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Abstract: The free energy of crystallization of monomeric hard spheres as well as their thermodynam-
ically stable polymorph have been known for several decades. In this work, we present semianalytical
calculations of the free energy of crystallization of freely-jointed polymers of hard spheres as well as
of the free energy difference between the hexagonal closed packed (HCP) and face-centered cubic
(FCC) polymorphs. The phase transition (crystallization) is driven by an increase in translational
entropy that is larger than the loss of conformational entropy of chains in the crystal with respect to
chains in the initial amorphous phase. The conformational entropic advantage of the HCP polymer
crystal over the FCC one is found to be ∆sHCP−FCC

ch ≈ 0.331× 10−5k per monomer (expressed in
terms of Boltzmann’s constant k). This slight conformational entropic advantage of the HCP crystal of
chains is by far insufficient to compensate for the larger translational entropic advantage of the FCC
crystal, which is predicted to be the stable one. The calculated overall thermodynamic advantage of
the FCC over the HCP polymorph is supported by a recent Monte Carlo (MC) simulation on a very
large system of 54 chains of 1000 hard sphere monomers. Semianalytical calculations using results
from this MC simulation yield in addition a value of the total crystallization entropy for linear, fully
flexible, athermal polymers of ∆s ≈ 0.93k per monomer.

Keywords: polymorphism; crystallization; hard sphere; Monte Carlo simulation; hexagonal close
packed; face centered cubic; random walk; polymer; free energy; entropy

1. Introduction

Self-organization is a phenomenon of paramount importance in a plethora of sys-
tems related to physics, chemistry, biology, ecology, robotics, economy, cosmology and
computer science [1–11]. In the most trivial example, self-organization manifests itself
as the spontaneous, entropy-driven crystallization of hard bodies [12–23]. The formation
of nematic liquid crystals, following Onsager’s theory [24,25], and the crystallization of
hard objects [14,15,21,23,26–31], as first demonstrated by the pioneering simulations of
Alder and Wainwright on spheres [32], are perhaps the two most prominent examples
of entropy-driven transitions. Albeit the simplicity of the underlying physical model,
numerous aspects of athermal crystallization remain still unclear, prominent among them
being the final crystal polymorph as a result of the phase transition.

The structure of crystals of uniform, monomeric hard colloidal spheres, as investigated
experimentally via light/X-ray scattering and confocal microscopy, is often found to be
a random stacking of 2D hexagonal compact layers (rHCP) [12,33–37]. In some cases,
depending strongly on experimental conditions, including factors like size polydispersity,
shear, and gravity [34,35], quite perfect face-centered cubic (FCC) crystals are obtained [38],
typically in samples grown over weeks or months, to allow for a slow annealing or aging
for the transition rHCP→FCC to take place [12,13,39,40].

A widely accepted value of the entropy difference between the FCC and HCP poly-
morphs, supported by simulations [41–45], is ≈ 112(±4)× 10−5k per particle, where k is
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Boltzmann’s constant. Variations from this value depend on the conditions under which
the estimation is made, and especially on packing density (volume fraction) [41,42,44,46,47].
This very small value is qualitatively consistent with the experimentally observed slug-
gishness of the rHCP→FCC transformation. Accordingly, under a constant volume, most
studies identify the rHCP polymorph as the final crystal structure [21,28,48,49] and perfec-
tion in the form of the FCC crystal is only rarely encountered [50,51]. Interestingly, neither
perfect nor defective HCP crystals seem to have been observed in experiments and/or
numerical simulations starting from densely packed amorphous samples.

The competition of the HCP and FCC polymorphs in monomeric packings of hard
spheres has been extensively studied theoretically [41–45,47,52–56] and in computer sim-
ulations under a wide variety of conditions [53,57–64]. Much less is known about dense
packings of hard-sphere polymers, both experimentally and theoretically. On the experi-
mental side, while it is quite straightforward (e.g., through steric stabilization) to prepare
systems that approach single hard-sphere behavior, the situation is significantly more
complex for polymers of freely-jointed hard spheres, although promising experimental
advances have been made especially with respect to granular [65,66], colloidal [67,68],
and droplet [69] realizations. In parallel, the recent synthesis of giant polymer chains [70]
allows their study at a significantly larger scale than the traditionally explored one. These
experimental advances have been accompanied by computer simulations on linear chains
made of hard spheres investigating, among other factors, the effect of packing density,
chain length, chain stiffness, gaps in bond lengths and confinement [71–81].

Fully flexible polymers of hard spheres lacking any other type of interactions
(i.e., without bending, torsional or bond length energetic contributions to the Hamilto-
nian) are athermal so that their equilibrium phase behavior is driven solely by entropy.
Our previous work [75–80] showed that, rather counter-intuitively, starting from amor-
phous packings, freely-jointed chains of tangent hard spheres do indeed undergo sponta-
neous entropy-driven crystallization under a variety of conditions. In constant-volume
simulations starting from an amorphous packing crystallization sets in when the increase
in translational entropy of the monomers compensates for the loss of conformational
chain entropy. The increase in monomer translational entropy is caused by an increase
of the space available to monomers and of its isotropy [75,76], much as it happens in the
transition from the isotropic fluid to the nematic liquid crystal mesophase in Onsager’s
theory [24,25]. Due to the high complexity and computational demands of the algorithms
needed to simulate long, athermal polymers at very high densities, the polymer crystals
obtained in previous Monte Carlo (MC) simulations were made of short chains and
tended to display a fivefold-free, but defect-ridden rHCP structure, so that it was not
possible to establish which of the two competing crystal forms, HCP or FCC, was the
thermodynamically stable one for chains of hard spheres.

