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Abstract: Plastic pollution endangers all natural ecosystems and living creatures on earth. Excessive
reliance on plastic products and excessive production of plastic packaging are extremely dangerous
for humans because plastic waste has polluted almost the entire world, whether it is in the sea or on
the land. This review introduces the examination of pollution brought by non-degradable plastics,
the classification and application of degradable materials, and the current situation and strategy to
address plastic pollution and plastic degradation by insects, which mainly include Galleria mellonella,
Zophobas atratus, Tenebrio molitor, and other insects. The efficiency of plastic degradation by in-
sects, biodegradation mechanism of plastic waste, and the structure and composition of degradable
products are reviewed. The development direction of degradable plastics in the future and plastic
degradation by insects are prospected. This review provides effective ways to solve plastic pollution.
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1. Introduction
1.1. Application and Pollution of Non-Degradable Plastics

Plastic products have been widely used around the world because of low cost and easy
production. Polystyrene (PS), polyvinyl chloride (PVC), polyethylene (PE), acrylonitrile
butadiene styrene (ABS), and polyurethane (PU), which are usually designed as short-term
and disposable products, are commonly used plastics [1–3]. Plastic products have brought
great convenience to people’s lives. However, a large number of plastic products have
become the focus of global attention because of the environmental problems caused by
their improper disposal after being used and discarded [4,5]. The global plastic output
and consumption exceed 300 million tons annually, which has grown exponentially in the
past 50 years [6,7]. In 27 EU countries, including Norway and Switzerland, 38% of plastic
is discarded in landfills, whereas the rest is used for recycling (26%) and energy recovery
through combustion (36%) [8]. The world’s disposable plastic products reach 120 million
tons every year, only 10% of which are recycled, 12% are burned, and more than 70% are
discarded into the soil, air, and sea [9,10]. More than one trillion plastic bags are consumed
every year [11]. In recent years, microplastics, as a new kind of pollutant, have attracted
more attention because of their widespread distribution in the oceans and coastal waters
around the world, which have polluted the marine ecological environment and marine
organisms [12]. Considering that many waste plastics have not been treated scientifically
and correctly, they form microplastics through a series of physical and chemical processes
and enter the ocean. Some animals, such as birds, fish, and sea turtles, have been affected
by plastic pollution [13]. Many plastic particles were discovered in the intestines of dead
birds, fish, and turtles, indicating that plastic has caused serious damage to living creatures
and bodies [14]. Animals cannot distinguish food and plastic in the environment, resulting
in ingestion of plastic particles. Plastics cannot be digested and often accumulate in
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the body. When plastics are decomposed in the marine environment, the micro plastics,
microfibers, toxic chemicals, metals, and organic micro pollutants will be transferred to
the waters and sediments and finally enter the marine food chain. These substances affect
the reproductive success rate and viability of marine organisms and damage the ability of
“ecological engineer” corals and worms in the aquatic ecosystem to build coral reefs and
change sediments through biological disturbance.

1.2. Classification and Application of Degradable Plastics

The scientific disposal of discarded plastic products has become a challenge. There-
fore, researchers exert their energy into the study of degradation plastics. Degradable
plastics meet the use requirements during the storage period and can be decomposed into
harmless substances under natural environmental conditions after use. It is considered an
effective way to deal with plastic pollution and has attracted attention in recent years [15].
Many kinds of degradable plastic products are available on the market, and the product
performance and capacity scale are also quite different [16]. Degradable plastics include
biological and petrochemical plastics based on the source of raw materials. Bio-based
degradable plastics include polylactic acid (PLA), polyhydroxy fatty acid ester polymers
(PHAs), starch, and cellulose; and petrochemical-based degradable plastics include car-
bon dioxide copolymer (PPC), polycaprolactone (PCL), and polyglycolic acid (PGA) [17].
Among them, degradable plastics based on starch are gradually eliminated because they
cannot be degraded completely. PBAT, PBS, and PLA have formed industrial-scale pro-
duction in the market and occupied a large market share. From the specific use of various
degradable plastics, PBAT/PBS products are mainly used in packaging, tableware, cos-
metic bottles, disposable medical supplies, agricultural films, pesticides, and fertilizer
slow-release materials [18]. PCL is used in the production of toys, bone nails, long-acting
drugs, and in other medical fields. PLA is used in general plastics, such as films, lunch
boxes, and textiles. PPC is used in film bag, surgical suture, bone nail and other medical
fields, membrane, and packaging materials. The global degradable plastic industry is at the
initial stage of industrialization, and China’s production capacity has increased significantly.
In the past five years, the average growth rate of the consumption of biodegradable plastics
in China was at 20% [16]. In 2019, the consumption of biodegradable plastics in China was
approximately 260,000 tons. The estimated demand for biodegradable plastics in China
will exceed 650,000 tons by 2024 [19].

