Figure 2 shows the IR spectra of the synthesized composites, which are characterized
by the following peaks. The transmission spectrum is obtained, normalized to the absorp-
tion maximum in region 1595 cm−1, and then inverted to the absorption spectrum; then, it
is fitted with Gaussian contours to compare the intensity and reveal offsets. The large num-
ber of various functional groups in humic compounds and sampling-dependent IR light
dispersion do not allow us to rely on the registration of IR spectra with a high resolution.
The peaks obtained as a result of the approximation belong to the following functional
groups. A broad absorption band with a maximum in the region of 3000–3500 cm–1 can be
attributed to the vibrations of OH groups bound by intermolecular hydrogen bonds [32].
The decrease in the intensity of the C = O (carboxyl) stretching vibrations (1710 cm−1)
indicates the occurrence of ion exchange during the sorption of Cu2+ cations by HA [33].
The appearance of a “shoulder” at the C = O absorption maximum of skeletal vibrations (at
1600–1640 cm–1) indicates the inclusion of reaction products of the −C = N group in the
molecular structure [34,35]. Absorption at 1378 cm−1 is caused by deformation vibrations
in the structure of N–H bond composites. Peaks at 1287 and 1256 cm−1 are associated
with the C-O groups of carboxylic acids, esters and O-H groups of phenols; in the same
region, they can show the noticeable absorption of the N-H group in various positions.
In the spectra of the composite (HA:MWCNTs:A), the peak is shifted by 30 cm−1, which
indicates the breakdown of the Cu–O bonds. The pronounced peaks at 1035 and 1034 cm−1

can be caused by C–O stretching and OH bending vibrations in alcohol groups. Peaks at
540–915 cm−1 are caused by bending vibrations of the aromatic ring.
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The X-ray phase analysis (XRPhA) method was used to determine the composition of
the composites. According to the X-ray diffraction data of the composite (HA:MWCNTs:M:A)
(Figure 3), in addition to the main components contained in HA, low-intensity reflexes
characteristic of two CuO compounds have also been established (PDF-01-080-1916)—
monoclinic, spatial syngony Cc(9) and Cu(OH)2—orthorhombic, spatial syngony Cmc21(36).
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As can be seen from Figure 3, for the composite HA:MWCNTs:M:A, there are two
copper-containing phases, CuO and Cu(OH)2, the content of which does not exceed 15%
of the total volume. The area ratio for the two compounds is CuO:Cu(OH)2 = 2:1, which
indicates the dominance of CuO in the composition of the studied composite. The av-
erage size of the crystallites is 25–28 nm. It should also be noted that for the composite
HA:MWCNTs:M:A, there is a characteristic decrease in reflexes characteristic of HA, which
may be due to reactions of interaction with A, the presence of which is also present in the
sample in the form of weak reflexes in the region 2θ = 20–25◦. The main difference in the
composite HA:MWCNTs:A is the absence of crystalline phases of CuO and Cu(OH)2 oxide
in its composition, which indicates the removal of copper from the tuned composite during
acid hydrolysis (Figure 3). There is a change in the degree of structural ordering of the
composite HA:MWCNTs:A and a decrease in the size of crystallites, which may be due to
the effect of structural changes. The average size of the crystallites is 18–21 nm.

The results of the study on the thermal stability of the obtained composites are pre-
sented in Figure 4.