Very recently we extended the studies by conducting unprecedentedly long MC
simulations to study the entropy-driven crystallization of a large system of 54 chains of
average length 1000 (in a number of spheres). In these isochoric simulations the initially
amorphous configuration, after an early dominance of the HCP polymorph, passes to a
transitory rHCP morphology and eventually reaches a stable FCC crystal of very high
perfection [78]. In this work, which can be considered as a companion to [78], we present
semi-analytical calculations of the free energy of crystallization of the stable FCC crystal and
of its free energy advantage with respect to the HCP polymorph to support the observed
simulation trends.
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2. Methodology
2.1. Free Energy Difference between FCC and HCP Polymorphs

Athermal polymers are represented here as linear, freely-jointed chains of hard spheres
of uniform size, σ, which is further the characteristic (unit) length of the system. According
to the hard core model, spheres i and j interact with a pair-wise energy uHS(rij), given by:

uHS(rij) =

{
0, rij ≥ σ

∞, rij < σ
(1)

The spontaneous crystalization of polymers is conveniently studied in the (trivially)
athermal version of the isochoric semigrand canonical ensemble [VTNsitesµ

∗
i ] in which

total volume V, total number of sites Nsites and a spectrum µ∗i of chemical potentials are
specified [82,83]. This ensemble naturally allows for polydispersity and for any desired
distribution of polymer chain lengths spanning an arbitrary interval l ∈ [lmin, lmax], so
that results are more generally valid than by assuming a specific distribution (Flory,
uniform, etc).

We consider a system of N such polymer chains comprising a total number of
monomers (also “sites”) Nsites. The chain length distribution is given by the number
of chains Nl of length l ∈ [lmin, lmax]. In the following and for compactness of notation
we also use Nl to refer to the entire distribution. Although both Nsites and N are fixed,
the numbers Nl of chains of each length l are fluctuating variables. The desired polymer
length distribution results from imposing a suitable spectrum of chemical potentials, so
that the constraints

N =
lmax

∑
l=lmin

Nl and Nsites =
lmax

∑
l=lmin

lNl (2)

hold, with l the counter over chain lengths. The partition function in the [VTNsitesµ
∗
i ]

ensemble is [84]:

Υ(V, T, Nsites,µ∗i ) =

= ∑∞
site identities

′ q
N
lmin
N! ∏lmax

l=lmin

(
ql

qlmin

)Nl
exp[βµ∗l Nl ]VN

× 1
Nlmin

!...Nlmax !

(
2πmkT

h2

)3Nsites

×Z(V, T, Nlmin
, . . . , Nlmax ) (3)

where ql refers to the translational and internal contributions to the partition function
for chain length l, and Z(V, T, Nlmin

, . . . , Nlmax ) =
∫

d3Nr exp(−βU(r)) is the classical con-
figurational integral. The athermal ensemble is trivially obtained by setting U(r) → ∞
whenever at least one monomer overlap exists, and 0 otherwise (Equation (1)), so that the
classical configurational integral reduces to a summation over equally probable microstates.
The analytical evaluation of the general partition function (Equation (3)) is not feasible. It is
however the starting point both for an analytical estimate of an upper bound of the entropy
difference between crystal polymorphs, and for the development of MC algorithms.

Previous work [75,76] on the crystallization of chains of hard spheres has unequivo-
cally established that the positions of chain monomers in the crystal fluctuate about the
most probable sites of a well-defined polymorph (either HCP or FCC; other, non-compact
crystal polymorphs do not appear in experiments or in simulations), while chains adopt
random conformations compatible with the monomers fluctuating about these sites of the
perfect crystal. Crystallization takes place because the loss of conformational entropy of
the chains is more than compensated for by the increase in the positional/translational
entropy of their monomers, even if these are forced to remain close to the sites of the crystal.
The increase in monomer translational entropy is due to the larger and more isotropic
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volume translationally available to the monomers, in exact parallelism to what happens for
monomeric hard spheres and in lyotropic phase transitions in liquid crystals as pioneered
in [24] and further extended in [85–87].

If we ignore spatial fluctuations around their average positions, a crystal of hard
sphere monomers consists of a single microstate (i.e., either the ideal FCC or HCP crystal,
as specified by their lattices and bases). However, an interesting feature of the polymer
crystal is that, again ignoring spatial monomer fluctuations, it possesses a large number of
equally probable microstates: all possible multi-chain configurations in which the chains
connect adjacent crystal sites without overlap and without leaving empty sites, while
respecting monomer tangency along the chain backbone, are valid microstates. Thus,
polymer crystal microstates are obtained to a very high degree of approximation as the
product set of monomeric positional microstates (about the sites of the perfect crystal) and
a highly multiply degenerate set of chain conformational microstates (all possible chain
conformations that join the monomers in chains of the specified length).