1.3. Current Situation and Strategy to Address Plastic Pollution

Hundreds of years are required for plastics to be degraded naturally, including
600 years for PE and PP plastics, which will occupy land for a long time, affect crops
and livestock, and cause serious white pollution [20]. A large amount of plastic waste flows
into the sea after being generated. According to statistics, 3% (approximately 11 million
tons in 2019) of plastic waste enters the sea every year. Approximately 14 million tons
of micro plastics, which seriously affect the safety and health of marine organisms, can
be found in the whole sea floor. The main disposal methods of waste plastics include
landfill, incineration, chemical treatment, and recycling. Landfill method destroys soil,
affects groundwater, and cannot effectively degrade waste plastics. Incineration produces
a large number of toxic gases, which volatilize into the air and affect human health. The
cost of chemical treatment and recycling is high. Hence, it is not suitable for wide use.
Plastic waste residues do not decompose in soil for a long time, thereby damaging the
physical and chemical properties of the soil, affecting the growth of plant roots and leading
to crop production reduction. Waste plastics cause water pollution. According to the World
Greenpeace Organization in 2016, more than 200 kg of plastics are dumped into the sea
every second in the world [20,21]. The concentration of plastic fragments observed in the
oceans around the world is as high as 58,000 per square kilometer. Approximately millions
of marine animals die every year due to suffocation or indigestion caused by consumption
of plastic by mistake. The United States is a major plastic producer in the world, and it had
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carried out research on the recycling of waste plastics in 1960s. The recycling rate of waste
plastics exceeded 35% at the beginning of the 21st century, the average recycling rates of
plastics in Europe and Germany exceeded 45% and were as high as 60% [22]. In Japan, 52%
of waste plastics were recycled, of which 2% were used as chemical raw materials, 3% as
remelted solid fuel, 20% as power generation fuel, and 43% as heat energy in incinerators.

Plastic pollution has endangered the natural ecosystems and living creatures on the
earth, as well as human health. Recent reports on the plastic degradation by insects have
drawn widespread attention (Table 1). These insects mainly include Galleria mellonella,
Zophobas atratus, Tenebrio molitor, and other insects. In the review, the efficiency of plastic
degradation by insects, biodegradation mechanism of plastic waste, and the structure and
composition of degradable products are reviewed. The development direction of degradable
plastics in the future and plastic degradation by insects are prospected. These degradation
strategies and results provide effective ways to solve the issue of plastic pollution.

Table 1. The latest works on degradation of polymer plastics by insects.

Polymer Plastic References Insect

LDPE foams [23,24]

Tenebrio molitor

PS [25–27]

PE [28]

PVC [29]

Bio-based cross-linked polymer [30]

PU [31]

PS [32–34]

Zophobas atratus
PU [34,35]

LDPE foams [36,37]

PP [38]

PS [39]

Galleria mellonella
HDPE [40]

PE [41]

HDPE [42]

PE [43] Wax worm

PS [44] Dark mealworms

PVC [45] Black soldier fly larvae

2. Plastic Degradation by Insects
2.1. Plastic Degradation by T. molitor

T. molitor is a completely metamorphosed insect [46,47]. The larvae of T. molitor like
to flock, live, and feed at 13 ◦C. They can still grow at temperatures above 35 ◦C but
cannot survive at temperatures above 50 ◦C. T. molitor can be used as an excellent feed for
medicinal animals, such as scorpions, centipedes, and fish. T. Molitor can also be used as
food raw materials, health products, and medicine for human beings [48].

