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Abstract: Self-assembly is a growth mechanism in nature to apply local interactions forming a mini-
mum energy structure. Currently, self-assembled materials are considered for biomedical applications
due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-
assembled peptides can be applied to design and fabricate different structures, such as micelles,
hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among
them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them
as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing,
and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment
of natural tissues and responding to internal and external stimuli for triggered drug release. In the
current review, the unique characteristics of peptide hydrogels and recent advances in their design,
fabrication, as well as chemical, physical, and biological properties are presented. Additionally,
recent developments of these biomaterials are discussed with a particular focus on their biomedical
applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and
immune regulation, bioimaging, and regenerative medicine.

Keywords: peptide-based hydrogels; biocompatibility; biodegradability; biomedical applications;
self-assembly

1. Introduction

Self-assembling in biological systems has attracted immense attention for creating
functional supramolecular structures from individual macromolecules. One of the most
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essential biomaterials, which exhibits excellent self-assembling behaviors, is peptide hydro-
gels [1–3]. Peptide hydrogels are a class of soft materials that use amino acids and peptides
as material building blocks and can capably trap the water or fluids in their molecular
structure and change into a nanoscale hydrogel under physiological conditions [4–8]. The
molecular interactions for the formation of these systems are primarily non-covalent such as
hydrogen bonding, hydrophobic, aromatic π-π stacking, and electrostatic interactions [9,10].
The most routine methods for the preparation of this class of hydrogels are sonication,
heating–cooling, and adjusting the pH of the solutions, as well as the addition of a suitable
salt to the peptide solutions at high pH [7,11–14]. In addition, the self-assembled peptide
hydrogels can gain stimuli-responsivity (pH, temperature, mechanical, ionic strength, bio-
logical fluids), varied sol-gel transition (thixotropic gel), and the potential to entrap drug
molecules with different properties through physical or chemical linkage [6,15,16]. These
properties are highly dependent on the molecular structure of the primary peptides, such as
β-sheets, α-helices, coiled secondary structure, and intermolecular interactions [5,6,17,18].
Peptide hydrogels can be designed into several arrangements of amino acids to exert re-
sponsiveness toward different stimuli. Such a trigger allows unique temporal and spatial
control over the gelation process, thus widening its applicability [19].

Nowadays, inspired by nature, researchers have designed a type of peptide hydrogel
that can form a fibrous hydrogel network similar to extracellular matrix (ECM) components
in terms of morphology and size and be used in cell constructs or microtissue in regenerative
medicine and cancer research [19–21]. From the application point of view, peptide-based
hydrogels have immense importance due to their impressive use in biomedicine. Recently,
there have been many publications that used peptide hydrogels for different applications
related to regenerative medicine, gene delivery, controlled drug delivery, biosensors, tis-
sue engineering, and wound healing due to their low immunogenicity, biocompatible
features, ease of synthesis, high water content, desirable structures, and stability in the
physiological condition [22–30]. Additionally, the unique mechanical properties of peptide
hydrogel have led to their use in the treatment of different types of wounds. Peptide
hydrogels are involved in the wound healing by preventing bacterial infection, creating a
suitable environment for cell proliferation and rapid drug release, and the possibility of gas
exchange [10,31].

In the present review, a comprehensive overview of the recent developments in pep-
tide hydrogels and the structures of different self-assembling building blocks are described.
Moreover, diverse applications of peptide hydrogel systems such as wound regenera-
tion, targeted gene delivery and drug delivery, cancer therapy and immune regulation,
bioimaging, the generation of three-dimensional (3D) peptide hydrogel scaffolds for tissue
engineering, and stem cell therapy are explained.

2. Self-Assembling Peptides: The Building Blocks and Secondary Structures

Amino acids are the “building blocks” of peptides and proteins, and their extensive
range generates the possibility of a wide variety of diverse peptide/protein structures
with different biomedical applications [32–35]. For example, more than 3 million se-
quences/structures can be foreseen for a five amino acid-long peptide. Based on their
structure, different amino acids have diverse characteristics and, thus contribute differently
to the formation of complex structures (Table 1) [6,18]. Accordingly, hydrophilic amino
acids are involved in hydrogen bonding, aromatic amino acids play a crucial role in protein
folding, and thiol-containing amino acids, such as cysteine, provide a site for the modifica-
tion of the peptide structure [6,36]. By altering the number and sequence of the amino acids
with various physicochemical properties (electrical charge, size, and polarity), peptide
structures can be produced with unique properties [18,34,35,37].
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Table 1. The chemical properties of different types of amino acids [6,18].

Amino Acids Properties

(1) Aliphatic hydrophobic

i. Alanine (Ala, A)
ii. Leucine (Leu, L)
iii. Isoleucine (Ile, I)
iv. Valine (Val, V)
v. Methionine (Met, M)

Imparts a general hydrophobic environment

(2) Aromatic hydrophobic

i. Phenylalanine (Phe, F)
ii. Tyrosine (Tyr, Y)
iii. Tryptophan (Trp, W)

Involved in π-π stacking, which is important
for protein and peptide folding.

(3) Hydrophilic, uncharged:

i. Asparagine (Asn, N)
ii. Glutamine (Gln, Q)
iii. Serine (Ser, S)
iv. Threonine (Thr, T)

The -OH or -CONH groups are involved in
hydrogen bonding interactions

(4) Positively charged (Basic)

i. Histidine (His, H)
ii. Arginine (Arg, R)
iii. Lysine (Lys, K)

Involved in specific charge-charge interactions,
by either exploiting attraction between

oppositely charged groups or using repulsive
forces between two equal charges.

(5) Negatively charged (Acidic)

i. Glutamic acid (Glu, E)
ii. Aspartic acid (Asp, D)

Involved in specific charge-charge interactions,
by either exploiting attraction between

oppositely charged groups or using repulsive
forces between two equal charges.

(6) Specialized

i. Cysteine (Cys, C)
ii. Glycine (Gly, G)
iii. Proline (Pro, P)

i. A target for chemical modification, either
inter-peptide or between a peptide and
other structures.

ii. Responsible for a high degree of
flexibility, by removing steric hindrances.

iii. Responsible for a high degree of rigidity
due to locked conformation.

The intra-peptide interactions help the primary amino acid chain to self-assemble
and form folds within its structure, creating varied secondary structures such as α-helices,
β-sheets, β-turns, and random coils [36]. Such systems can be constructed through a
careful design of amino acid sequences with the self-assembly ability to provide a variety
of structures such as fibers, micelles, tapes, ribbons, and vesicles [38]. The self-assembly
process is driven by non-covalent interactions, and a combination of repulsive and attractive
interactions can control this process to achieve a well-defined structure in the tubular,
fibrillar, or particulate form [9,39]. In addition to intra-peptide interactions, conjugating
amino acids with other molecules, such as alkyl chain (peptide amphiphile) or aromatic
groups (allow π-π interactions), also produces self-assembled structures [4,5]. Several
molecular interactions are involved during the hydrogel formation, such as hydrogen
bonds among the amide bonds, -COOH, and -OH groups. Additionally, hydrophobic
interactions among the hydrophobic groups, such as the long alkyl chain and benzene
ring, also contribute to the non-covalent bonding. π-π stacking interaction among aromatic
groups such as fluorenyl, naphthyl, and phenyl plays a vital role in forming peptide-
based hydrogels. Ionic interactions between oppositely charged amino acids are also
critical non-covalent interactions exploited during the construction of peptide hydrogels.
Electrostatic interaction between glutamic acid (Glu) and lysine (Lys) and also aspartic
acid and lys/arginine (Arg) are some examples of effective gelation strategies for the
construction of peptide hydrogels [40–42]. Overall, several interactions work synergistically
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during the formation of peptide hydrogels and must be critically evaluated during the
design and optimization of such hydrogels.

With advancements in the protein chemistry field, scientists have been able to gain
complete control of the peptide self-assembly, thus forming a wide array of structures, from
delicate polyhedral cages and rings to 3D crystalline or hydrogel structures [23]. Such a
degree of control and extensive prospects has led peptide self-assembly to emerge as a
potential biofunctional material with applicability in different fields such as regenerative
medicine, gene/drug delivery, bioimaging, and tissue engineering [22,23,43–45].