As can be seen from Figure 4, the TG curve of the initial HA showed a small endother-
mic effect and the first weight loss in the range up to 120 ◦C (10 wt.%), associated with
the release of physically adsorbed water. In the temperature range above 250 ◦C, weight
loss (up to 50 wt.%) is due to the destruction of the aliphatic components of peripheral
HA fragments, as well as the course of the primary decomposition reactions of organic
substances, which reach a maximum at 350 ◦C. At 400 ◦C, the process of the decarboxylation
of HA practically ends. At temperatures up to 500 ◦C, thermal degradation processes take
place in the “core” of the HA. In addition, a total weight loss of approximately 80 wt.%
was estimated.
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The thermal decomposition of composites HA:MWCNTs:M:A and HA:MWCNTs:A
showed a low-temperature loss of the main mass up to 18.36 wt.% in the temperature
range 358–433 ◦C. Composites in the range up to 120 ◦C also had a small endothermic
effect associated with the destruction of crystalline hydrates. The stage of intense weight
loss is observed from 170 ◦C. Intensive weight loss ends at 500 ◦C. The total mass loss of
the samples is estimated at around 32 wt.%. An increase in temperature to 900 ◦C does
not lead to a significant change in the mass of the tuned composite both before and after
hydrolysis, which is explained by the completion of the active pyrolysis stage, since, at
higher temperatures, it occurs in the mineral component. When comparing the obtained
results, the following conclusion can be drawn: the greater the content of free ion-exchange
(functional) centers, the higher its thermal stability. For the studied samples, the thermal
stability of the composites is higher compared to the original HA.

Figure 5 shows micrographs of the surface obtained during electron microscopic
studies of the HA:MWCNTs:M:A composite, and Figure 6 shows the HA:MWCNTs:A
composite. Comparative analysis of the microphotograms indicates a difference in surface
morphology. Figures 5 and 6 show differences in the shapes of the molecules. The surface
of the HA:MWCNTs:M:A composite is rough, uneven and layered; there are agglomer-
ates ranging in size from 98 nm to several microns. Upon further magnification of the
micrographs, it becomes clear that these agglomerates consist of elongated tubes approx-
imately 100 nm thick and a micron long, which are part of the composite. At the same
time, spherical molecules are present, as well as medium and large aggregates of molecules
of various shapes. The layered structure of the composite is explained by the stepwise
copolycondensation of the pre-polymerization complex with a nitrogen-containing com-
pound. On the surface of the composite, areas were found that differed in their phase
compositions. This can be explained by the fact that, in these areas, the molecules of
the composite are stretched over the surface, forming a thin monomolecular layer due to
the formation of cationic bridges between the composite and the surface. EDS map data
confirm that the main components of the composite (HA:MWCNTs:M:A) are carbon and
oxygen, and there are inclusions of silicon, nitrogen and copper. The surface of the compos-
ite (HA:MWCNTs:A, Figure 6) after hydrolysis also has a multilayer structure containing
nanotubes. In particular, after acid hydrolysis, a clear change is observed in the amorphous
phase of the hydrolyzed composite. As can be seen from Figure 6, acid hydrolysis cut the
MWCNTs into short nanotubes. At higher magnification, one can notice quite significant
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amounts of short nanotubes, as well as gaps between individual elements, which seem to
be quite deep, while the elements themselves seem to be smoothed and have, apparently,
melted edges. The EDS map confirms the removal of copper ions and release of pores from
the HA:MWCNTs:A composite. The absence of copper is also confirmed by the overall
spectrum of the map.
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The porosity characteristics of the obtained composites in comparison with HA are
presented in Table 3.
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Table 3. Results of determination of the specific surface of the composite before and after hydrolysis.

HA HA:MWCNTs:M:A HA:MWCNTs:A

Specific surface area, m2/g
(BET method)

14.1 39.0 44.0

Specific surface area of
mesopores, m2/g
(STSA method)

54.4 42.0 87.4

Total pore volume with R
less than 47.7 nm, cm3/g 0.050 0.016 0.026

Distribution of pores relative to their total volume

Pore diameter, nm General content, %

3.5 12.1 4.2 1.7
4.4 13.2 2.5 3.9
5.9 6.8 3.4 5.0
8.4 0.0 4.6 3.7

15.0 0.0 12.8 14.3
29.3 6.0 1.8 8.5
43.6 4.0 0.0 0.0
56.1 43.7 37.1 23.4
79.6 14.2 33.2 39.1

