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Abstract: The aim of this paper was to develop a biopolymer based on raw materials not originating
from petroleum chemistry to reduce the environmental impact. To this end, an acrylic-based retanning
product was designed where part of the fossil-based raw materials was replaced with biomass-
derived polysaccharides. Life cycle assessment (LCA) of the new biopolymer and a standard product
was conducted to determine the environmental impact. Biodegradability of both products was
determined by BOD5/COD ratio measurement. Products were characterized by IR, gel permeation
chromatography (GPC), and Carbon-14 content. The new product was experimented as compared to
standard fossil-based product, and the main properties of leathers and effluents were assessed. The
results showed that the new biopolymer provides the leather with similar organoleptic characteristics,
higher biodegradability and better exhaustion. LCA allowed concluding that the new biopolymer
reduces the environmental impact of 4 of the 19 impact categories analyzed. A sensitivity analysis
was performed where the polysaccharide derivative was replaced with a protein derivative. The
analysis concluded that the protein-based biopolymer reduced the environmental impact in 16 of
the 19 categories studied. Therefore, the choice of the biopolymer is critical in this type of products,
which may or may not reduce the environmental impact.

Keywords: leather; sustainability; biodegradability; life cycle assessment (LCA); polymers

1. Introduction

Leather is a byproduct of the meat industry that is transformed into a valuable product
of high durability, stability, comfort, and breathability [1]. It is considered one of the top
products of circular economy [2]. Leather also makes less use of materials originating
from nonrenewable sources, such as plastic and, therefore, contributes to environmental
protection and sustainability [3]. Currently, roughly 10 million metric tons of hides/leather
are produced every year [1]; if left untreated, they pose serious problems as a residue. The
tanning process also generates byproducts for other industries, such as pharma companies
and the food industry [4–6]. Leather is, therefore, considered a sustainable product.

The tanning process, however, uses large amounts of chemicals that mostly originate
from the petroleum industry. For instance, formaldehyde and phenol for phenol synthetic
retanning agents, acrylic acid for acrylic resins, or mineral oil for fatliquoring products,
are used. Petroleum is a nonrenewable, finite resource that highly contributes to climate
change [7,8]. Some studies estimate its exhaustion by 2050 if the current standard of living
is maintained [7]. Moreover, its transformation demands a large amount of energy. Indeed,
it presently accounts for 20% of the total energy used in the industry [9] and its treatment
involves products and/or residues that harm human health and the environment. In
addition, these products depend on the price and availability of petroleum, which are not
always consistent [10]. In 2020, petroleum production by the European Union reached
its lowest level (18.7 MT), and petroleum import was 96.2%, also in 2020 [11]. That is
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why petroleum is considered an unsustainable resource [12]. Consequently, petroleum
derivatives are considered unsustainable products and should be reduced or avoided
where possible. This is why great effort is being devoted to searching for alternative
resources [7,13]. On the other hand, biomass or biobased products can be used as substitutes
for fossil resources [10]. Currently, biomass is considered the only sustainable source of
organic carbon for the industry [13,14].

According to the European Commission Report [15], in the framework of the Lead Mar-
ket Initiative, biomass-derived products have a high economic and social value on account
of several factors, such as reduced dependence on fossil fuels, potential for greenhouse
gas emission reduction, potential for sustainable production, potential for better recycling,
and better recovery. Moreover, these products are often less toxic, more biodegradable
or compostable, consume fewer resources (water, energy), are less hazardous to health,
support rural development, and increase industrial competitiveness. The InnProBio fact-
sheet n.1 [16] also indicates some qualities of biomass derivatives. Indeed, a smart use of
biomass may lead to improved versions of fossil alternatives or to innovating products,
may contribute to lessen environmental impact by reducing greenhouse gases, may reduce
product toxicity, residues and dependence on nonrenewable resources such as petroleum,
and may promote job creation in the rural environment.