2.1. Peptides Building Blocks

β-sheets form by a series of hydrogen bonds between amides and carbonyl groups
in the backbone arrangement of multiple peptide strands [6,46]. β-sheets have either
parallel (C-termini at one end of the structure) or antiparallel structures (alternate N- and
C-termini) [46–48]. With the increase in the number of strands, the rigidity and toughness
of the resulting sheet increase proportionally. Further, varied hierarchical structures, such
as tapes, ribbons, and fibers, can be formed with various sheets [18,46,49]. The ability of
peptides to create such various β-sheet structures expands their applicability in the field of
drug delivery [50–52].

β-hairpins are usually formed when two anti-parallel β-sheets are linked by a β-turn
sequence [53,54]. These structures can form high-ordered fibrils and stimuli-responsive hy-
drogel owing to intramolecular folding and intermolecular assembly [55,56]. Owing to the
cytocompatibility and biocompatibility of β-hairpin peptides, they have been extensively
utilized for various biomedical applications, such as the delivery of active pharmaceutical
molecules (e.g., protein/peptide drugs, cells, poorly soluble drugs, chemotherapeutics, and
genetic material) [57–60]. Some of the peptide hydrogels based on β-hairpins have also
demonstrated antibacterial activity [61], and they are also used to culture different cells
such as fibroblasts and mesenchymal stem cells (MSCs) [62].

α-helix is a common motif of protein secondary structure comprising 3.6 amino acids
per right-handed turn. The stabilization of the helix structure is due to the presence of
hydrogen bonding among the carbonyl oxygens (i) and amide hydrogen atoms (i + 4), van
der Waal’s forces, and hydrophobic interactions [9,63]. Coiled coils are basic protein folding
patterns and comprise at least two α-helixes [63]. These structures are usually characterized
by seven residues (abcdefg), known as heptad, where a and d are hydrophobic residues
(spacing of 3.5 residues), and the e and g positions are occupied by charged residues. So, this
sequence can decrease the number of residues in the helical repeats with a slight left-handed
spiral [64]. Filaments formed by coiled coils are usually observed in the cytoskeletons and
ECM and in some viral coatings. With inspiration from nature, these structures have also
been utilized in developing several biomaterials [63,65]. One of the significant benefits of
coiled coils is their flexibility and high level of control on their structure and stability, which
is impossible in other secondary structures. Owing to these benefits, controlled and precise
nanostructures, such as fiber, tubes, gels, or their combinations, can be obtained [64]. In
the case of coiled-coil hydrogel systems, it has been shown that by selecting appropriate
residues at positions a, d, e, and g, the produced hydrogels can be responsive to external
stimuli, such as temperature, pH, and ionic strength [66,67]. Coiled-coil self-assembled
peptides are an emerging and exciting area of research with demonstrated applicability in
different fields, such as bioconjugation, drug delivery, and immune therapies [46,64,65].

2.2. Self-Assembling Peptides

To form different nanostructures, the self-assembly technique is the primary method
that requires special peptide building blocks (short amino acid sequences or repeated
amino acid sequences) with the capability to self-assemble. According to applied self-
assembling building blocks, peptide nanostructures exhibit distinctive physical, chemical,
and biological characteristics primarily dependent on their size, morphology, and surface
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functional groups [68,69]. Here, the self-assembling building blocks are described by which
the design and fabrication of various nanostructures are possible.

2.2.1. Dipeptides

Dipeptides with the interactions of only two amino acids are the simplest self-
assembling building blocks in peptide nanostructures. For example, the β-amyloid peptide
in Alzheimer’s disease possesses the core recognition motif based on the diphenylalanine
(di-Phe) peptide [70]. Several reports suggest that dipeptides can be self-assembled into dif-
ferent highly ordered nanostructures [70–74]. For instance, the di-Phe motif of Alzheimer’s
β-amyloid peptide could self-assemble in stiff and discrete nanotubes, and then discrete
nanowires could be produced via the reduction of silver (Ag) within the self-assembled
nanotubes and enzymatic degradation of dipeptide-based backbone [70]. In another study,
the self-assembly of D-Phe-D-Phe molecules led to generate porous nanotubes with the
capability to form unique peptide-nanotube platinum-nanoparticle (NP) composites [71].
These peptide nanotubes were also attached to gold electrodes to improve their perfor-
mance. It was demonstrated that the fabricated composite electrodes provided a direct
response to the NADH and hydrogen peroxide at a specific potential, and it could be
applied as a glucose biosensor by measurement of produced hydrogen peroxide during
the enzymatic reaction of glucose oxidase and glucose. Furthermore, this biosensor was
evaluated for detecting ethanol using NAD+ and ethanol dehydrogenase [73].

Self-assembled hydrogels were also reported with significant mechanical rigidity
produced by the Fmoc–di-Phe peptide. The designed hydrogel had excellent stability
under extreme conditions and was suggested for different applications such as tissue
engineering and regenerative medicine [74]. N-terminal modifications of di-Phe were
also produced, including tert-butoxycarbonyl (Boc)-Phe-Phe-COOH, N-Carbobenzoxy(Z)-
Phe-Phe-COOH and Fmoc-Phe-Phe-COOH by which other tubular structures could be
achieved [75]. Diphenylglycine is a very simple aromatic dipeptide that can self-assemble
and produce stable spherical nanostructures. It was revealed that nanospheres could also
be prepared by introducing a thiol group into the di-Phe [76]. Instead of α-amino acids, β-
amino acids are applied in dipeptide-based self-assembly to provide remarkable structural
diversity. It was previously shown that the hydrogels formed by β-amino acids had a
prolonged bioavailability compared to α-amino acids [77,78].

2.2.2. Peptide Amphiphiles with an Alkyl Group

Peptide amphiphile (PA) is a category of self-assembling structures composed of two
distinct regions: hydrophobic alkyl chain and hydrophilic short peptide sequence [9,18,79,80].
The PAs have the potential to assemble into cylindrical or fibril geometries with a hydropho-
bic core and hydrophilic peptide presented on the surface [6,9]. The formation of such
structures allows its administration in the encapsulation of hydrophobic and hydrophilic
drugs. Furthermore, this feature also permits designing various bioactive moieties on the
surface of the nanostructures. There are four main regions in a PA [44,81]. The first region
as a hydrophobic part can be designed using alkyl chains with varied lengths, multiple
alkyl chains, or other hydrophobic components. The rigidity of the nanorods formed from
these structures is influenced by the presence of phospholipids. Adding a low proportion of
phospholipids results in increased mechanical strength, and high ratios subsequently lead
to disruption of the hydrogen bonding network in β-sheet conformation [82]. The second
region, adjacent to the alkyl chains, is composed of hydrophobic amino acids with a high
probability of forming β-sheet conformation. This region is very crucial for the formation
of self-assembled nanostructures. Further, studies have demonstrated the influence of
this region on the mechanical properties of the gels and other nanostructures [44,83]. The
third region is composed of charged amino acids. By suitable selection of amino acids,
the solubility of the PA and its ability to respond to the salt composition and pH of the
solution can be governed. Such stimuli responsivity in a system allows for developing
advanced systems, such as in situ gelling 3D structures. In the last region, bioactive
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peptide epitopes impart biological functionalities, such as cellular adhesion and active
targeting. The placement of such bioactive moiety at the end of the peptide chain allows
tailored bioactivity without altering the desired cylindrical/fibrillar structure [5]. Further,
short spaces amino acids comprising one or two glycine molecules have also been used
to separate peptide epitope from the charged groups, which allow better access to the
epitope [84].

2.2.3. Surfactant-like Peptides

A surfactant is defined as a molecule with the ability to significantly reduce the
surface tension of water, causing its solubility in both aquatic and organic solvents in
very low concentrations. De novo designed surfactant-like peptides (SLP) are acting as
surfactants with some hydrophobic residues as the tail and hydrophilic charged residues
as the head, and their amphiphilic structure results in their solubility [29,85]. Self-assembly
of SLPs is critically dependent on amphiphilicity to regulate the process of hydrophobic
attractions of peptides. In a study, the self-assembly and cellular effects of isomeric SLP-
based nanostructures were investigated composed of Phe and Arg. It was demonstrated
that the modulation of different cellular responses was mediated by the amphipathic design
of SLPs [86]. Stimuli-responsive nanostructures were also prepared by SLPs. Peptide Arg3-
Leu12 revealed a pH-dependent self-assembly feature and could form peptide nanotubes at
pH 9 and below. At higher pHs, vesicular aggregates were produced by these peptides [87].
In recent years, Gemini surfactant-like peptides have received much attention due to their
advantages in the self-assembly process to fabricate nanostructures. In a study, a simple
method was reported to design Gemini-like peptides based on natural amino acids with the
linear sequence of Ac-AAAAAAPKKPAAAAAA-NH2 (APK). This peptide showed great
potential to self-assemble and encapsulate hydrophobic drugs such as paclitaxel (PTX),
doxorubicin (DOX), etomidate, and propofol, and the designed formulations presented
antitumor, antibacterial, or anesthetic efficiency [88].