Recently, the study on plastic degradation by T. molitor has been widely
districuted [23–26,28]. Intestinal microbes of T. molitor larvae play a decisive role in the
biodegradation of PS. The study reported that the larvae cannot degrade plastics after
adding antibiotics to the food of T. molitor larvae to inhibit intestinal microorganisms. The
researchers further successfully isolated the PS degrading bacterium exiguobacterium sp.
(YT2), which can grow by using PS as the only carbon source. This strain of bacteria can
grow on the surface of PS film on carbon-free agar solid medium to form a stable biofilm
that can significantly erode the surface structure of the film. After the strain was cultured in
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liquid for 60 days, the PS chips in the liquid were decomposed, and the weight loss was up
to 7.4%. The molecular weight of the residue decreased significantly, and a large number of
water-soluble low-molecular intermediates were generated. Microorganisms can degrade
PS. This study provides a new way to develop biodegradable polymer materials and waste
plastic treatment technology [23,24]. To study the ability of T. molitor larvae to degrade PE
and the depolymerization mode, Shan Shan Yang et al. fed two commercial low-density
PS (LDPE) foam to T. molitor larvae at ambient temperature within 36 days. The residual
PE in the feces of T. molitor larvae decreased by 43.3% and 31.7 ± 0.5%. The structure
shows that low molecular weight PE (<5.0 kDa) is rapidly digested, whereas the long chain
part (>10.0 kDa) is decomposed or cracked, indicating a widespread depolymerization.
Mass balance analysis showed that 40% of ingested LDPE was digested into CO2 [25].
Craig S. Criddle et al. discovered eight unique intestinal microorganisms related to PS
biodegradation, including Citrobacter freundii, Serratia marcescens, and Klebsiella aerogenes.
The intestinal microbes of T. molitor were helpful in accelerating the plastic biodegradation.
This work provides a potential strategy for future research and large-scale cultivation of
plastic-degrading microorganisms [26].

To determine whether plastics are sensitive to biodegradation in T. molitor, Craig S.
Criddle et al. fed T. molitor with PE and PS, and the molecular weight (Mn) of polymer
residues decreased by 40.1% and 12.8%, respectively [28]. Emmanouil Tsochatzis et al.
investigated the intestinal microbes and the formation of degradation compounds of
T. molitor larvae under different feeding strategies. The results showed that water can
significantly improve the biodegradation of PS monomer and oligomer residues. Diet
leads to differences in intestinal microbiota, and three potential bacterial strains were
identified as the candidate strains involved in PS biodegradation [27]. Yalei Zhang et al.
investigated the biodegradation of PVC by feeding T. molitor larvae with PVC micro plastic
powder. After 16 days, the Mw, Mn, and Mz of PVC decreased by 33.4%, 32.8%, and
36.4%, respectively. The degradation products contain O-C and O-C functional groups.
The survival rate of T. molitor larvae with PVC, as the sole food in 5 weeks, was as high
as 80%, and the survival rate in three months was as low as 39%. PVC and wheat bran
were fed together to T. molitor, and they completed the growth and pupation process
within 91 days. T. molitor larvae can degrade PVC, but the mineralization of PVC is
limited [29]. Yonghong Zhou et al. reported that T. molitor could degrade bio-based
cross-linked polymers. Figure 1a–i shows representative images of T. Molitor, bio-based
cross-linked polymer film used in biodegradation experiment, and biodegradation test
results. A total of 8% (0.2 g) of polymer was biodegraded in the digestive system of
T. molitor. The degradation products contain products with low molecular weight, which
is the result of chain break caused by microbial attack. Biodegradation showed that the
prepared biopolymer network has good degradation performance and better impact on the
environment [30]. Piotr Bulak et al. studied the ability of T. molitor to biodegrade PE, PU,
and PS foams. The results showed that the quality of PS, PU1, PU2, and PE decreased by
46.5%, 41.0%, 53.2%, and 69.7% after 58 days, which indicated that the larvae and adults of
T. molitor could degrade plastic [31].