The above description of the polymer crystal makes it possible to develop an accurate
approximation to the partition function (Equation (3)) which is amenable to analytical cal-
culations for the present case of crystals of freely jointed chains of hard spherical monomers
by factorizing (Equation (3)) into a translational part for the individual monomers, as in a
crystal of monomers, and a configurational part which accounts for chain connectivity and
conformational variability. To this end we denote by RX

i the coordinates of the center of the
i-th spherical monomer in a perfect crystal of monomers of polymorph X (where X = FCC
or HCP) and by RX ≡

{⋃Nsites
i=1 RX

i

}
the set of all monomer positions in the perfect crystal

(i.e., RX is a list of 3Nsites Cartesian coordinates). The lowercase versions, namely rX
i and

rX , denote the coordinates of the i-th spherical monomer in a specific configuration of the
real crystal (i.e., subjected to fluctuations), and the set of all rX

i , respectively.
Given RX for a finite sample consisting of Nsites of polymorph X there exists a finite set

of polymer chain configurations that are obtained by tracing all sets of N nonoverlapping
(i.e., simultaneously self-avoiding and mutually-avoiding) paths of the prescribed chain
length distribution that connect all the Nsites points of coordinates RX

i . We now denote by
IX

jk the j-th multichain configuration for the given RX and for the k-th chain size (discrete)
distribution Nl , constrained by (Equation (2)). The integer counter k enumerates all possible
chain distributions compatible with these constraints. Notice that it is not necessary to ac-
tually have the explicit complete finite set of possible chain distributions, nor its cardinality,
because this set is independent of, and therefore the same for, all crystal polymorphs.

For any given, fixed numbering scheme of the Nsites monomers and of the N chains,
each IX

jk is (up to permutations of the site labels) a list of Nsites + N − 1 integers which

specify which and in which order crystal sites RX are occupied by monomers belonging
to which chain (Nsites integers), and which the chain lengths are (N − 1 integers, because
of the first constraint above). The union set ξX

k ≡
{⋃

j IX
jk

}
is then the set of all possible

multichain configurations for a given chain length distribution, and the double union
ΞX ≡

{⋃
k
⋃

j IX
jk

}
is the complete, finite set of all possible multichain configurations for all

possible chain length distributions compatible with Nl , l ∈ [lmin, lmax], and constrained by
(Equation (2)).

Accepting the separation of translational and conformational degrees of freedom
in (Equation (3)) (an assumption whose plausibility will be quantitatively discussed
below), and in terms of the previous definitions, the free energy/entropy difference
∆SX−Y ≡ SX − SY between polymorphs X and Y is, in units of k:

∆SX−Y = ln ZX
m(V,rX

i )

ZY
m(V,rY

i )

|ΞX|
|ΞY| =

ln ZX
m(V,rX

i )

ZY
m(V,rY

i )
+ ln |Ξ

X|
|ΞY| = (∆SX−Y

m + ∆SX−Y
ch ) (4)



Polymers 2023, 15, 1335 5 of 20

where ZX
m(V, rX

i ) denotes the classical partition function for the monomeric crystal X and
| | denotes the cardinality of a set.

In physical terms, (Equation (4)) splits the evaluation of the entropy of the crystal of
chains in two independent, additive contributions: the first one, ∆SX−Y

m (corresponding to
the first fraction in (Equation (4)) due to translational degrees of freedom of the monomers,
as if they were not connected to form chains; the second one ∆SX−Y

ch due to the number
of ways the individual monomers can be connected into N chains of the specified length
distribution under the condition that the monomers occupy all sites of the perfect crystal,
i.e., the chains are both self-avoiding and mutually-avoiding, simultaneous random walks
on the sites of polymorph X, so that no crystal sites are left unoccupied.

One advantage of (Equation (4)) is that ∆SX−Y
m is the entropy difference between the

FCC and HCP crystals of monomeric hard spheres, which is precisely known [41,43,44].
The problem is then reduced to the calculation of ∆SX−Y

ch , i.e., the chain configurational
and conformational contribution to entropy. If ∆SHCP−FCC

ch > |∆SFCC−HCP
m | then the HCP

crystal would be the stable polymorph, while FCC would be the thermodynamically
preferred crystal form in the opposite situation.

Neither the cardinality
∣∣ξX

k

∣∣ nor consequently
∣∣ΞX

∣∣ are known for any crystal type; fur-
thermore, their evaluation by exhaustive enumeration is conjectured to be an NP-complete
problem [88] so that (Equation (4)) and ∆SFCC−HCP cannot be evaluated exactly in the
general case. It is however possible to establish an upper bound for ∆SX−Y

ch , which, if tight
enough, would be sufficient to prove the stability of the FCC polymorph. An upper bound
for

∣∣ξX
k

∣∣ is given by the product of the number of N neither self-avoiding nor mutually
avoiding random walks of the given length distribution on the crystal sites of the poly-
morph, given by ∏lmax

lmin
(CX)Nl , with CX the coordination number of the crystal. However,

since CFCC = CHCP = 12 for both FCC and HCP, this bound predicts ∆SFCC−HCP = 0 and
does not allow to discriminate between the two crystal types.

A tighter and discriminating bound can be obtained by considering the finite set cX(l)
of single self-avoiding random walks (SAWs) of length l on the sites of a given crystal X.
The asymptotic dependence of

∣∣cX(l)
∣∣ on l is of the exponential-power law type [89]:∣∣∣cX(l)
∣∣∣ = Aµl lγ−1 (5)

where A is the critical amplitude, µ the connective constant, and γ the critical exponent.
For freely jointed chains, the asymptotic regime of (Equation (5)) is already attained for
chains of very moderate length (l ≈ O(10)), so that (Equation (5)) is valid with excellent
accuracy in the polymeric regime for which l � O(10) (Nl ≈ O(100)−O(1000) in the
present work).