2.2.4. Bolaamphiphilic Peptides

SLPs and bolaamphiphiles differ in the number of hydrophilic heads of the self-
assembly building block. There is only one hydrophilic head in the SLPs, while two are
in the bolaamphiphiles connected by a hydrophobic section [89]. This kind of structure
with two heads leads to unique characteristics and a complex assembly process. Different
head groups can be applied at either end of the hydrophobic section to create asymmetric
bolas [90]. There are different sequences of bolaamphiphiles peptides that are related
to amyloid-like aggregation. For instance, in Lys-Ala4-Lys, Lys-Ala6-Lys, and Arg-Ala6-
Arg bolaamphiphilic peptides, Lys and Arg have a hydrophilic property connected by
hydrophobic Ala amino acids, and they can self-assemble to a fibrous structure [91]. By
changing the charge of amino acids at different pHs, these self-assembled structures can
be applied as pH-responsive materials [91]. Recently, the self-assembly and antimicrobial
effect of two bolaamphiphilic peptides, Arg-Ala6-Arg and Arg-Ala9-Arg, were studied. The
high hydrophobicity of the Ala9 section caused it to self-assemble into ordered nanofibers,
while Arg-Ala6-Arg could not self-assemble in water because of its high solubility. It
was also shown that the cytocompatibility of Arg-Ala6-Arg was higher than Arg-Ala9-
Arg. Arg-Ala6-Arg demonstrated antibacterial activity against Pseudomonas aeruginosa, but
Arg-Ala9-Arg had little antimicrobial activity [92].

2.2.5. Cyclic Peptides

Peptide cyclization usually imparts the peptide structures with more rigidity and
stability. Compared to linear peptide counterparts, the new generation of cyclic peptides is
demonstrated to be less prone to proteolysis and has also shown higher binding affinity
and better entropy in receptor binding [93]. Cyclic peptides have been shown to form
self-assembled nanotubes by stacking the peptides, which are stabilized by hydrogen bond-
ing [23]. The cyclic peptides must have a flat conformation with the side chains protruding
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outwards and the amide and carbonyl groups in the backbone oriented perpendicular to
the ring [94]. Generally, the cyclic peptides are composed of alternating D,L-α-amino acids,
β-amino acids, alternating α,β-amino acids, alternating α,γ-amino acids, and δ-amino
acids [23,94–96].

Ghadiri et al. were the first to report a well-characterized peptide open-ended nan-
otube with a uniform shape and internal diameter comprised of octapeptide cyclo-[(L-Gln-
D-Ala-L-Glu-D-Ala) 2-] [97]. Nanotubes prepared from self-assembled cyclic peptides have
a high degree of control over the nanotube diameter by choosing the number of amino acids
in the cyclic polypeptide. They can also alter the characteristics of the nanotube surface by
selecting particular amino acids or modifying their side chains [98]. Such control allows
the design and development of nanotubes with specific properties aimed at definite appli-
cations, from biosensors to drug carriers and from electronic devices to transmembrane
transporters for ions, small molecules, or hydrophilic drugs [98–100]. Cyclic peptide scaf-
folds have also been studied as high-density lipoprotein complexes to remove cholesterol
from blood circulation [101].

2.2.6. Fluorenylmethoxycarbonyl Peptides

Self-assembling characteristics can also be imparted on peptides by chemically modi-
fying the N-terminus with aromatic groups, such as fluorenylmehoxycarbonyl (Fmoc). The
addition of the aromatic group assists in forming stable self-supporting β-sheets hydrogels
with rheological behavior like solid-gel [46]. The gel formation is aided the π-π stacking
of the aromatic groups, which results in β-sheet formation and fibrillation [46]. The pep-
tides are present in anti-parallel arrangements of β-sheets, where Fmoc moieties act as a
zipper to bring two adjacent sheets together, forming a cylindrical architecture [102]. The
use of aromatic groups allows the formation of self-assembled structures with shortened
peptide sequences. The gel formation triggers by changes in pH, solvent polarity, and
enzymatic actions, which also govern the morphology of the resultant hydrogels. The
nature of building blocks influences the morphology of the Fmoc-based nanostructure.
Thus, many nanostructures can be designed from Fmoc peptides [103]. The use of Fmoc-
modified short peptides was demonstrated by Ulijn and co-workers, with Fmoc- di-Phe
and Fmoc-arginine–glycine–aspartic acid (Fmoc-RGD), which formed hydrogels at neutral
pH [104]. Fmoc- di-Phe and Fmoc-RGD hydrogels demonstrated the ability to encapsulate
and induce the proliferation of chondrocytes and dermal fibroblasts, respectively [104,105].
Furthermore, the combination of Fmoc- di-Phe and Fmoc-RGD has been shown to form
dense hydrogel scaffolds with dermal fibroblasts that closely mimic ECM. The presence of
Fmoc moiety is a crucial part of forming self-assembled structures [5].

By altering the number and sequence of amino acids linked to the Fmoc group,
hydrogels with different characteristics can be obtained. For example, when Fmoc- di-Phe
was gelled in the polysaccharide solution of konjac glucomannan (KGM), a highly stable
hydrogel was formed. Such hydrogels have great potential in colonic delivery of drugs as
KGM degraded in the presence of β-glycosidase, mainly found in the colon [106,107]. In
a study by Chu et al., photo-responsive supramolecular hydrogels were prepared using
Fmoc-RGDS [108]. The hydrogel was stabilized by host-guest interaction. Fmoc-RGDS
were used as the peptide backbone owing to their ability to form hydrogel and also serve as
a cell adhesion motif. Cyclodextrin vesicles (CDVs) are used as non-covalent cross-linkers,
and arylazopyrazole (AAP) is used as a water-soluble photo switch guest, which is linked to
Fmoc-RGDS (Fmoc-RGDS-AAP). A supramolecular reversible photo-responsive hydrogel
was formed by mixing Fmoc-RGDS, Fmoc-RGDS-AAP, and CDV in optimal fractions. The
supramolecular hydrogel was not only able to serve as a reservoir but also demonstrated
step-wise release of three different payloads at different release rates: FITC-Isomer I, FITC-
Dextran4000, and Nitrobenzoxadiazolyl -cholesterol (NBD-Cholesterol) [108].
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2.2.7. Peptide-like Structures

Two major chemical methods are applied for peptide production including solid phase
peptide synthesis (SPPS) and solution phase synthesis (SPS) [109]. In SPS technique, single
amino acids are coupled in solution and long peptides are subsequently synthesized via the
fragment condensation method. In principle, short peptide sequences are first synthesized,
then coupled together to prepare a long-desired peptide [110,111]. In the SPPS technique,
resin is applied as a support for anchoring the growing peptide. To synthesize a peptide,
first, an amino acid with temporary protecting groups and the α-amino group is attached
to the resin via its C-terminus and then the protection group is removed. This process is
repeated to complete the peptide sequence [112]. Microwave-assisted SPPS is developed
to improve SPPS method for synthesizing long peptides [113]. In chemical synthesis, the
number of coupling steps causes a decrease in the purity of the final products. To solve
its limitation, novel protecting groups and new techniques are introduced to enhance the
quality and quantity of peptide products [109]. Additionally, the cleaved deprotected
peptide in the chemical synthesis forms insoluble resistant clumps upon dessication [114].
In this case, the optimization of peptide sequences for their solubility and functionality
can lead to create branched amphiphilic peptides as reported by Natarajan et al. with
liposome-like behavior in self-assembly process [115]. Furthermore, functional branched
polyaminoacids can be built up through a facile way with tunable physicochemical and
biological characteristics [116]. Branched polyaminoacids were constructed by the ring
opening reaction of polysuccinimide with L-Arg or Gly at controlled pH condition. It was
demonstrated that the optimization of the pH influences the physicochemical properties
of copolymers.