Biomass derivatives may originate from different sources, such as sugars, starch,
proteins, natural fibers and wood, lignin derivatives, natural oils and fats, mixed waste,
and natural glue [16,17]. Sugars may be incorporated into different polymers to obtain a
graft copolymer [18–22]. Currently, proteins can be used as retanning agents either applied
alone [23–25] or reacted with other polymers [26,27].

In the retanning process, different kinds of products are used that provide different
characteristics to the leather. Acrylic resins are widely used at this stage and confer very
good properties to the leather, such as high fullness or high tightness. The acrylic resins
used in retanning processes are generally polymers of high molecular weight formed by
repeating, smaller units called monomers. The properties conferred to the skin mostly
depend on the type of monomer used during synthesis and the molecular weight of the
resins. Most commonly used monomers are acrylic acid, acrylonitrile, styrene, and maleic
acid. These products are usually synthesized by chain growth polymerization, where
polymeric growth is due to the reaction of the polymer with a reactive terminal group [28].

Polymerization may involve different types of monomers, with copolymer formation,
or the same type of monomer, with homopolymer formation. Copolymers are classified
according to the distribution of repeating units [28,29] as: statistical copolymers, random
copolymers, alternate copolymers, block copolymers, or graft copolymers. Graft copoly-
mers are part of a defined backbone with randomly distributed branches or side chains
different from the main chain. They can be considered branched block copolymers [18,28].
Statistical, random and alternate copolymers usually have intermediate properties as com-
pared to the properties of their monomers, while block or graft copolymers usually have
the properties of the monomers used in polymerization and may have unique character-
istics due to the bonds formed between their different units. Therefore, these are very
interesting products [28,29]. Copolymers can be added with biomass derivatives to obtain
graft copolymers, thus improving biodegradability and reducing the environmental impact
caused by the synthesis of acrylic resins and derivatives thereof. These biopolymers are
abundant, biodegradable and nontoxic, and may react with an initiator to form free radicals
and start polymerization [29,30].

Extensive bibliography is available on the design of more sustainable products for
different industries. They all have one point in common: they replace fossil derivatives
with biomass derivatives or natural resources [1,9,13,31–40]. Adding biomass derivatives
to fossil products may improve product biodegradability, has a positive economic impact,
and may enhance environmental performance [41].

Life cycle assessment (LCA) can be used to determine the environmental impact of a
product. LCA is a tool that allows the study and identification of environmental impacts
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related to the life cycle of a product, organization or process. This is how the product’s
life cycle stages that have a greater impact on the environment are determined and able
to be improved. LCA allows the redesigning of products or designing new ones, and
comparing products [42,43]. LCA is a standard ISO method (ISO 14040: principles and
reference framework, and ISO 14044: requirements and directives) that identifies, quantifies
and evaluates the environmental impact of a product, process or service at all stages of
its life: extraction, production, distribution, end of life. LCA allows the comparison of
the environmental impact of a standard acrylic resin to that of a biopolymer, and then
establishing the sustainability of the product under study.

The aim of this paper was to develop a biopolymer based on alternative raw materials
not originating from petroleum chemistry in order to reduce the environmental impact.
To this end, LCA of the synthesized product was performed and compared with a stan-
dard product. The results showed that, in some cases, the new polymer had a greater
environmental impact than the standard product. Therefore, adding biomass derivatives to
a standard fossil product does not improve all environmental impacts.

2. Materials and Methods
2.1. Synthesis of BB Graft Copolymer

Acrylic acid as monomer of the polymer was selected to synthesize product BB graft
copolymer, while a polysaccharide derivative was selected as a polysaccharide-biomass
derivative from agroforestry residues (BPS). The products were synthesized with classic
laboratory reagents used for this type of synthesis.

Synthesis was performed in a four-mouth reactor with a capacity of 1 L. The reactor
included an adjustable speed stirrer and a cooling coil.