2.2. Plastic Degradation by Z. atratus

Z. atratus are mainly distributed in Central and South America, West Indies and other
places, which are also known as super bread worms and super wheat barkworms [49,50].
The maximum body length of adult larvae is approximately 71 cm, which is 3–4 times
larger than that of the general yellow mealworm, and the yield is 5 times higher than that of
yellow mealworm. Z. atratus larvae are rich in protein and fat, of which the protein content
can reach more than 51%, and the fat content is approximately 29%. At the same time,
they also contain many nutrients, including sugars, amino acids, vitamins, and minerals.
Z. atratus can degrade plastic similarly to T. molitor.
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Figure 1. (a) Representative images of Tenebrio molitor; (b) bio-based cross-linked polymer film used
in biodegradation experiment; (c) Tenebrio monitor fed with bio-based cross-linked polymer film
for 30 days. (d) Feces of Tenebrio molitor collected in biodegradation experiment. (e) Extraction from
feces of Tenebrio molitor using tetrahydrofuran (THF). (f) Microstructures of bio-based cross-linked
polymer film in a reflection mode. (g) Microstructures of bio-based cross-linked polymer film in a
transmissive mode. (h) Microstructure of bio-based cross-linked polymer films after feeding Tenebrio
molitor for 30 days in a reflection mode. (i) Microstructures of bio-based cross-linked polymer 3 film
after feeding Tenebrio molitor for 30 days in a transmissive mode, reprinted with permission from [30].

Yu Yang et al. determined that Z. atratus could ingest PS as the only food or could be
fed with bran for 28 days. Figure 2a–d shows the PS foam-eating activities of Z. atratus,
the increasing hollows in the Styrofoam block, consumption of PS foam by a group of
Z. atratus, and survival rate of PS foam-eating and normal diet (bran)-eating Z. atratus. The
results showed that the average consumption rate of PS foam plastic of each superworm is
estimated to be 0.58 mg/d, which is four times than that of T. molitor. The depolymerization
of long-chain PS molecules and the formation of low molecular weight products occurred
in the gut of larvae. During the 16-day test period, up to 36.7% of the intake of foam
plastic carbon was converted into CO2. Antibiotics of intestinal microbiota inhibited the
degradation of PS by Z. atratus, indicating that intestinal microbiota contributed to PS
degradation. This new discovery extends PS degrading insects beyond Tenebrio species
and indicates that the intestinal microbiota of Z. atratus will be a new biological source for
plastic-degrading enzymes [32].

Xin Zhao et al. fed Z. atratus and T. molitor with PS or PU foam plastic for 35 days
and bran as the control. Figure 3a–c shows the PS, PU, Z. atratus, and T. molitor used in the
study and hollows and pits on PS. The survival rate of Z. atratus was 100%, but weight loss
was observed after 20 days of only using plastic. In contrast, the survival rates of T. molitor
in the PS or PU groups were 84.67% and 62.67%, respectively, and the weight of the two
groups increased. The accumulative consumption of plastic by the Z. atratus is 49.24 mg
PS/larva and 26.23 mg PU/larva, which are 18 times and 11 times higher than those of
T. molitor, respectively [35].
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Yalei Zhang et al. studied the fragmentation, larval physiology, intestinal microbiota,
and microbial functional enzymes of ingested polymers through 28 days of experiments.
Figure 4 shows the conceptual schematic for the biodegradation of PS and LDPE foams in
Z. atratus larva. Larvae maintained a high survival rate, but when fed PS or LDPE, their
body fat content decreased, and their consumption rates were 43.3 ± 1.5 and 52.9 ± 3.1 mg
plastic/100 larvae/day, respectively. Ingested PS and LDPE were broken to an average
size of 174 µM and 185 µM microplastics (by volume), size 6.3 µM and 5.9 µM particles
reached the maximum number, respectively, and no nanoplastic was produced. This work
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provides new insights into insect-mediated biodegradation of persistent plastics for future
research [36].
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Dae-Hwan Kim et al. reported that Pseudomonas aeruginosa strain DSM 50071, which
was isolated from the gut of Z. atratus, could degrade PS. Pseudomonas sp. DSM50071 could
effectively biodegrade PS similarly to other plastic-degrading bacteria. The conversion of
PS surface from hydrophobicity to hydrophilicity through biofilm formation is crucial for
PS degradation [33].