Although it was conjectured that
∣∣cHCP(l)

∣∣ = ∣∣cFCC(l)
∣∣, direct enumeration of SAWs

demonstrates that this is exact only for l ≤ 6 and first-order accurate for l > 6; above
that value of l, and hence in the polymeric regime of interest here,

∣∣cHCP(l)
∣∣ > ∣∣cFCC(l)

∣∣
by a very small amount. We have calculated the cardinalities

∣∣cFCC(l)
∣∣ and

∣∣cHCP(l)
∣∣ as a

function of SAW length l by exhaustive enumeration and also established their asymptotic
behavior, which is accurately given by (5) with A = 1.19, µ = 10.07 and γ = 1.134 for∣∣cFCC(l)

∣∣. For the HCP crystal, the values of these parameters are so similar to the FCC
parameters, that it is numerically much preferable to express the minute difference between
both in the expected decaying exponential form:∣∣∣cHCP(l)

∣∣∣ = ∣∣∣cFCC(l)
∣∣∣[1 + l(a1 − a2 exp(−a3l))] (6)

with a1 = 3.31× 10−6, a2 = 8.63× 10−6, and a3 = 0.24, for l > 5 and a1 = a2 = a3 = 0 for
l ≤ 5.

Since chains in the polymer crystal are random walks that are simultaneously mutually-
avoiding and self-avoiding, and display ideal (non-SAW) statistics [90], their conforma-
tional ensemble is guaranteed to be a proper subset of the Cartesian product of the sets of
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all possible (self-avoiding and non-self-avoiding) individual chain conformations. Thus,
for any given chain length distribution, Nl , the monotonicity of (Equation (5)) guarantees
that the cardinality

∣∣ξX
k

∣∣ is strictly bounded from above by:

∣∣∣ξX
k

∣∣∣ < lmax

∏
lmin

[cX(l)]Nl < [cX(lmax)]
N (7)

If we now denote by Ndist the number of possible chain length distributions Nl com-
patible with Nl , l ∈ [lmin, lmax], and constrained by (Equation (2)), the following bound for∣∣ΞX

∣∣ results: ∣∣∣ΞX
∣∣∣ < Ndist ∑

k
[cX(lmax)]

N (8)

where the sum is carried out over all possible chain length distributions Nl , with l ∈
[lmin, lmax], and constrained by (2). Note that Ndist is independent, i.e., the same, for all

crystal polymorphs and will cancel in any ratio of the type |Ξ
X|
|ΞY| , such as Equation (9) below.

Because
∣∣cHCP(l)

∣∣ is strictly larger than
∣∣cFCC(l)

∣∣, because ΞHCP ≈ ΞFCC to first order,
and because chain distributions are independent of polymorph type:∣∣ΞHCP

∣∣
|ΞFCC|

<
∑k[cHCP(lmax)]N

∑k[cFCC(lmax)]N
=

(
cHCP(lmax)

cFCC(lmax)

)N

(9)

An upper bound for the entropy difference per monomer of the two polymorphs X
and Y, ∆sX−Y

ch , is then given by:

∆sHCP−FCC
ch = ln |Ξ

HCP|
|ΞFCC| <

< 1
〈l〉 ln[1 + lmax(a1 − a2 exp(−a3lmax))]

= (a1 − a2 exp(−a3lmax)) < a1 (10)

where 〈l〉 is the number average chain length. The smallness of a1 and a2, and the polymeric
regime (large l) allow us to only retain the leading term in the expansion of the logarithm,
so that the last inequality follows from the asymptotic behavior of (Equation (6)). Then, to
the second order:

∆sHCP−FCC
ch ≈ 0.331× 10−5k (11)

which implies that the chains in the HCP polymorph have higher conformational entropy
than in the FCC crystal. However, this difference in conformational entropy is insufficient
by more than two orders of magnitude to offset the translational entropic advantage
≈ 112(±4)× 10−5k of the FCC polymorph with respect to the HCP crystal. Thus, the upper
bound (Equation (9)), although conservative, is tight enough to unequivocally show that
the FCC is the thermodynamically stable polymorph for crystals of linear, freely-jointed
polymers of tangent hard spheres.

2.2. Monte Carlo Simulations

In order to provide computational support for the above results, based on semiana-
lytical calculations, in a companion paper [78] we carried out unprecedentedly extensive
MC calculations of very large systems deep in the polymeric regime (N = 54 chains com-
prising Nsites = 54, 000 monomers, with a flat chain length distribution in the interval
[lmin = 600, lmax = 1400]), at a volume fraction ϕ = 0.56, and starting from a totally amor-
phous (random) packing. Observing spontaneous crystallization in a system of such size
at that high volume fraction requires very efficient and proper configurational sampling,
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which is a very challenging task due both to the high density of the system and to the great
length of the polymer chains.