For synthesis, part of BPS is added with distilled water to the reactor, which is heated to
80 ◦C with stirring at 100 rpm. When the temperature is reached, the acrylic acid monomer
is added for 3 h. The rest of BPS is then added together with the catalyzer for another 3 h,
keeping the temperature at 80–85 ◦C. The reaction goes to completion by adding distilled
water together with the catalyzer for full monomer depletion. It is cooled to 50 ◦C and
neutralized with the sodium hydroxide solution.

In order to obtain a satisfactory product of appropriate molecular weight, different
syntheses are performed by adding different quantities of BPS and the same quantity of
acrylic acid. The reaction is optimized by adding one part of BPS with distilled water at the
beginning of the reaction, and then another part of BPS with the acrylic monomer and the
catalyzer. BPS is added in varying proportions at each stage.

2.2. Product Characterization
2.2.1. Molecular Weight Analysis

Gel permeation chromatography (GPC) was used for molecular weight determination,
using the Agilent model 1260 Infinity coupled with 1260 MDS refractive index detec-
tor. The products were analyzed using a column set comprising three Ultrahydrogel
columns 7.8 × 300 mm (Waters) with 120, 250 and 500 pore sizes. These columns provide
the following molecular weight range: 1000–80,000 g/mol, 10,000–400,000 g/mol, and
10,000–1,000,000 g/mol. The columns were packed with hydroxylated polymethacrylate
gel, and the particle sizes for Ultrahydrogel 120 and 250 and for Ultrahydrogel 500 were
6 µm and 10 µm, respectively. A 0.1 M sodium nitrate aqueous solution at a flow rate of
0.8 mL/min was used as mobile phase.

2.2.2. IR Analysis

IR spectra in the range of 600–4000 cm−1 were measured on a Perkin Elmer Spectrum
One. The samples were polymer films onto ZnSe base.

2.2.3. Biobased Carbon Content

The biobased carbon content can be determined by carbon 14 (C-14) analysis.
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The C-14 content of the biopolymer was determined using standard ASTM D6866-18
Method B (AMS) (accelerator mass spectrometry)

C-14 is an unstable isotope produced in the upper layers of the atmosphere when
cosmic rays collide with nitrogen. It enters the food chain through photosynthesis (CO2),
and all living things have a uniform, constant concentration of C-14. C-14 has a half-life of
5730 years and so its concentration is reduced by half every 5730 years. As soon as a living
organism dies, it stops taking in new carbon and the C-14 concentration slowly drops until
it practically disappears. No C-14 is detected in a fossil carbon sample that is millions of
years old. Therefore, knowing the total quantity of total C in the sample and detecting the
quantity of C-14 allows determining the C-bio/C-fossil ratio of the sample.

Standard ASTM D6866-18 Method B (AMS) allows measuring C-14 content against the
carbon 12 and carbon 13 of the sample, and this is compared with an oxalic acid standard
as C-14-free sample.

2.2.4. COD, BOD5 and Biodegradability

Chemical oxygen demand (COD) was determined for each of the two products and
residual baths thereof after application at the retanning stage. COD analysis was performed
with 150-g/L vials heated under reflux for 2 h at 150 ◦C. Biological oxygen demand
(BOD5) was also determined for products and residual baths. BOD5 was determined by
neutralizing the sample with 2% sodium hydroxide up to pH 6–7. Previous COD analysis
was performed. A series of dilutions was performed and samples were incubated in
darkness at 20 ◦C for 5 days. The dissolved oxygen concentration was determined before
and after incubation. The concentrations of oxygen consumed per liter of water were
calculated. Finally, relative biodegradability was calculated with the BOD5/COD ratio.

2.2.5. Biodegradability

The biodegradability of a product can be determined by BOD5/COD ratio analysis [44–47].
This ratio does not provide absolute biodegradability results, but rather gives a good
insight into product biodegradability, classified as low, medium or high. Biodegradability
according to BOD5/COD ratio is shown in Table 1 [48].