Bryan J. Cassone reported that Z. atratus showed more microbial abundance in the early
stage (24–72 h) of LDPE feeding than caterpillars fed with starvation or natural honeycomb
diet. By using PS as sole carbon source to isolate and grow intestinal bacteria for more
than one year, the microorganisms in Acinetobacter participated in the biodegradation
process [37].

Shan-Shan Yang et al. investigated the biodegradation of PP by feeding larvae of
Z. atratus and T. molitor with PP foam. Figure 5 shows the PP foam-eating T. molitor larvae
and Z. atratus larvae, PP-fed versus PP + WB-fed gut microbiome of Z. atratus larvae. In
the study, PP foam was used as sole diet as a comparative study. When larvae of Z. atratus
and T. molitor were fed with the PP foam plus wheat bran, the consumption rates were
enhanced by 68.11% and 39.70%, respectively. Mw of frass decreased by 20.4% and 9.0%,
respectively, which indicated that PP can be biodegraded by the larvae of Z. atratus and
T. molitor via gut microbe-dependent depolymerization [38].
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Liping Luo et al. used plastics, including PS, PE and PU foam, as sole feedstock to
feed T. molitor. PS- or PU-fed larvae showed 100% survival rates, and the PE-fed and
starvation larvae had decreased survival rates of 81.67% and 65%, respectively. Plastic-fed
and starvation groups showed decreased larvae weight. The consumption rates of PS,
PE, and PU were 1.41, 0.30, and 0.74 mg/d/larva, respectively. The results showed that
T. molitor can partially degrade plastics [34].

2.3. Plastic Degradation by G. mellonella

G. mellonella is a completely metamorphosed insect that undergoes four stages, in-
cluding egg, larva, pupa, and adult. The insects are widely distributed all over the world,
especially in the tropical and subtropical regions of Southeast Asia [51–53]. G. mellonella
is rich in protein, short in growth cycle, and easy to reproduce, eat, and feed [54]. It is
one of the main insect models which is used to study innate immunity and host pathogen
interactions. The giant G. mellonella is often used to feed freshwater fish, birds, reptiles, and
amphibians, which have three generations a year, and one generation lasts approximately
60–80 days [55]. When the average temperature exceeds 13 ◦C, the larvae begin to awake.
The activity of the giant G. mellonella is closely related to external temperature. Excessively
low or high temperature will slow the growth and even kill giant G. mellonella. G. mellonella
likes to eat beeswax, and the chemical structure of the most common hydrocarbon bond in
beeswax is highly similar to that of PE. The chewed PE is digested by the wax borer and
converted into small molecules of ethylene glycol, which can be degraded in the natural
environment within a few weeks.

Defeng Xing et al. investigated the feasibility of enhancing larval survival and the effect
of supplementing the co-diet on plastic degradation by feeding the larvae of G. mellonella.
Figure 6 shows that plastic and supplementary nutrients are ingested by the greater wax
moth larvae fed with a PS diet. Significant mass loss of plastic was observed within 21 days
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(i.e., 150 larvae fed only PS or PE consumed 0.88 g and 1.95 g, respectively). O-containing
functional groups and long-chain fatty acids are detected in metabolic intermediates,
thereby showing depolymerization and biodegradation [39]
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Figure 6. Plastic and supplementary nutrients were ingested by the greater wax moth larvae fed a PS
diet (a), a PE diet (b), a PS + beeswax diet (c), a PE + beeswax diet (d), a PS + bran diet (e), and a PE +
beeswax diet (f), reprinted with permission from [39].

Harsha Kundungal et al. investigated the degradation of high-density polyethylene
(HDPE) by feeding the larvae of G. mellonella. Nutrition on PE degradation were investi-
gated by providing wax comb as co-feed. Figure 7a–d shows G. mellonella larvae feeding
on PE film, degraded PE films with holes after exposure to the lesser waxworm for 12 h,
comparison of post-degradation weight loss percentage of waxcomb and PE after lesser
waxworm consumption, and PE consumption over time. The study after degradation
showed that 100 wax insects reduced the weight of PE by 43.3 ± 1.6%. In 8 days, each wax
insect ingested 1.83 mg of PE every day, and the consumption of PE increased [40].