One of the main motivations for simulating such a large system is to minimize
potential finite size effects of small cells under periodic boundary conditions, which
might conceivably lead to a crystallization advantage for the FCC polymorph due to the
incommensurability of the cubic cell with the HCP crystal. Cell incommensurability is
an irrelevant factor for such a large cubic cell, which is for all practical purposes just as
compatible with the HCP crystals that appear in simulations as the cell usually known
as “rhombic” (strictly speaking, hexagonal). Our simulation cell is significantly larger
than individual chains and incipient HCP crystallites have ample possibility to freely
nucleate and grow in the bulk of the system, irrespective of cell shape. For example, the
size of the cubic cell is approximately 37 (measured in units of σ), more than twice the
average radius of gyration 〈Rg〉 = 16.5, where 〈 〉 denote the average over all chains and
system configurations.

In fact, as clearly seen in the following snapshots (Figure 1) HCP crystalline do-
mains do actually form, and even temporarily surpass in abundance the FCC crystalline
regions during part of the simulation. The disappearance of HCP domains and the final
formation of a pure FCC crystal is not a consequence of using a cubic simulation cell.
If anything, the cubic simulation cell would make a presumptively stable HCP crystal
only very slightly more defect prone than a hexagonal one, but this effect would be
completely obscured by the many imperfections that inevitably appear in all computer
simulations of spontaneous crystallization. As a matter of fact, relatively perfect HCP
crystals appear in simulations of crystallization in confined cubic cells where spatial
restrictions appear in the form of flat parallel and impenetrable walls [79,80]. The cubic
shape of the box can definitely be discarded as the cause of the final dominance and
greater stability of the FCC polymorph.

System configurations are first generated and equilibrated through an MC scheme
based on algorithms specially designed for the efficient sampling of polymer-based
systems [83,91,92] and then characterized through the Characteristic Crystallographic
Element (CCE) norm descriptor [93], both modules as implemented in the Simu-D soft-
ware suite [94]. The MC trajectory is generated in the [VTNsitesµ

∗] ensemble, where V is
the volume of the cell, T is the temperature (inactive here due to the athermal nature of
the model), and µ∗ is the spectrum of chemical potentials used to control the distribution
of chain lengths. The MC scheme consists of the following moves: (i) reptation (10%),
(ii) rotation (10%), (iii) flip (34.8%), (iv) intermolecular reptation (25%), (v) configura-
tional bias (20%), (vi) simplified end-bridging (0.1%) and (vii) simplified intermolecular
end-bridging (0.1%), where numbers in parenthesis denote attempt percentages. Due to
the very high volume fraction all local moves (i–v) are executed in a configurational bias
pattern with the number of candidate configurations set equal to 50. Trial MC moves
are accepted or rejected according to the modified Metropolis criteria as explained in
Ref. [83]. The total duration of the MC simulation is 1.4× 1012 steps with a record fre-
quency of snapshots (frames) set at 1× 108 leading to a final trajectory being composed
of 14,000 frames. The radial and orientational similarity of the local environment around
each site with respect to reference crystals, as quantified through the CCE norm [93],
classifies them as HCP, FCC, FIV (fivefold) or AMO (amorphous, or more precisely “not
identified”) character. Throughout the present manuscript, blue, red, green and yellow
will be used to represent the HCP, FCC, FIV and AMO sites and curves, respectively. The
exact details on the methodology followed for the MC simulations and the successive
structural analysis of the computer-generated system configurations can be found in the
companion publication [78].
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Figure 1. System snapshots along the MC simulation. From left to right: 1× 108 (Region I), 4× 1011

(Region II), 8× 1011 (Region III) and 1.4× 1012 (Region IV, end of simulation) MC steps. From
top to bottom: (A) Sites are colored according to their structural similarity as quantified through
the CCE norm descriptor [93] with blue, red and green corresponding to sites with HCP, FCC
and FIV character, respectively. Amorphous (AMO) sites are shown in yellow and with reduced
dimensions for visual clarity. The stable FCC crystal (fourth, rightmost snapshot) is obtained in
the steady state (up to fluctuations) MC production phase, after approximately 9× 1012 MC steps;
(B) Sites are colored according to their parent chain and are shown with wrapped coordinates,
subjected to periodic boundary conditions; (C) Sites are colored according to their parent chain
and are shown with coordinates fully unwrapped in space; (D) Two randomly selected chains are
shown in red and blue with sphere coordinates fully unwrapped in space. Image panels created
with the VMD software [95]. Details on the MC simulation and the corresponding trajectory can
be found in [78].
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The evolution of the fraction of sites with HCP, FCC and FIV characters as a function of
MC steps can be found in Figures 1 and 2 of [78]. Crystallinity is simply the summation of
HCP and FCC fractions, while the degree of disorder of the system can be directly mapped
into the fraction of AMO sites. Based on the observed trends the phase transition can be
naturally split into 4 regions: (I) the rapid nucleation and growth of crystals with HCP and
FCC character and the parallel decrease in the population of FIV and AMO sites, (II) the
induction period where crystallization slows down, the population of HCP sites remains
constant, the one of FCC increases very slowly while surviving FIV sites form characteristic
linear assemblies corresponding to cyclic twin structures, (III) the FCC growth period which
is accompanied by the elimination of sites with HCP similarity leading eventually to the
formation of a single FCC crystal of very high perfection, (IV) the final, steady-state region,
where within fluctuations, the established FCC crystal remains unaltered. The thresholds
between the regions are marked by the significant slowdown in the crystal growth (I→ II),
the disappearance of fivefold sites (II→ III), and the formation of the perfect FCC crystal
(III→ IV). A video showing the evolution of crystallization and the transition between the
different crystal polymorphs can be found in the Supplementary Material, while system
snapshots, corresponding to the four distinct regions, are presented in Figure 1. As can
be seen in the supplementary video material and in the snapshots, starting from a purely
amorphous, statistically homogeneous and isotropic configuration, the MC simulation is
able to evolve the system through intermediate states of increasing crystallinity until a
stable FCC polymorph of remarkable perfection is formed. In this final steady state the
percentage of sites with FCC similarity exceeds 90% of the total population. A detailed
explanation of the determination of the crystallographic type, of fivefold-symmetric, and of
amorphous sites as implemented in the CCE norm descriptor is given in the companion
paper [78] together with an analysis of the evolution including the entropic origins of
crystal perfection. Based on the observed trends it is clear that driven by the minute FCC
entropic advantage, the system shows a transition from the original disordered solid to the
ordered crystal and spontaneously generates microstates of increasingly FCC character,
until after approximately 9× 1012 MC steps when all HCP crystalline sites disappear and
crystallization reaches completion.