Table 1. Biodegradability according to BOD5/COD ratio.

BOD5/COD B < 0.2 0.2 > B < 0.45 B > 0.45

Biodegradability Low biodegradability Medium
biodegradability

High
biodegradability

2.2.6. Life Cycle Assessment (LCA)

Life cycle assessment (LCA), according to ISO 14043 Life cycle impact assessment, was
performed to evaluate all environmental impacts associated with the production of the new
BB graft copolymer as compared to a standard resin.

The carbon footprint is an impact category of the LCA that provides information about
global warming. LCA was performed with OpenLCA 1.8.0 software and the Ecoinvent
3.7.1 database.

The purpose of life cycle assessment (LCA) was to compare the environmental impacts
related to the manufacture of the new biopolymer BB graft copolymer and the standard product.

The functional unit was 1 kg of manufactured product. The reference flow was the
kilograms of the two products manufactured on an industrial scale between September 2019
and September 2020. The limits of the system include raw material extraction, raw material
transformation, and product production. Distribution, use, and end-of-life were omitted.

Calculations were performed with the impact categories of EF2.0 midppoint for Life
Cycle Impact Assessment (LCIA). OpenLCA 1.8.0 software and the Ecoinvent 3.7.1 database
were used.
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Nineteen impact categories divided into four large groups (resources, health, climate
change, and ecosystem) were considered.

A sensitivity analysis of LCA was also performed with the sustainable acrylic resin to
ascertain whether or not the impacts could be reduced. The sensitivity analysis consisted
in replacing BPS with another type of protein-based biomass derivative (BPP).

2.3. Leather Assessments

Chrome-tanned cattle hide of Spanish origin shaved at 1.4–1.5 mm was used for
retanning trials. The hide was cut along the backbone. Standard acrylic and BB were
applied on the left and right halves, respectively. A standard application formula shown in
Table 2 was used. After retanning, BOD5 and COD of the effluents and fastness on dried
leathers were analyzed. After dyeing and fatliquoring, physical determinations on dried
leathers were assessed.

Table 2. Standard application formula.

Process Chemicals % Time (min) T (◦C) Remarks

Washing Water 100 35
Non-ionic surfactant 0.2

Formic acid 0.2 30 pH = 3.5

Drain

Neutralization Water 35
Sodium formate 2 15

Sodium bicarbonate 0.5 60 pH = 5.5

Drain and wash 10

Retanning Water 100 40
5% product (related to

active matter) 60

Assessments
Effluents: COD, BOD5

Leathers: Fastness tests and whiteness degree on dried leathers

Dyeing Water 100 45
Dyestuff (Acid Brown 83) 2 45

Fatliquoring Sulfochlorinated oil 5
Sulfated oil 5 60

Formic acid 2 60 pH = 3.8

Drain, wash

Mechanical
operations Sammy-set out, vacuum 2′ at 50 ◦C, stake

Assessments
Physical determinations

The following commercial-grade chemicals were used for retanning: anionic dyestuff
(color index Acid Brown 83), sulfated neatsfoot oil (75% of active matter), and sulfochlori-
nated paraffin (67% of active matter). The chemicals used in the operations before and after
retanning were classic chemicals customarily used in tanning processes.

Pieces of leather were collected for degree of whiteness and lightfastness tests before
the dyeing/fatliquoring stage. Lightfastness and heat resistance tests were performed
according to IUF 402 (UNE EN ISO 105-B02) and IUF 412 (UNE EN ISO 17228), respectively,
at 102 ◦C for 100 h. The degree of whiteness was determined with a Datacolor Spectraflash
SF-300 colorimeter. Softness according to UNE EN ISO 17235, thickness according to IUP
4 (UNE EN ISO 2589), tensile strength according to IUP 6 (UNE EN ISO 3376), tear load
according to IUP 8 (UNE EN ISO 3377-2) with Zwick TMZ2.5/TN1S, and firmness with the
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Satra PM36 method using a break/pipiness scale, were measured. Organoleptic assessment
was performed for color intensity and color levelness.