De novo peptides have been explored to self-assemble into supramolecular nanos-
tructures and it can show how differences in peptide design can translate to relatively
small changes in the final structure and self-assembled topologies [117,118]. In a study,
bioinspired de novo design was performed to obtain a coiled-coil-forming helical heptapep-
tide serving as the basic module in some biological recognition processes. By considering
catalytic residues into the heptapeptides, a metal-free phosphatase mimic was created
through the hierarchical self-assembly into supramolecular assemblies [119].

3. Peptide Hydrogels: Stimuli-Responsive Properties

Peptide hydrogels can be designed into several arrangements of the varied amino acid
to exert responsiveness towards different stimuli such as pH, solvent, enzyme, and light (as
depicted in Figure 1). The use of such a trigger allows unique temporal and spatial control
over the gelation process, thus widening its applicability [120].

pH-triggered gelation usually occurs due to the protonation/deprotonation of the
amine and carboxyl group in the peptide chain, which results in a shift between the hydrogel
and solution state. The ionic peptides are also sensitive to pH changes, which influence
the charge on the amino acid. Besides these ionic peptides, other peptides (such as Fmoc
peptides) also show responsivity towards pH changes and peptide amphiphile [40,104].
Wang et al. have developed Fmoc- di-Phe and Fmoc-RGD peptides that self-assemble to
form pH-sensitive hydrogel with considerable potential for the attachment, proliferation,
and multi-differentiation of MSCs [121]. Black et al. have also used a PA (C16GSH)-based
hydrogel to mimic endogenous ECM for Schwann cells [122]. These hydrogels were
biocompatible and biodegradable, with the ability to support angiogenesis. Compared
to commercially available collagen gel, PA hydrogel demonstrated improved spreading,
proliferation, and migration of the Schwann cells [122].
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Light-triggered hydrogels are another exciting category for 3D cell culturing models,
as it is very straightforward and convenient to control the source and intensity of the light.
Irradiating the peptide solution with a light source results in the sol-gel transition to form a
hydrogel. It can also enable physical and chemical changes to mimic the cell microenviron-
ment closely. Furthermore, in addition to triggering the formation of hydrogels, light can
also be used to tune the properties and behavior of cells. Light sensitivity is imparted on a
peptide sequence by including photoactive moieties such as 2-nitrobenzyl, -C=C- group,
and tetrazole moiety [120,123]. Stupp et al. demonstrated that conjugation of a photosensi-
tive moiety, 2-nitrobenzyl with RGD-functionalized PA induced the formation of hydrogels
by light-triggered sol-gel transition [124]. It has recently been reported that light-triggered
gelation significantly enhanced the encapsulation of NIH/3T3 mouse embryonic fibroblast
cells [124].

The presence of divalent ions is also another trigger to stimulate catalytic activity of
proteins. In a study, Ca2+-triggered structurations of peptide copolymers were reported by
which conformational changes can be induced in peptidomimetic structures to improve
biological activities and physicochemical properties. High amount of carboxyl groups in
peptides have the potential to interact with divalent ions and influence on folding process
by changing the size and net charge [116].

Another possible trigger is enzymes, which are abundant in the physiological condi-
tion, making enzyme-triggered hydrogels an attractive vista to explore. In the presence of
an enzyme, one segment can be cleaved off, leaving a hydrogelator, which can self-assemble
into hydrogels. Hydrogelators are a subset of small molecules that can self-assemble in
the water to form 3D supramolecular hydrogels [3]. FEFK and FEFKEFK are a type of
hydrogel that interacts with metalloproteinase to form the hydrogel. In the presence of the
enzyme, the short peptide splits into smaller segments which then reunite to form longer
chains that form the gel. These enzyme-triggered hydrogels have been previously reported
for osteoblasts and fibroblasts without any detrimental effects from the enzymes [125].
In contrast approach mentioned above, Palocci et al. have reported using lipases from
microbial sources to form hydrogelators [126,127]. They studied the use of lipases from dif-
ferent sources of P. Cepacia and Pseudomonas genus, to develop the hydrogelator Fmoc(Phe)3
(tripeptide of Phe) by combining two precursors Fmoc(Phe3) and (Phe)2. The hydrogela-
tors from both sources could self-assemble into the hydrogel and be biocompatible with



Polymers 2023, 15, 1160 10 of 52

rat microglial cells. The hydrogels formed using the P. genus also showed enhanced cell
proliferation and increased production of the neurotrophic factor [126,127].

Nanostructures based on silk elastin-like polypeptides (SELP) are recognized as
stimuli-responsive carriers combining the stimuli-sensitivity and biocompatibility of tropoe-
lastin with the mechanical strength of silk. In a study, the self-assembly capability of these
polypeptides and their response to thermal stimuli was evaluated and fabricated nano-
gels responded to stimuli through size changes and aggregation [128]. SELPs can be
self-assembled in nanostructures by temperature-mediated gelation process useful in dif-
ferent biomedical applications, including drug delivery [129–131], gene delivery [131–136]
stimuli-responsive carriers [137,138], and as a scaffold for tissue engineering [139]. Stimuli-
responsive polypeptide-based hydrogels are an attractive candidate as dynamically tunable
biomaterials because of the possibility of structural and functional control and genetic
tailorability. Recently, a photo-responsive SELP-based hydrogel was reported, and the
hydrogels demonstrated a partial collapse of the cross-linked network with decreased loss
and storage moduli under visible light [140].

Overall, the biocompatibility and biodegradability associated with peptide hydrogels,
along with their versatility, customizable properties, and stimuli responsivity, have made
them a promising candidate for biomedical applications.

4. Biomedical Applications of Peptide-Based Hydrogels
4.1. Targeted Drug Delivery

Targeted treatments allow site-specific delivery of drugs while eliminating unwanted
non-specific side effects. In general, non-targeted therapies require a high drug dosage,
which leads to more expensive products with higher toxicity. With the advancement in
nanotechnology, various systems have been developed to target specific cells and tissues,
either actively or passively [141]. Active targeting encompasses targeting moieties attached
to the surface of NPs, which can interact with specific targeted tissues [142]. In passive
targeting, the nanocarriers are deposited in targeted sites due to distinctive features inherent
to the targeted tissues, such as tumor microenvironment, enhanced permeation, and
retention effect observed in cancer [143,144]. Polypeptide-based nanosystems offer possible
targeted delivery of various cargos [6] and have been explored extensively in targeted
cancer therapy and gene delivery, which are discussed here.

Self-assembled peptide nanostructures offer various advantageous properties, such
as tailored physicochemical characteristics, surface ligand modification, and high biocom-
patibility, which have made them a suitable choice for application in active or passive
targeted delivery of chemotherapeutic agents [145–147]. Self-assembled peptide-based
drug delivery systems such as hydrogels, fibers, and NPs have been explored for targeted
cancer therapy. Several targeting approaches have been studied based on pH changes,
thermal targeting, and using targeting moieties such as RGD, folic acid, gastrin-releasing
peptide (GRP), and Tat peptide for nuclear targeting [148–151].

An example of pH-responsive systems composed of self-assembling peptides was
demonstrated by Raza et al., who developed a pH-responsive hydrogel using FER-8 peptide
to deliver PXT [152]. The PXT-loaded hydrogel was able to demonstrate a high amount
of drug in the tumor sites and prolonged retention time in H22-bearing mice. The drug
release is triggered by the degradation of the hydrogel at the acidic pH of the tumor
microenvironment. The system demonstrated great potential as targeted cancer therapy by
allowing sustained and local drug delivery [152].