Yucheng Zhao et al. isolated a PE degrading fungus called PEDX3 from the intestine
of G. mellonella. Figure 8a–c shows the process of PE films being degraded by PEDX3
from the intestine of G. mellonella, visual analysis, HT-GPC analysis, and Fourier infrared
spectroscopy (FT-IR) analysis. The results showed that strain PEDX3 degraded HDPE and
MPP into low molecular weight MPP after 28 days of culture. The degradation products
contain carbonyl and ether groups, which verifies the degradation of PE [41].
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Wei-Min Wu et al. investigated the biodegradability of LDPE and HDPE by yellow
and dark G. mellonella. The sequence of biodegradation extent showed LDPE > HDPE.
The low molecular weight, high branching, and low crystallinity of PE are positive for
bio-degradation. Molecular weight is the key factor that affects biodegradability [42].

2.4. Plastic Degradation by Other Insects

Wax insects, which are mainly distributed in more than 10 provinces such as Shandong,
Hebei, Henan, Sichuan, Yunnan, Guizhou, Guangxi, and Guangdong are special resource
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insects in China. They are also distributed in Japan, India, Russia, and other countries.
The female only undergoes three stages, namely egg, nymph, and adult, which belongs
to incomplete metamorphosis type. The male undergoes four stages, namely egg, larva,
pupa, and adult, hence belonging to the completely changed S type. Guocai Zhang et al.
studied the mechanism of PE degradation by wax insects. They fed the wax insects with
PE, separated and purified two strains with high PE degradation efficiency, and evaluated
the impact of single and microbial combination on PE degradation. The results showed
that PE could be degraded by Meyerospira gilsonii and Serratia marcescens. However, the
degradation efficiency of microbial community is higher, and the weight loss rate of PE is
15.87%. The chemical structures of a series of PE degradation products were obtained. This
study can be used to develop an effective microbial community for PE degradation and
provide a basis for the reuse of PE waste [56].

Jun Yang et al. isolated two bacterial strains, namely Escherichia coli AST1 and Bacillus
sp.YP1, which could degrade PE from the intestinal tract of wax worms. Figure 9a–c shows
the PE film-eating waxworms and morphotypes of the cells in the mature biofilm on the
PE sheet. After 28 days of culture on PE film, the two strains formed a living biofilm,
the hydrophobicity of the PE film was reduced, and the obvious damage included pits
and cavities. During the 60-day incubation period, YP1 could degrade by approximately
10.7 ± 0.2% of PE film. The molecular weight of the residual PE film is low, hence providing
promising evidence for the biodegradation of PE in the environment [43].
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Figure 9. (a) PE film-eating waxworms. (b,c) Morphotypes of the cells in the mature biofilm on the
PE sheet, reprinted with permission from [43].

Yalei Zhang showed that the degradation rate of PS in the intestine of dark mealworms
was faster than that of T. molitor. Figure 10A–D presents the T. molitor and Tenebrio obscurus
around the world and PS foam-eating behaviors. With expanded PS foam as the only diet,
after 31 days, Mn of residual PS in the feces of dark mealworms decreased by 26.03%,
which was significantly higher than that of whitefly (11.67%). According to the proportion
of PS residues, dark mealworms can degrade PS effectively [44].

Zhang Yong Wang et al. studied the biodegradation of PS in the intestinal microbiota
of T. molitor, Parasita magna, and Atlas Z. atratus larvae. The results showed that the
superworm had the strongest PS consumption ability and the highest survival rate during
the 30-day experiment period, able to degrade PS to different degrees. T. molitor strongly
depolymerized PS by destroying benzene ring [57].
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T. obscurus. (C) PS foam-eating T. molitor larvae and (D) T. obscurus larvae from Shandong Province,
China, reprinted with permission from [44].

Feng Ju et al. isolated a PVC-degrading bacteria from the intestinal tract of insect
larvae and studied the pathway of PVC degradation. Their research reported that the
larvae of the pest Spodoptera frugiperda can survive by eating PVC film, which is related
to the enrichment of enterococcus, Klebsiella, and other bacteria in the larval intestinal
microbiota. Bacterial strains isolated from larval intestine can depolymerize PVC [58].