As can be seen from the data in Table 3, on the surface of the synthesized composite
HA:MWCNTs:M:A, there are pores with a diameter of 50–60 nm (up to 37% of the surface)
and nanopores with a size of up to 15 nm (up to 13% of the surface). A comparative analysis
of the specific surface area of the obtained composites in comparison with the original HA
showed its increase. The specific surface area determined by the BET method is 39.0 and
44 m2/g; the specific surface of mesopores determined by the STSA method is 42.0 and
87.4 m2/g; the volume of pores with a radius less than 47.7 nm is 0.016 and 0.026 cm3/g
for composites HA:MWCNTs:M:A and HA:MWCNTs:A accordingly. The effect of acid
hydrolysis on the specific surface of the mesopores of the resulting composite can be traced
from the data determined by the STSA method. Hydrolysis uncorks additional pores,
increasing the specific surface area of the mesopores of the composite HA:MWCNTs:A by
an order of magnitude. Given the shape of the curve of the low-temperature adsorption
and desorption of nitrogen and the presence of a hysteresis loop, the isotherm belongs
to the fourth type of isotherm according to the IUPAC classification, which indicates
the mesoporous structure of the studied samples, and this is confirmed by the pore size
distribution. The presence of pores with a diameter of <50 nm in the resulting composite
is obviously associated with voids formed between the copper fragments during their
packaging, which is clearly visible in the images recorded by scanning electron microscopy.

The sorption properties of the obtained composites tuned to copper are given in Table 4.
For comparative analysis, a composite (HA:MWCNTs:A) was prepared simultaneously
under identical conditions, but without tuning to copper ions.

Table 4. Sorption capacity of composites.

Composite
Sorption

SEC, mg/g R, %

HA:MWCNTs:M:A 1.8 38.50
HA:MWCNTs:A 3.9 83.41

HA:MWCNTs:A (without tuning) 3.1 65.40

The study of the sorption properties of the composites showed that after acid hydrol-
ysis, the sorption capacity of the HA:MWCNTs:A composite increased by a factor of 2 in
comparison with the similar composite before hydrolysis and with the HA:MWCNTs:A
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composite without tuning. The effect of improving the sorption properties of Cu2+ for
the composite HA:MWCNTs:A is 3.9 mg/g; for the composite HA:MWCNTs:M:A, it is
1.8 mg/g; and for the composite HA:MWCNTs:A without tuning, it 3.1 mg/g. The experi-
mental data on the sorption properties once again confirm the assumption that there are
pores in the system that correspond to the ionic radius of the hydrolyzed metal and the
efficiency of the composite HA:MWCNTs:A, selectively tuned to the sorbed copper ions.

4. Conclusions

Thus, using the molecular imprinting method, a composite based on HA was syn-
thesized with the immobilization of the MWCNTs and a molecular template, followed by
copolycondensation with acrylic acid amide and formaldehyde, pre-tuned to the sorbed cop-
per ion. The immobilization of the MWCNTs and the template into the pre-polymerization
complex was carried out using ultrasonic dispersion. Ultrasound helps to increase and
regulate the porous structure, changing the chemical nature of the surface. The mechanism
of composite (HA:MWCNTs:M:A) formation consists in the interaction of the modified
polymer and the sorbed ion under conditions wherein the links of macromolecules still
have sufficient mobility, with subsequent fixation of the resulting conformations optimal
for sorption, which, in turn, should lead to a significant improvement in the sorption
characteristics of the composite. The removal of the molecular template from the polymer
mesh was carried out by acid hydrolysis. The reaction was controlled by the attached
amine using an elemental analyzer and by the content of oxygen-containing groups deter-
mined by conductometric titration methods. The composition and structure of the obtained
composites have been proven by physico-chemical analysis methods: elemental analysis,
conductometric analysis, IR spectroscopy, XRPhA, TGA and electron microscopy. The
study of the sorption properties of the composites showed that after acid hydrolysis, the
sorption capacity of the tuned composite increased by two times compared to a similar
composite without tuning and with a composite before hydrolysis. The results of the study
suggest the formation of cavities (imprints) in the composite HA:MWCNTs:A, which are
capable of interacting with the target template molecules and increase the capacity of the
sorbent. The synthesized composite can act as a sorbent with directed sorption activity.
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