Another interesting approach to target tumor cells is phototherapy using photothera-
peutic agents, including photodynamic therapy (PDT) or photothermal therapy (PTT). In
PDT, irradiation results in the conversion of molecular oxygen to reactive oxygen species,
which causes oxidative stress leading to cell death. On the other hand, PPT results in
heat generation, which is responsible for cell ablation. Both approaches allow targeted
site-specific therapy to a confined area by illumination [153]. A study demonstrated a
short peptide-based system that comprises protoporphyrin (PpIX) as the photosensitizer,
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cell-penetrating peptide (R9), (GPLGLAG), and E8 as masking peptide sequence [154]. In
the tumor environment, matrix metalloproteinase-2 (MMP-2) is cleaved, removing the
masking peptide sequence and exposing the cell-penetrating peptide sequence to interact
with the cell membrane. This multistage system allowed the accumulation of the complex
at the target site and resulted in significant suppression of tumor size and weight with
low systemic toxicity [154]. Similarly, Han and co-workers have reported an MMP-2-a
sensitive sequence, which was developed for aggregation-induced emission-guided (AIE)
PDT. The system showed preferential accumulation in tumor tissues, with prolonged blood
circulation time [155]. A recent example of advanced multifunctional PTT demonstrated
by Zhao et al. applied Ag2S quantum dot@polypeptide hybrid hydrogel, which mainly
comprises Ag2S quantum dot entrapped in peptide hydrogel composed of expressing RGD
(PC10ARGD) [156]. These hybrid nanogels showed tumor necrosis and ablation after laser
irradiation, leaving black scars at tumor sites and displaying their potential for PTT. This
nanosystem has also demonstrated the potential to be used for targeted near-infrared (NIR)
II fluorescence imaging, photoacoustic imaging (PAI), and PTT for cancer diagnosis [156].
Overall, polypeptide-based nanostructures have not only been demonstrated to be devel-
oped as the targeted delivery system but also used as a multifunctional system, which has
several targeting strategies combined hybrid systems, genetically engineered systems, in
situ forming systems, pH responsivity, active targeting using ligands, enzyme responsivity,
and phototherapy.

4.2. Peptide Hydrogels as Templates for Nanofabrication

Peptide hydrogels can provide self-assembling bio-inspired structures, which can spon-
taneously create 2D and 3D structures. These structures can be used as templates/scaffolds
to form nanostructures, including wires, particles, ribbons, tubes, nanoreactors, etc., com-
posed of a wide array of materials such as metal, silica, and polymers [63,157–159]. For
instance, water-filled peptide nanotubes can act as a template to form nanowires and
metallic or polymeric structures. Further, such fabrication can also yield exciting composite
materials such as metal-peptide-metal nanowires with unique electromagnetic properties
or peptide nanotubes with platinum NPs attached to the walls [63,157,158].

With the selective screening of amino acids, self-assembling peptides can be prepared
with the ability to bind with metals, whose features can be controlled by peptide sequence
and solution composition [160]. An example of such a study is the development of polyani-
line polymer-based core-shell nanowires using amyloid nanofiber hydrogel, which can act
as a template for nanofabrication [161]. Wang et al. have also demonstrated the formation
of long, ultrathin copper (CuS) nanowire using peptide hydrogel as a template [162]. A new
hairpin peptide comprising four histidine residues was used, and the self-assembly process
was triggered by copper (II) ions. The developed CuS wire demonstrated a near-infrared
laser-induced thermal effect [162]. Another study used a simple lysine-based peptide am-
phiphile linked to a C16 hydrophobic tail to prepare self-assembled nanofibrous hydrogel,
which acted as a template to prepare mesoporous single-walled silica nanotubes [163]. The
nanotubes were visualized and imaged, as demonstrated in Figure 2A–D. The possible
mechanism of silica nanotube formation is schematically depicted in Figure 2E. The silica
nanotubes were open-ended and mesoporous, with a few microns long and an average
diameter of ~10 nm. Such nanotubes have a wide variety of applicability owing to their
remarkable physicochemical properties [163].
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Figure 2. (A) Scanning electron microscopy image of the silica nanotubes; (B) Field Emission Scanning
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the silica nanotubes. (E) Schematic representation of a possible mechanism of nanotube formation.
Reprinted with permission from Ref. [163]; Copyright 2013, American Chemical Society.

Another exciting product that can be assembled by using peptide hydrogels as tem-
plates is NPs. A hydrogel template allows the formation of homogenous nano/microstructures
with various geometries and sizes, with the ability of drug encapsulation and controlled
release kinetics [164]. Adhikari et al. demonstrated using ultrashort peptide hydrogels as a
template for in situ formation of Ag nanoclusters by using sunlight [165]. An ultrashort pep-
tide, Fmoc-Val-Asp-OH, was used to prepare transparent and stable Ag-ion-encapsulating
hydrogel. These hydrogels can spontaneously produce fluorescent Ag nanoclusters in phys-
iological pH. Under sunlight, the Ag ions were reduced carboxylate group in aspartic acid
residues present in the peptide [165]. There are several other ultrashort peptides with many
applications, such as bioelectric wires, nanofabrication, bioimaging nanoprobes, etc. [166].
In a study, Jain and co-workers used ultrashort amyloid-based peptides to fabricate gold
NPs [167]. The authors were the first to report the crucial role of aliphatic and aromatic
-OH moieties of the peptide for in situ synthesis of gold NPs. The shape-controlled nanofab-
rication aims to prepare the 3D nanostructure of the hydrogel and presents a promising
bottom-up approach to produce NPs with tailor-made features [167]. In another study,
Reithofer and co-workers demonstrated the synthesis of stable AgNPs within ultrashort
peptide (Ac-LK6-NH2) hydrogels using UV irradiation [168]. The strict control of size and
release of the NP is attainable via peptide hydrogel as the template [168]. Such an AgNP-
releasing hydrogel has an enormous scope as an antibacterial agent in wound healing and
bioimaging applications. It was demonstrated that the Ag NP composite hydrogel could
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efficiently inhibit bacterial growth for Pseudomonas aeruginosa, Escherichia coli, and Staphy-
lococcus aureus using only 10 mM Ag NP hydrogels. The biocompatibility studies were
also evaluated on primary human dermal fibroblasts, adult (HDFa) cells demonstrating no
significant impact on cell viability. This kind of nanocomposite can be recommended for
wound healing, especially for chronic wounds, because of its ability to prevent infection,
reduce inflammation, and ease of application [165,168].

In a recent article by Zhang e al., an antifouling and sensitive electrochemical biosensor
was reported based on multifunctional peptide and urease@zeolite imidazole frameworks
(urease@ZIFs) for MMP-7. In this regard, the multifunctional peptide was applied to
construct an antifouling electrode interface along with sodium alginate-graphene oxide-
Pb2+ gel, and then, a carboxyl-rich pyrrole-doped and urease-loaded ZIF coupled with the
fabricated electrode interface. Using this biosensor, the conductivity of the sensing interface
was significantly decreased as a result of the reaction between Pb2+ and CO2 (product
of urea decomposition). MMP-7 was applied as the model with the ability to recognize
specific hydrolytic sites in the multifunctional peptide. This biosensor demonstrated
outstanding antifouling performance, high sensitivity, and excellent accuracy for clinical
serum samples [169]. In another recent study, Kim et al. reported the design and fabrication
of different DNA nanostructures via sequence-specific peptide interactions. Phe- and di-
Phe-based monomers were applied to synthesize three different amino acid-based polymers.
After coupling to oligonucleotides, they self-assembled into nanofibers, nanosheets, and
ribbons via environment-responsive and sequence-specific amino acid interactions. It
was shown that the programmable morphology changes could be induced under specific
conditions, and it can be helpful in smart drug delivery to release the cargo in response to a
particular change in the environment [170]. The influence of physical parameters, including
size, shape, mechanical characteristics, surface texture, and compartmentalization on
biomaterial design, was reviewed by Mitragotri and Lahann, and they present several
examples to show the importance of these parameters in different biomedical applications
such as drug delivery, tissue engineering, and imaging [171].

4.3. Peptide Hydrogels as Versatile Matrices for 3D Cell Culture

Similar to its application as scaffolds for micro- and nano-fabrication, peptide hy-
drogels could also provide optimal conditions/templates for 3D cell cultures [20,22,40].
Recently, 3D cell culture techniques have been extensively studied owing to their close
resemblance to the in vivo cellular environment compared to 2D cell culturing methods
and their affordability for in vivo models. Some examples of using 3D cell culturing are
related to the differentiation process, drug responses, cell proliferation, signaling process,
cellular microenvironment, and cell motility [172]. In current practice, Matrigel and Col-
lagen are the most commonly used matrices. However, using short and self-assembling
peptide hydrogels is emerging as a potential matrix for 3D cell culture. A peptide hy-
drogel, with its cross-linked networks and a large amount of water content, allows for
the incorporation of several components (oxygen, nutrients, growth factors), which are
essential for imparting many cellular functions [22,173]. Peptide hydrogels are highly
versatile and biocompatible/biodegradable and can be easily modified to have tailor-made
biological interactions [40]. Furthermore, peptide hydrogels can be developed with a high
resemblance to the structure and functions of ECM with optimal design. Compared to
conventional polymeric hydrogels, peptide hydrogels have several advantages, such as
controllable structure and assembly, reversibility, easy modification, and stimuli respon-
sivity. A schematic representation of different hydrogel types as cell culture matrices is
shown in Figure 3 [174]. With the information gathered from the cell microenvironment,
cell behavior, and migration, hydrogels can be designed as ECM mimics. Although no
single network can completely mimic the complex ECM, bioinspired cues in the hydrogels
can help develop diverse and robust 3D scaffolds for different cell culture systems, from
which biologically relevant conclusions could be drawn [174].
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isolation and its downstream proteomic analysis, demonstrating its potential application 
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special shear-thinning and recovery property to the hydrogel. This interesting phenom-
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studies also exploit the rheology of hydrogels. For example, amyloid hydrogel demon-
strating thixotropic behavior can be used to homogenously seed cells in the hydrogel 
matrix [167]. A similar thixotropic effect was also observed in the hydrogel formed 
through an activated diester building block (formed by reacting PA and 
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late and promote the proliferation of human umbilical cord MSCs by providing anchor-
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demonstrated the viability of the cells entrapped in the gels, attributed to its similarity to 
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of amyloid hydrogels for in vivo cell culture is limited due to the biocompatibility point 
of view, as the degraded amyloid peptide may be accumulated in the body [178]. 