3. Results and Discussion

The acrylic resins used in the tanning process are generally high molecular weight
polymers formed by repeating smaller units called monomers. The properties they provide
to the leather depend basically on the type of monomers used during the synthesis and the
molecular weight of the resins. As mentioned, the most commonly used monomers are
acrylic acid, acrylonitrile, styrene, and maleic anhydride. The purpose of this study was
to develop an acrylic resin where part of the acrylic acid monomer was replaced with a
biomass-derived polysaccharide (BPS).

A radical polymerization reaction between an acrylic acid monomer and BPS was
carried out. A graft copolymer with a defined backbone and randomly distributed branches
or side chains different from the main chain was obtained. The possible synthesis reac-
tion of the new BB graft copolymer is shown in Figure 1(1) and the acrylic acid radical
polymerization is shown in Figure 1(2) [29,41] In order to better understand the radical
polymerization, acrylic acid is marked in red.
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3.1. Product Characterization

GPC determination was performed according to the previous section. The number
of the average molecular weight (Mn) is the statistical average molecular weight of all
the polymer chains in the sample. The weight average of the molecular weight (Mw)
was obtained taking into account the contributions of each molecular weight. Finally, the
polydispersity index (PDI) was defined by Equation (1). The results are shown in Table 3.

PDI =
Mw

Mn
(1)
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Table 3. Number average molecular weight, weight average molecular weight, and polydispersity
index of the standard acrylic polymer and BBgraft polymer with BPS.

Sample Mn (g/mol) Mw (g/mol) PDI

Standard acrylic 65,910 734,579 11.15
BBBB graft copolymer 192,332 582,634 3.03

Standard acrylic had a higher molecular weight (Mw) but a lower Mn value. Because
its PDI value was higher than that of BB graft copolymer, the latter was less polydisperse.
This difference in PDI values may be due to the fact that a different catalyst has been used
for the synthesis of BB graft copolymer, which is more selective and allows narrowing the
dispersion of the molecular weights, providing a lower PDI value.

IR spectra data allowed the identification of the functional groups that characterize
polymers and their constituent monomers. IR spectra of sustainable acrylic resin BB and of
acrylic acid are shown in Figure 2 and Figure 3, respectively. The main absorption bands of
the functional groups present in acrylic acid were identified. The band of the –OH bond of
the carboxyl group appeared at 3063 cm−1, followed by the CH2 band at 2661 cm−1. The
C=O group band appeared at 1704 cm−1, the C–H band appeared at 1434 cm−1, and the
doublet appeared at 1298 cm−1 and 1243 cm−1 due to C–O bond stretching from esters [49].
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The spectrum of the product obtained was compared to that of acrylic acid. The
spectrum of the polymer synthesized in the laboratory showed a wide, intense absorption
band at 3376 cm−1, related to –OH bond stretch vibration. The CH2 band and the carbonyl
group band appeared at 2934 cm−1 and 1707 cm−1, respectively. Finally, the absorption
band representing C–O–C interaction appeared at 1152 cm−1, thus suggesting the formation
of the ester bond not present in acrylic acid [49].
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The results of biobased carbon content, COD, BOD5 and sample biodegradability are
shown in Table 4.

Table 4. Biobased carbon content, COD, BOD5 and biodegradability of the products studied.

Sample Biobased Carbon Content (%) BOD5 (mg/L) COD (mg/L) BOD5/COD

Standard acrylic 0 2867 304.000 0.01
BB graft copolymer 46 195.250 276.000 0.71

Biobased carbon content is a measure of the amount of biomass-derived carbon (C-14)
in a product as compared to its total organic carbon content, and is expressed in percentage.
Petroleum-derived products do not contain carbon-14. Standard acrylic has 0% biobased
carbon content and, therefore, is not a biobased product (it is made 100% from petrochemical
resources). BB has 46% biobased carbon content, meaning that 46% of the product’s carbon
originates from biomass resources and 54% from petroleum-derived materials.