The initial predominance of the HCP polymorph (Regime I) and its eventual com-
plete disappearance during the evolution towards a stable, perfect FCC polymer crystal
is distinctly different from the evolution during crystallization of single spheres, where
crystals of mixed FCC/HCP character are invariably obtained. This phenomenon is
related to the different relative (meta)stability of intermediate states for crystals of
single hard spheres, and of polymers of hard spheres, and is fully explained in the
accompanying work [78].

3. Decorrelation of Translational and Conformational Degrees of Freedom

We now examine the postulated decorrelation of translational and conformational
(torsion and bending angles) degrees of freedom (d.o.f.’s), which is the basis of the calcu-
lations leading to the result of (Equation (11)). In order to test this hypothesis, we extract
from the MC results the correlation between translational (monomer displacement) and
conformational (bending and torsion angles of the chains) d.o.f.’s. To this end, we plot
(Figure 2), for all monomers, and in Region IV the value of |R| against the torsion angles in
which each monomer is involved, where |R| is the distance between a monomer and the
centroid of its Voronoi cell:

|R| =
(

1
NV

NV

∑
i=1

ri

)
− rm (12)

where NV is the number of vertices of the given Voronoi cell, ri are the position vectors of
its NV vertices, and rm is the position vector of the monomer. Figure 3 is a similar plot of
the value of |R| versus the bending angle whose vertex is located at the monomer.
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Figure 2. Left y-axis (black color): Distance |R| between a monomer and the centroid of its Voronoi
cell, versus one of the torsion angles φ which belong to the same monomer, averaged over all frames
in Region IV. Symbol size is proportional to the frequency of occurrence of the corresponding torsion
angle φ. Right y-axis (red color): the probability distribution of torsion angles. Error bars are
fluctuation amplitudes, angles have been grouped in 20 bins.

Figure 3. Left y-axis (black color): Distance |R| between a monomer and the centroid of its Voronoi
cell, versus the bending angle θ of the monomer, averaged over Region IV. Symbol size is proportional
to the frequency of occurrence of the corresponding bending angle θ. Right y-axis (red color): the
probability distribution of bending angles. Error bars are fluctuation amplitudes, angles have been
grouped in 20 bins.

In both figures the size of the symbols is proportional to the probability density of
the particular value of the torsion (Figure 2) or bending (Figure 3) angle, and information
on the fluctuation amplitude is included as error bars. For reference, the probability
distributions of both φ and θ are included in the same plots. For both types of confor-
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mational degrees of freedom, the flatness of the curves attests to the independence of
translational and torsional and bending conformational d.o.f.’s. For the torsional angle
φ, the value of |R| is constant to better than 2%, and better than 5% for the bending
angle. The values which deviate the most from the average (e.g., for θ = 30o) correspond
to angles that occur with extremely low frequency: pbend(θ = 30o) ≈ 0, for which the
symbol is invisibly small in Figure 3. Only very few instances of bending angles around
this value exist, as the local chain geometry they produce is incompatible with the FCC
cell, so they are very strongly suppressed in the crystal (flat portion around θ = 30◦ in
Figure 3) and are for all practical purposes irrelevant.

From these two figures it can be concluded that the decorrelation between translational
(|R| or its individual components, not shown) and conformational (φ, θ) d.o.f.’s is fulfilled
to a sufficient degree to warrant their separation in the calculation of ∆sHCP−FCC, and the
result (Equation (11)), between the two competing polymorphs HCP and FCC in the crystal.

In summary, although the free energy (entropy) advantage of the FCC over the HCP
crystals of monomeric hard spheres is small (≈ 112(±4)× 10−5k), the higher conforma-
tional entropy of chains in the HCP crystal with respect to FCC is even tinier≈ 0.331× 10−5k
and hence insufficient to make HCP the preferred crystal for chains. The results of the
MC simulations strongly support the analytical result that the FCC polymorph is the
thermodynamically stable phase for crystals of fully flexible chains of hard spheres.

4. Free Energy of Crystallization

Crystallization of fully flexible chains of hard spheres entails a reduction (relative to
chains in an amorphous solid) in the number of conformations available to, and hence
in the entropy of, the polymeric chains. However, just as in the case of monomeric hard
spheres, the positional entropy of the individual monomers increases upon crystallization
by a larger amount, so the overall result is still favorable for crystallization.