Figure 3. A hydrogel matrix composed of (A) synthetic polymers (yellow mesh) provides a 3D
environment for culturing cells; however, they fail to activate integrins (brown) and other surface
receptors (orange), and (B) formed from naturally derived polymers present a myriad of integrin-
binding sites (green) and growth factors (red) coordinated to the ECM (yellow fibers). Reprinted with
permission from Ref. [174]; Copyright 2009, Wiley-VCH.

Some studies are reporting other types of peptide-based hydrogels. A fascinating study
was performed with a novel h9e peptide to form a hydrogel, which can homogenously
encapsulate MCF-7 cells. The 3D cell culture model was also successfully used as a carrier
for the anticancer drug Cisplatin [175]. Furthermore, the 3D model allowed cell isolation
and its downstream proteomic analysis, demonstrating its potential application in drug
testing. Again, in another study, the addition of Ca2+ions to h9e hydrogels not only
promoted the formation of hydrogel and improved gel strength but also imparted a special
shear-thinning and recovery property to the hydrogel. This interesting phenomenon
is observed due to the Ca2+ions occupying the charged Asp residue on the fiber, thus
further promoting the inter-fiber interactions of the hydrogel [176]. Several other studies
also exploit the rheology of hydrogels. For example, amyloid hydrogel demonstrating
thixotropic behavior can be used to homogenously seed cells in the hydrogel matrix [167].
A similar thixotropic effect was also observed in the hydrogel formed through an activated
diester building block (formed by reacting PA and p-hydroxybenzyl alcohol in the presence
of lipases). This hydrogel was able to encapsulate and promote the proliferation of human
umbilical cord MSCs by providing anchorage to cells similar to ECM [40,177]. Similarly,
Jacob et al. developed amyloid nanofibril-based hydrogel, with thixotropic properties, for
cell culture and stem cell differentiation [178]. The thixotropic property of the hydrogel was
used to incorporate cell suspensions with the amyloid gelators using agitation (vortexing).
Confocal imaging demonstrated the viability of the cells entrapped in the gels, attributed
to its similarity to the natural ECM matrix (Figure 4). Despite showing potential for 3D
cell cultures, the use of amyloid hydrogels for in vivo cell culture is limited due to the
biocompatibility point of view, as the degraded amyloid peptide may be accumulated in
the body [178].

Despite a large volume of research, the use of these hydrogels as 3D templates for cell
culture models is still in its preliminary stage. It requires further studies to overcome some
of the limitations associated with them, such as the precise control of gelation, mechanical
properties, toxicity, the chirality of the hydrogel, the spontaneous release of water, and
finding the optimal combination between the type of cells and type of hydrogel. Thus,
there is a considerable void in developing the rational design of hydrogelators.
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Ref. [178]; Copyright 2015, Elsevier.

4.4. 3D Bioprinting of Peptide Hydrogels

Since its first description in 1986 by Charles Hull, 3D printing has gained much mo-
mentum regarding its application in the biomedical field [179]. Types of 3D printing include
additive manufacturing, rapid prototyping, or solid-free form. It commences with meshed
computer-aided design, which is then used to acquire the product usually formed by
layer-by-layer (LbL) addition [180,181]. 3D bioprinting represents a technology that uses
biomaterials, cells, and biological molecules to generate 3D constructs/scaffolds and is
primarily used for developing organotypic constructs and regenerative medicine [182,183].
The emerging interest in 3D bioprinting is fueled by the high degree of freedom in design,
high-precision and reproducible results, and the availability of affordable printers [184].
Several fabrication methods could be applied for 3D printing, such as inkjet printing,
extrusion-based, Laser-Induced Forward Transfer, and robotic dispensing, as illustrated
in Figure 5 [180,181]. A detailed overview of these methods has been explained else-
where [184]. In the case of bioprinting, several other advanced techniques with high
resolution and reproducibility have emerged, such as cellular inkjet, lithography, and
extrusion bioprinters [185].
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Among several bioinks, hydrogels have risen as a popular candidate. According to
a study by Jungst and co-workers, an ideal hydrogel for 3D printing must have these
properties: (i) gelation before printing, with shear-thinning, but not thixotropic, rheology to
allow printing, (ii) fast gelation after printing for shape conformity at high resolution, and
(iii) minimal swelling of the hydrogel extrude [184,186]. In addition, in the case of bioinks
for 3D bioprinting, the hydrogels must localize the cells and provide the environment
that ensures the survival and physiological functions of the cells. Further, the bioinks
must have instantaneous gelation after printing to preserve the homogenous distribution
of the cells in the matrix [185]. Based on these criteria, peptide hydrogels are an ideal
candidate to be used as bioink. As discussed previously, peptide hydrogels are very
versatile and allow manipulation to add tailor-made characteristics, such as customizable
surface features, stimuli-triggered gelation, and controllable mechanical properties. Further,
as described in the previous section, peptide hydrogel greatly resembles the native ECM,
thus making it a feasible microenvironment for cells to proliferate and function [185]. Thus,
peptide hydrogels as bioinks will make 3D scaffolds that are biocompatible and have
similar dynamic and complex properties as biological tissue, which is of utmost importance
for cells.

Despite the many advantages of peptide hydrogels as bioinks, the number of studies
is limited. Loo et al. have demonstrated the suitability of self-assembling peptide-based
hydrogel as bioinks for constructing 3D scaffolds for cell proliferation and differentiation.
Lys-containing hexapeptides used as bioinks can form a 3D scaffold that supports human
mesenchymal stem cells (hMSCs) and organotypic differentiation of primary cells [187].
The authors demonstrated the successful proliferation of Human H1 embryonic stem cells
(ESCs) into 3D spheroids (Figure 6A) and hMSCs (Figure 6B) when using Lys-containing
hexapeptide-based hydrogels as bioink [187]. Raphael et al. described a new and optimized
extrusion-based 3D bioprinting method for mammary epithelial cells in a commercially
available self-assembling peptide hydrogel (PeptiGelDesign Ltd., Cheshire, United King-
dom). The cells could survive and proliferate in 3D-printed constructs during the seven-day
culture [188].

In a recent study by Graham et al., a combination of ultra-low-gelling-temperature
(ULGT) agarose and Fmoc protected dipeptide gelators, with or without gelatin, were
used as biocompatible bioinks [189]. A low-cost 3D printing technique was used to print
aqueous droplets (resolution of 1 nL) of bioink-containing cells (Human embryonic kidney
(HEK) cells and ovine MSCs (oMSCs)). The cells remained highly viable in the constructs
and retained their biological functions; further, oMSCs were observed to differentiate
and generate cartilage-like structures. The size of the constructs is reasonable for their
application in high throughput screening techniques. Additionally, the method also allows
for the production of higher volumes of the bioinks as well to get larger constructs for its
application in printed cellular constructs and disease models [189].
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combined with the use of peptide hydrogel as bioinks, thus capitalization on the bio-
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Figure 6. Ultrashort peptide hydrogels encourage the proliferation of encapsulated stem cells for
regenerative medicine. (A) Human H1 embryonic stem cells encapsulated in 8 mg/mL Ac-ILVAGK-
NH2 hydrogels retain their pluripotency, as reflected by the staining of nuclear transcription factors
Oct4 and Nanog (red) and surface biomarkers Tra-I-60 and Tra-I-81 (green). (B) Human mesenchymal
stem cells (hMSCs) encapsulated in 5 µL 10 mg/mL Ac-ILVAGK-NH2 hydrogel droplets and cultured
on hydrogel films elongated along the peptide fibers, as reflected by the staining of their actin
cytoskeleton (green). On glass coverslips, the cells are well spread out and non-aligned. Reprinted
with permission from Ref. [187], Copyright 2015, American Chemical Society.