Mik Van Der Borgt et al. investigated the effects of PVC plastics on the growth,
survival, and biotransformation of black soldier fly larvae. The growth, survival, and
biotransformation parameters of larvae were measured by feeding black soldier fly larvae
with artificial food waste mixed with micro, medium, and large plastics. The insects are not
affected by PVC plastics in the matrix in terms of growth performance, survival rate, and
biotransformation rate [45].

Defu He et al. reported the biodegradation capability of expanded PS foam in a
globally distributed soil invertebrate, Achatina fulica. Figure 11a–d shows that the PS
foam was uptaken by A. fulica and fragmented into microplastics. After a 4-week exposure,
18.5 ± 2.9 mg PS was ingested per snail in one month and microplastics in feces were
egested with significant mass loss of 30.7%. A significant increase in Mw of feces-residual
PS illustrated limited extent of depolymerization. Significant shifts in the gut microbiome
were observed after the ingestion of PS, with an increase in families of Enterobacteriaceae,
Sphingobacteriaceae, and Aeromonadaceae, which showed that gut microorganisms were
associated with PS biodegradation [59].

Seongwook Woo et al. reported the PS biodegradation by the larvae of the darkling
beetle Plesiophthalmus davidis. P. davidis ingested 34.27 mg of PS foam per larva and survived
by feeding only on Styrofoam in two weeks. The ingested PS foam was oxidized. The
decrease in the Mw of the residual PS in the frass compared with the feed PS foam, and
C–O bonding was detected in the degradation products of PS film, which illustrated that
PS foam was degraded [60].
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3. Conclusions and Prospects

Plastic products have been widely used around the world because of its easy process-
ing, low price, and portability. However, so far, unreasonable disposal of plastic products
has led to serious pollution, and no perfect strategy can address waste plastics. It is dif-
ficult for plastics to degrade by themselves. Landfill has been proved to be infeasible for
waste plastic disposal. Toxic gases are generated by incineration or chemical treatment,
which cause various threats to the atmospheric environment and human health. Achieving
large-scale disposal of waste plastics through recycling is also difficult. Insect-degradable
plastics have not been employed in practical application. The current research reported
that T. molitor, Z. atratus, wax borer, silkworm, and termite can feed on degradable plas-
tics. Using insects to degrade plastics has the advantages of low cost and no secondary
pollution. Moreover, the aforementioned insects can be used as animal feed sources, with
good application and economic value. However, due to the differences in the composition
and structure of plastics, the degradation efficiency of different insects varies greatly, and
some plastics also affect the growth and development of insects. The research on plastic
degradation by insects and isolated functional microorganisms has only been carried out in
recent years, and the results are far from practical application. The researchers can conduct
experiments in discovering more insects that can feed on plastic, confirming the preference
of different insects for the types of plastic and further improving the efficiency of insects’
feeding and degradation of plastic. The use of waste plastics as food for insects can realize
the recycling of waste plastics. However, the realization of this process requires researchers
to conduct toxicological analysis on plastic-eating insects to avoid the toxicological risks
or cumulative effects of toxic substances in organisms. High-throughput sequencing tech-
nology is used to analyze the intestinal microbial diversity of plastic-degrading insects,
detect functional microorganisms related to plastic metabolism, reveal the realization mech-
anism of plastic microbial degradation and new metabolic path, and isolate and purify
plastic-degrading functional microorganisms.
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Abbreviations
PS Polystyrene
PVC Polyvinyl chloride
PE Polyethylene
ABS Acrylonitrile butadiene styrene
PU Polyurethane
PLA Polylactic acid
PHAs Polyhydroxy fatty acid ester polymers
PPC Carbon dioxide copolymer
PCL Polycaprolactone
PGA Polyglycolic acid
YT2 Exiguobacterium sp.
LDPE Low-density PS
Mn Molecular weight
THF Tetrahydrofuran
FT-IR Fourier infrared spectroscopy
ATR-FTIR Fourier transform attenuated total reflection infrared spectroscopy
HDPE High-density PS
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