Unlike the BOD5 values obtained, the COD values for both products were similar (9%
variation). Both COD and BOD are parameters that allow determining the oxygen demand
strength of sewage, COD being a chemical oxidation process and BOD being a biological
oxidation process. BOD5 values are lower than COD values because COD measures the
oxygen demand for the decomposition of both organic and inorganic materials in sewage.
Higher BOD5 values suggest that more oxygen is being consumed by the sample.

Finally, the BOD5/COD ratio allows obtaining an estimated value of the sample’s
biodegradability. The value for standard acrylic was 0.01 (non-biodegradable), while the
value for BB was 0.71 (biodegradable). These results evidenced that adding the biomass-
derived polysaccharides to an acrylic resin substantially improves biodegradability.

3.2. Leather Assessments

Products were applied as sole products at the retanning stage according to a standard
formulation in Table 2.

BOD5 and COD values in residual baths were analyzed to determine bath biodegrad-
ability. The results are shown in Table 5.

Table 5. COD, BOD5 and biodegradability in residual baths.

Sample COD (mg/L) BOD5 (mg/L) BOD5/COD

Standard acrylic 4330 325 0.1

BB 3340 2560 0.8

The residual baths of standard acrylic showed a lower BOD5 value as compared to
product BB, a trend similar to that obtained with the BOD5 of the product. Regarding
biodegradability, biodegradable baths with BB (BOD5/COD = 0.8) and non-biodegradable
baths with standard acrylic (BOD5/COD = 0.1) were obtained.

Both the degree of whiteness and lightfastness (or accelerated aging) were determined
to prevent yellowing issues, mainly on light or colorless leather articles. The parameters
indicated for degree of whiteness are: L* (luminosity, where the greater the value, the
greater the luminosity), a* (red/green, where +a* tends to red and −a* tends to green), and
b* (yellow/blue, where +b* is yellower and −b* is bluer). The values of the lightfastness
test are expressed in blue scale. An 8-point rating scale was used, where 0 is extremely
poor lightfastness and 8 is excellent lightfastness. Heat resistance values were expressed
in a 5-point grey scale, where 1 is the minimum value and 5 the maximum value. The
standard acrylic resin was slightly whiter with higher L* = 82.91 vs. 80.81 value for
BB, and similar a* = −3.7 for the standard acrylic vs. −3.87 for BB. b* values were also
similar with b* = −2.14 for the standard acrylic and −1.87 for BB. On the other hand, very
good lightfastness and heat resistance values were obtained. Both products were within
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specifications (≥3) and little oxidizable by environmental factors such as light and/or
temperature. Therefore, introducing the biomass derivative does not decrease the good
fastness properties of the standard acrylic resin. Fastnesses results are shown in Table 6.

Table 6. Degree of whiteness and fastness tests.

Sample
Degree of Whiteness

Lightfastness ** Heat Resistance (GS)
L* a* b*

Standard acrylic 82.91 −3.71 −2.14 4Y 3/4

BB 80.81 −3.87 −1.87 4Y 3/4
** Y: Yellowing.

The degrees of softness, thickness, firmness, physical resistances and color properties
in crust hides are shown in Table 7. The percent variation between samples for softness,
thickness and resistances was also calculated. On the other hand, tightness was expressed
according to the Satra break/pipiness scale, where 1 is the maximum value and 8 is the
minimum value, and color levelness was expressed from 1 to 5, where 1 is the minimum
value and 5 is the maximum value.

Table 7. Degrees of softness, thickness, firmness, physical resistance, color intensity and color
levelness in crust hides.