Thanks to the separation of translational and conformational d.o.f.’s, the increase
in (monomeric) translational entropy upon crystallization of the chains can be taken as
identical to the translational entropy increase of crystallization of monomeric hard spheres,
which has been known for a long time: ∆strans

m = 1.17k per monomer [32,96,97]. In order
to compute the free energy (entropy) of crystallization of fully flexible polymers of hard
spheres, it is now necessary to subtract from ∆strans

m the value of the conformational entropy
lost by chains when they crystallize.

While an analytically exact calculation of the entropy of crystallization is not feasible,
the results from the MC simulation suggest a feasible approximation method. First, the
Kuhn length b0 of the chains does not significantly change upon crystallization, as we
have shown in [78]. The Kuhn length b0 = 1.52± 0.05 turns out to be only 50% longer
than the bond length, implying that the chains behave as identical freely jointed ideal
(non-self-avoiding) chains when observed at length scales beyond a few bonds, in both the
disordered solid and the ordered crystal.

In Figure 4, we present the characteristic ratio Cn (main panel), and the ratio 〈Ree2〉
6〈R2

g〉
(inset), as a function of chain length, l. 〈R2

ee〉 is the mean square end-to-end distance, and

〈R2
g〉 is the mean square radius of gyration. Characteristic ratio is defined as Cn = 〈Ree2〉

(l−1)〈blen〉
,

where 〈blen〉 is the average bond length, as explained in Ref. [78]. Both are, within statistical
uncertainty, independent of chain length l ∈ [lmin, lmax] and the same for both Regions,
indicating that chains in the initial disordered solid (early Region I) and in the almost
perfect FCC crystal (Region IV) are indistinguishable in the degree of coiling/flexibility and

also equally ideal, since the ratio 〈R
2
ee〉
〈R2

g〉
adopts the value of 6 [98,99], as expected for ideal

unperturbed polymers in the long-chain limit, as demonstrated originally by Debye [100]
and then by Flory [90].
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Figure 4. (Main panel) Characteristic ratio, Cn, and (inset) ratio of the mean square end-to-end

distance divided by six times the mean square radius of gyration, 〈R
2
ee〉

6〈R2
g〉

, as a function of chain length,

l, in the disordered solid (Region I) and in the almost perfect FCC crystal (Region IV).

Furthermore, the distribution of the end-to-end vector of the chains, P(|Ree|) whose
lengths lie within the small interval l ∈ [970, 1030] (chosen as a representative, narrow
interval of chain lengths) is also the same in the disordered solid and in the ordered
crystal (Figure 5); the polymers neither shrink nor swell upon crystallization. These results
unambiguously demonstrate that the large-scale features of the chains remain unchanged
upon crystallization. In the two distinct phases (disordered solid and ordered crystal)
chains differ only in their very small-scale features (a few bonds).

This statement may seem paradoxical at first sight but it is actually natural: the way
chains crystallize (by having their monomers occupying on average the most probable
sites of a crystal) uniformly (at all chain lengths) selects the chains that fulfill this
condition from the other members of the ensemble. In slightly more precise terms, for
a given crystal polymorph X and for a given chain length distribution, denoted by k
(Section 2.1), the union set ξX

k is (up to fluctuations) an equivalence class of the ensemble
[VTNsitesµ

∗
i ] under the relation “monomer coordinates in a configuration of the ensemble

[VTNsitesµ
∗
i ] coincide with site coordinates of crystal X”, a class for which any of the IX

jk can
be taken as a representative. As a consequence of the underlying uniform (average)
spatial density of crystal sites, the equivalence class retains all large-scale features of the
full ensemble.
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Figure 5. Probability distribution of the modulus of the end-to-end vector, P(|Ree|), for chains in the
length interval l ∈ [970, 1030] in the disordered solid (Region I) and in the almost perfect FCC crystal
(Region IV). A small interval of l instead of single values of l has been used to obtain better statistics.

Figures 4 and 5 clearly demonstrate the similarity of chains in the disordered solid
and in the almost perfect FCC crystal; to convey an intuitive impression for this similarity
we show in Figure 1 snapshots of the whole system with chains being subjected to periodic
boundary conditions (second row), being fully unwrapped in space (third row) for all four
Regions exhibited during crystallization. In addition, only two, randomly selected, chains
are visualized for each system for clarity in the bottom (fourth row) of Figure 1. In all
cases, the chain features, down to a few bond lengths, are indistinguishable so that it is
impossible to tell apart polymers in the original amorphous solid and in the various crystal
polymorphs including the perfect FCC crystal.

Since conformational differences between chains in the disordered solid and the
FCC crystal are overwhelmingly local, a calculation of the loss of conformational entropy
upon crystallization ∆scon f

m can be made, inspired by Flory’s Rotational Isomeric State
(RIS) theory [90] by considering continuously varying bending and torsional angles.
Although the absolute value of the conformational entropy cannot be computed exactly
either in the amorphous or in the crystal phases, the previous arguments make it
possible to estimate the difference in conformational entropy between the amorphous
solid and the crystal by considering up to next-next-next-nearest neighbors, i.e., a
four-monomer portion of chain, beyond which chains remain essentially unaltered
upon crystallization.