Bioprinting has a lot of potential for developing sophisticated organotypic cultures
that could be used for regenerative medicines, implants, and 3D organotypic cell cultures
that closely resemble the endogenous environment. The bioprinting technique can be com-
bined with the use of peptide hydrogel as bioinks, thus capitalization on the biomimicry,
biocompatibility, and customizable properties afforded by the peptide hydrogels. Nonethe-
less, several concerns must be addressed when using peptide hydrogels as bioinks. For
example, clinical translation of the device would require the construct to be sterile and free
of endotoxins.

4.5. Molecularly Imprinted Peptide Hydrogels

Molecular imprinting is a technique that fabricates constructs with highly precise
chemical architectures with specific target recognition and binding ability by differentiat-
ing amongst similar molecules with enantiomeric resolution [190]. The process involves
crosslinking of the monomers in the presence of a template, which is later removed to
leave a space that fits and could be occupied by the target molecule. In addition to target
recognition sites, molecular imprinting also yields stimuli-responsive systems. Molecular
imprinting has found its application in different biomedical fields such as chemical sens-
ing, immunoassays, antibody mimicking, artificial enzymes, and catalysis processes [191].
Molecularly imprinted hydrogels have garnered several research interests. However, owing
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to the inherent movement of hydrogels, there are more challenges than molecularly imprint-
ing solid structures, which could lead to the distortion of the binding sites. Nonetheless,
mainly molecularly imprinted polymeric hydrogels have been thoroughly studied for their
application in drug delivery with high drug loading or enhanced controlled drug release
and in tissue engineering [191,192].

Despite the promising approach, the first mention of the use of molecularly imprinted
self-assembling peptides was only in 2016 by Wang and co-workers [121]. Herein, they
demonstrated that by using the molecular imprinting technique, the catalytic activity
of peptide-based artificial hydrolase could be significantly improved (ca. seven-folds)
when compared to a co-assembled system. P-nitrophenyl acetate (pNPA) was used as
the template to precisely arrange catalytic residue (Ser/His/Asp) in proper orientation
in Fmoc-FF, which assembled to form nanofibers. It was the first time the molecular
imprinting method was used to construct enzyme mimetics using self-assembly peptides
as supramolecular structures [121]. This study was followed by Matsumoto et al. [193].
In this study, poly(L-Lys) (PLL) was used with β-CDs as ligands. Bisphenol A (BPA) was
used as a template molecule (as shown in Figure 7A). The resultant system showed a
change in the volume when BPA was added, owing to the complexations between BPA
and CD. Further, the hydrogel also demonstrated pH-sensitive BPA adsorption and the
stability of the complex, as a pH change resulted in the transition of random coils of the
CD-PLL to α-helix and conformational change of the molecular recognition sites (as shown
in Figure 7B) [193].
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β-cyclodextrin-poly(L-lysine) (CD-PLL) hydrogel by molecular imprinting. (B) BPA-responsive
behavior of the BPA-imprinted CD-PLL hydrogel at neutral or basic pHs. Reprinted with permission
from Ref. [193], Copyright 2017, American Chemical Society.

These exciting results established the potential of molecularly imprinted peptide
hydrogels as drug carrier systems. However, these systems must be further studied
and evaluated for efficacy under in vitro and in vivo conditions. Furthermore, despite
observing exciting pH-sensitive binding capacity, the pH conditions tested in this study
are not relevant to physiological conditions. Nonetheless, the beneficial properties of both
peptide hydrogels and molecular imprinting could be synergized together to develop
advanced drug delivery systems and for other biomedical applications.
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4.6. Cancer Therapy and Immune Regulation

Various self-assembled peptide supramolecular structures have recently been intro-
duced for tumor drug delivery [194–197]. In a study performed by Nie et al., injectable
DOX-loaded hydrogels with antiparallel β-sheet structure were fabricated using a hexapep-
tide hydrogelator (FEF3K), maintenance of strong π–π interaction between the filaments
and sustained-release of DOX. It led to significant tumor growth inhibition in breast cancer
mice models while dramatically reducing the side effects of free DOX administration [198].
Kalafatovic et al. developed DOX-loaded peptide-based mixed micelles, which degraded
into fibrous nanostructure in response to highly expressed MMP-9 on the MDAMB- 231
turmeric cells surface [199].

Cancer immunotherapy, a newly introduced research field, recruited immunomod-
ulatory agents to increase human immune system activation leading to cancer cell arrest
and death [200,201]. The bioavailability and biodegradability of self-assembled peptide
structures while performing a controlled drug release make these structures promising
candidates to be used in this research field [202–207]. While acting as a carrier for deliv-
ery of immunomodulatory agents, supramolecular peptide structures can also provide a
feasible method to flexibly regulate the immune system individually using their innate
characteristics, either in the form of an immune-potentiator or an immune-blocker.

Cyclic dinucleotides, STING (stimulator of interferon genes) agonists, were loaded
in a peptide-based nanofibrous injectable hydrogel with sequence K2(SL)6K2 based on
electrostatic interactions. Peptide-based hydrogels showed more durable release behavior
and increased therapeutic efficacy than collagen hydrogels using head and neck murine
tumor models [208].

Dual stimuli-responsive, self-assembled peptide NPs were fabricated and loaded with
a short d-peptide antagonist of programmed cell death-ligand 1 (DPPA-1), and an inhibitor
of indoleamine 2,3-dioxygenase (NLG919), for effective combinatorial cancer therapy. In
this research, functional 3-diethylaminopropyl isothiocyanate (DEAP) molecule, peptide
substrate of MMP-2, co-assembled to form amphiphilic peptide NPs encapsulated DPPA-1.
NP cargo release happened in response to low pH and high amounts of turmeric site
MMP-2. Upon NP administration, simultaneous blockade of immune checkpoints and Trp
metabolism caused boosting of the level of tumor-infiltrated cytotoxic T cells, leading to
the efficient inhibition of melanoma tumor growth [209].

In a recent study, NPs targeted αvβ3-integrin receptors routinely overexpressed on
a tumor cell’s surface. Self-assembled RGD-linked pro-apoptotic peptide coupled with
a pH-dependent cyanine 5.5 probes as NIRF-dye was fabricated. Results indicated a
significant increase (25.6% to 96.3%) of apoptosis for f-SAPNs, while a decreased degree
of necrosis was observed from 51.7% to 0.2% compared with its parent peptide analog
(Cy5.5-c [RGDKLAK]; f-CP). NPs also manifested high uptake by U87MG glioblastoma
cells suggesting their potential to be recruited in glioblastoma brain tumor theranostic
treatment [205].

In another attempt, a combination of immune checkpoint blockade (ICB) with
chemotherapeutic drug delivery was performed to hinder tumor progression in B16F10
melanoma xenograft mice models. To do so, co-encapsulation of PTX and immune-adjuvant
αGC in liposomes was performed, followed by the modification of liposomes with a pH-
sensitive cell penetrating TH peptide. The results indicated a significant increase in the
free cholesterol level of blood, and hence, CD8+ T cells suppression attenuation, leading to
enhanced CTL responses and anti-tumor effects [210].

The delivery of indocyanine green (ICG) and JQ1, a small molecule inhibitor that
prevents PD-L1 expression, was conducted using Fmoc-KCRGDK (FK), a self-assembled
peptide that is responsible for tumor penetration. The results indicated a strong promotion
in dendritic cell maturation and cytotoxic T lymphocytes tumor infiltration upon NIR
light-triggered antigen release from peptide hydrogels [211].
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4.7. Biosensing by Peptide Hydrogels

Clark and Lyons have been the pioneers of biosensors since their inception in the
1960s [212]. Biosensors are devices that “incorporate a biologically active element in inti-
mate contact with an appropriate transduction element to detect (reversibly and selectively)
the concentration or activity of chemical species in any type of sample”. There are different
types of biosensors, such as enzyme-based, tissue-based, immune-sensors, DNA biosensors,
and thermal- and piezoelectric-based biosensors [212]. The increasing use of biorespon-
sive hydrogels as biosensors can be attributed to the easy manipulation of hydrogel in
micro-and nano-patterns to achieve lab-on-a-chip devices [213]. However, using biosensor
hydrogels composed of synthetic materials such as polymer will limit its application due
to the possible toxicity, degradation, and interaction with the tissue components. These
drawbacks can be easily overcome by using small peptide-based hydrogels, which have
better predictability and biocompatibility [213].