Sample Softness Thickness (mm) Tensile
(MPa)

Elongation
(%) Tear (N) Firmness Color

Intensity (L*)
Color

Levelness

Standard
acrylic 3.5 1.5 26.85 17.68 159.4 2 55.82 5

BB 3.7 1.4 24.65 20.67 182.1 1 52.49 5
Variation +6% −7% −8% +17% +14% - - -

BB was softer, although slightly less full, with improved elongation and tear load as
compared to standard acrylic. The tensile strength of the new biopolymer was slightly
lower than that of the standard product. While good firmness was provided by standard
acrylic, BB was one point better and reached the maximum value. On the other hand, BB
provided high color intensity—the L* value was lower (less luminosity) without decreasing
color levelness.

3.3. Life Cycle Assessment

According to Section 2.2.6, the results are shown in Figure 4 as a stacked bar chart
with 50% contribution as red line.

Biopolymer BB has a greater environmental impact in the categories related to (non-
fossil) natural resources, toxicity parameters, and human health. This is due to sugarcane
cultivation, the origin of the polysaccharide derivative. Sugarcane cultivation has a high
environmental impact due to the high use of fertilizers, herbicides or pesticides, which
increase eutrophication, acidification, or waters with low concentrations of dissolved
oxygen [50–54]. Moreover, because sugarcane is burnt to facilitate harvesting, it releases
greenhouse gases that impair human health and pollute the air [54]. In turn, the standard
resin has a greater impact in all the categories related to fuels and fossil resources, which
are obtained from petroleum. In general, a greater impact of BB in 14 of the 19 categories
selected was observed. In the non-carcinogenic effect category, BB was much better than
the standard acrylic resin because sugarcane cultivation uptakes Zn, Cu and Ni. BB was
also better than the standard resin in the climate change and carbon footprint categories,
reduced by 9%.

On account of the high environmental impact of the polysaccharide derivative, a
sensitivity analysis was performed where the polysaccharide derivative was replaced with
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a protein derivative (AP). The results are shown in Figure 5 as a stacked bar chart with 50%
contribution as red line.
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In this case, there is an improvement in 17 of the 19 categories studied and, therefore, a
clearly reduced environmental impact of AP vs. standard is obtained. The incorporation of
protein derivatives improved the results vs. polysaccharide derivatives, where only 5 of the
19 categories improved. Product AP decreased the carbon footprint by 47%, as compared
to 9% by product BB. This is because the protein derivative used is a byproduct, which
causes a much smaller environmental impact.

4. Conclusions

The new biopolymer had properties similar to those of a standard resin in terms of
fullness, tightness, physical resistances and fastnesses, with a few slight differences: BB
provides slightly less fullness since thickness decreases by 7%, and more softness with
6% increase compared with a standard product. Regarding physical resistance, the new
biopolymer showed higher tear load (+14%)and higher elongation (+17%) than the standard
product. BB showed slightly lower tensile strength (−8%) than the standard product.
Regarding grain firmness, the new product provided better results than the standard
product, reaching the maximum value (1).The new resin showed greater biodegradability
of both product and sewage, with the ratio BOD5/COD of the product 0.71 vs. 0.01, the ratio
for the standard product. The new product showed an improved fixation and, therefore,
less COD. Life cycle assessment (LCA) allowed measurement of the environmental impact
of this new product and comparison to a standard resin. LCA allowed the conclusion that
the use of biopolymers reduces the environmental impact in terms of carbon footprint by
9%, but also showed that the standard acrylic resin had a lower environmental impact in
14 of the 19 impact categories studied. A sensitivity analysis was also performed where the
polysaccharide derivative was replaced with a protein-derived biopolymer. In this case, a
reduced environmental impact was obtained in all but two LCA categories. Therefore, the
biopolymer must be carefully selected bearing in mind the environmental impact likely to
be caused by this product, which, in some cases, may be higher than the environmental
impact caused by acrylic acid.
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