We denote by f am
bt (θ1, φ, θ2) and f cr

bt (θ1, φ, θ2) the joint orientational distribution func-
tions of bending and torsion angles for a four-monomer chain segment (see Figure 6) in
the amorphous solid and in the crystal, respectively. The angles θ1, θ2 are two consecutive
bending angles defined by monomers 1-2-3, and 2-3-4 (see Figure 6), and φ is the torsional
angle defined by monomers 1-2-3-4.
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Figure 6. Definition of bending angles θ1, θ2 and torsion angle φ. These angles are also used in the
joint orientational functions of bending and torsion angles fbt(θ1, φ, θ2) (see Section 4). The angle φ

gives the rotation around the line defined by monomers 2-3 and is measured with respect to the plane
defined by the three successive bonds 1-2-3.

The configurational entropy difference upon crystallization (in units of Boltzmann’s
constant k) can be expressed in terms of the integrals of the joint orientational func-
tions [101] by:

∆scon f =
∫

du(1)
∫

du(2)
∫ 2π

0
dφ f cr

bt (θ1, φ, θ2) ln f cr
bt (θ1, φ, θ2)−∫

du(1)
∫

du(2)
∫ 2π

0
dφ f am

bt (θ1, φ, θ2) ln f am
bt (θ1, φ, θ2) (13)

where the integral operation
∫

. . . du is equivalent to
∫ ∫

. . . sin θdθdφ with integration
ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The integration over the unit vectors u(1), u(2) and the
torsion angle φ are tantamount to carrying out the integration over all possible states of the
four-monomer segment.

The orientational functions f cr
bt (θ1, φ, θ2) and f am

bt (θ1, φ, θ2) are unknown a priori but
can be evaluated numerically as averages over Region IV (final FCC crystal) and over the
initial amorphous state of Region I, respectively, and discretized on regular integration
meshes of increasing resolution ranging from 20× 20× 20 up to 60× 60× 60 for all θ1, φ, θ2
in order to ensure numerical convergence of the integrals.

Figures 7 (as 3D isosurfaces), 8 and 9 (as sections of these isosurfaces at several
values of φ) illustrate how the preferred bending and torsional angles differ between
the amorphous and the crystalline states. As can be seen in Figure 7, specific triads of
θ1, φ, θ2 appear in the stable crystalline polymorph with significant frequency. The highly
probable combinations of θ1, φ, θ2 (disconnected, high probability regions in the right panel
of Figure 7) are responsible for the instantaneous positions of the monomers fluctuating
about the sites of the ideal FCC crystal.

A numerical evaluation of Equation (13) yields an entropy loss (i.e., the entropy of the
chains in the crystal state is lowered by the loss of conformational freedom)
∆scon f = −0.24k ± 0.04 per monomer. This figure is significantly lower (in absolute
value) than the translational entropy increase due to the formation of the crystal, which
is ∆strans

m = 1.17k per monomer, as mentioned above. The free energy of crystallization of
fully flexible chains of hard spheres (measured by the net increase in entropy per monomer
upon crystallization of the athermal system) is then ∆sm = ∆strans

m + ∆scon f ≈ 0.93k, which
is the result we sought. This value is still more than sufficient to drive the phase transition,
as in monomeric hard spheres, in spite of the loss of chain conformational entropy.
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Figure 7. Isosurface representation of the integrands in Equation (13) in the amorphous f am
bt (θ1, φ, θ2)

(left), and in the crystal f cr
bt (θ1, φ, θ2) (right). Isosurface coloring corresponds to 1.5× 10−5 (transparent

pink), 3.0× 10−5 (transparent yellow), 6.0× 10−5 (transparent green), 9.0−5 (solid blue).

Figure 8. Sections of the joint orientational functions of bending and torsional angles in the initial
amorphous state f am

bt (θ1, φ, θ2) for four values of the torsion angle φ.
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Figure 9. Sections of the joint orientational functions of bending and torsional angles in the stable
FCC polymorph f cr

bt (θ1, φ, θ2) for four values of the torsion angle φ.

5. Conclusions

We have presented semianalytical calculations of the free energy of crystallization of
linear, freely jointed chains of tangent hard spheres, as well as of the free energy difference
between the FCC and HCP polymorphs. The calculations are based on a separation of
degrees of freedom, i.e., a decoupling of chain conformational and monomer translational
degrees of freedom. This postulate is confirmed to hold within narrow error margins.
The calculations predict a small advantage of the FCC crystal over the HCP, which makes
FCC the thermodynamically stable one. This prediction is consistent with the results of
very long MC simulations on a large simulation cell comprising 54,000 monomeric sites
assembled in 54 chains, as presented in the companion publication [78].

In addition, chain conformations in the initial amorphous and the final crystal phases
are found to be identical in all large-scale features and differ only locally, at quite small
length scales of very few bonds. This fact allows a calculation of the loss of conformational
entropy per monomer upon crystallization, ∆scon f = −0.24k ± 0.04 . This decrease is
less than the increase in translational entropy of the monomers, (∆strans

m = 1.17k per
monomer), so crystallization still increases the overall free energy (entropy) in agreement
with the observed spontaneous formation of crystals of polymeric chains. Thus, the
calculated entropy of crystallization of freely jointed chains of hard spheres turns out to be
∆sm ≈ 0.93k.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15061335/s1, Video S1: N1000 crystallization.
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