Self-assembled peptide hydrogels can be used for biosensing by designing them to
sense a target molecule, which would trigger self-assembly or disassembly of the hydrogel,
or alter the hydrogel properties, thus exhibiting optical, mechanical, or electrochemical
outputs [18]. A self-assembled Fmoc-diPhe-based nanofibrous hydrogel used as enzyme-
based optical biosensors. In the hydrogel, enzymes and quantum dots were physically
immobilized to have enzyme-based biosensing with fluorescent reporters. This study
showed the detection of analytes such as glucose and toxic phenolic compounds that
were working as an alternative optical biosensing platform with benefits such as simple
fabrication, efficient diffusion of target analytes, and high loading of fluorescent reporters
and bioreceptors [214]. A more recent study by Fusco et al. used a similar Fmoc (Phe)-
based hydrogel to develop an electrochemical biosensor [215]. The results demonstrated
the enhanced electrochemical biosensor performance of an Fmoc-Phe3-based hydrogel with
Trametes Versicolor Laccase (TvL) immobilized in a hydrogel matrix with gold NPs, as
compared to a hydrogel-based graphite biosensor [215]. In another study, an enzyme-based
electrochemical biosensor was developed for detecting hydrogen peroxide. Horseradish
peroxidase (HRP) was effectively immobilized stably in Fmoc-diPhe peptide hydrogel,
which also performed as a robust substrate for cell adhesion. The resultant biosensor
demonstrated a low detection limit (18 nM), high stability, and selectivity [216]. Other
peptides based on hydrogel have also been introduced in the literature for biosensing.
King et al. described an octapeptide (Gly-Gly-Val-Lys-Val-Lys-Val-Glu-Val-Lys) covalently
linked to an oligonucleotide CGATTCTGTGTT recognition sequence using thiol-maleimide
chemistry. The simple bio-recognition system helps to detect hybridizing DNA using
fluorescence as output [217].

Another exciting application for biosensors is the detection of the superoxide anions
released from the cells in 3D culture in response to drug molecules. Lian and co-workers
developed Fmoc dipeptide as a matrix incorporated with HeLa cells and two cascade
enzymes, HRP, and superoxide dismutase (SOD), as illustrated in Figure 8. This system
demonstrated accurate and sensitive detection of released anions and their generation
dynamics under physiological conditions [218].

Regardless of the beneficial application of peptide-based hydrogel as biosensors, the
recognition system can be further modified by introducing several functional moieties to
enhance the sensing performance. One such approach is the development of hybrid systems
by combining peptide hydrogels with metal ions. Gong and co-workers reported a hybrid
composite comprising self-assembling dipeptide and gold NPs, with HRP as a model
enzyme for electrochemical hydrogen peroxide sensors. This electrochemical biosensing
platform demonstrated enhanced performance, attributed to the synergistic effect of the
biocompatible dipeptide and good charge transport of the hybrid structure [219].
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Overall, with the versatility in the type and stimuli responsiveness in peptide hydrogel,
the bright future of hydrogels in biosensors is highly evident. When these properties are
aided with transducers, several different outputs can be generated, which can be used to
develop ultrasensitive biosensors with varied sensing ranges.

4.8. Bioimaging by Peptide Hydrogels

Among biomedical applications, bioimaging is of great importance due to the ability of
multi-dimensional visualization of biological processes and biomaterials in living animals.
It is recognized as a non-invasive technique enabling to track of biological events in a real-
time manner by combining advanced materials with imaging probes [27,220]. It can provide
valuable information about signaling networks, biological processes, and pharmaceutical
impacts of different materials [27]. In recent years, supramolecular fluorescent hydrogel
(SFH)-based bioimaging probes have been introduced for theranostic (therapy and diagnos-
tics) application owing to their biocompatibility, biodegradability, stimuli responsivity, and
3D cross-linked structures [220]. Among these, peptide-based hydrogels are recognized as
excellent biomaterials with significant qualities in bioimaging applications [221]. Several
studies have shown their advantages in bioimaging. Molecular peptide hydrogelators have
fast renal clearance and can cross several body barriers, confirming remarkable biosafety
and uptake efficiency. Additionally, peptide hydrogels are programmable due to their
responsiveness to different stimuli such as temperature, light, pH, redox, enzymes, and
so on [222–227]. According to these features, the self-assembly of peptides can potentially
be activated under specific stimuli, and the in situ formation of peptide hydrogels have
the potential to promote the accumulation of imaging agents in the target regions [228]. So,
smart, sensitive, and specific bioimaging will be achieved. Furthermore, peptide hydrogels
could increase the stability of bioimaging agents by protecting them from cell excretion to
reach a long retention time and sustainable bioimaging [229–231]. Hence, peptide-based
supramolecular hydrogels are valuable structures in diagnostic applications. There is a
report by Xu et al. on the fabrication of SFH using amphiphilic peptide hydrogelators in
combination with a fluorophore by which targeted cancer diagnostics, and bioimaging can
be performed [232]. This kind of designed hydrogels can respond to specific stimuli in the
cancer microenvironment, and they can also act as drug carriers instead of imaging probe.
Zhang et al. discovered the formation of Trp–Phe dipeptide NPs (DNPs) that can transfer
the peptide’s inherent fluorescent signal from the ultraviolet to the visible range. The DNPs
are modified with MUC1 aptamers, which enable the recognition of the overexpressed
MUC1 proteins located on the membrane of A549 human carcinoma epithelial cells for can-
cer targeting and biosensing [233]. Another study reported that a simple dipeptide, di-phe,
self-assembled into various ordered structures, could produce intense photoluminescence
with emission maxima at em = 450 nm [234].
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In recent years, the application of peptide hydrogels was established in different
bioimaging techniques such as magnetic resonance imaging (MRI) [235], PAI [236,237],
optical imaging (OI) [238–241], computed tomography (CT) [242], radionuclide imaging
(RI) [243,244], and ultrasound imaging (USI) [245]. To improve the sensitivity and speci-
ficity of these modalities, bioimaging agents such as contrast agents, fluorophores, and
radioactive isotopes are applied [246–249]. For instance, the nanostructure of superparam-
agnetic iron oxide NPs (SPION) with peptide-based nanomaterials was applied to target
lesion sites by targeting the capability of the peptide. A study has reported a strategy for
the improvement of MRI using fluorescence-labeled SPION conjugated with CREKA, a
fibrin-binding peptide, to perform molecular imaging of microthrombus by enhancing T1
relaxation time [250]. In another study, Liang et al. reported an activable hydrogelator
with the enzyme-responsive ability for MRI imaging. Alkaline phosphatase is known
as an overexpressed enzyme in some number of malignant tumor cells and can activate
the hydrogelator via dephosphorylation. The activation and subsequent self-assembly of
the hydrogelator into nanofibers resulted in the enhancement of T2-weighted MRI [251].
Peptide hydrogels also demonstrate outstanding potential in OI or fluorescence imag-
ing by carrying fluorescent dyes. For example, Wang et al. designed and fabricated a
NIR dye-conjugated peptide hydrogelator diagnosing cancer-associated fibroblasts. This
suggested hydrogelator was activated by the fibroblast activation protein-α and formed
nanofibers by the self-assembly process. Surprisingly, nanofibers’ formation improves
the blood circulation time in comparison to ICG and had a strong fluorescence signal
even 2 days after intravenous injection [240]. Radionuclides can also be encapsulated in
the peptide hydrogels that are essential for RI by positron emission tomography (PET)
and single photon emission CT (SPECT) [27]. Oyen et al. designed an 111in-based pep-
tide hydrogelator using covalent conjugation of DOTA-chelated 111In with a hexapeptide
amphiphile. It was shown that in vivo visualization of drug release could be achieved
by SPECT imaging using this designed structure [244]. CT is another bioimaging tech-
nique with the capability to produce anatomic structures in clinical detection and provide
high resolution images of hard tissues. An iodinated peptide hydrogel was suggested
to detect bacterial alkaline phosphatase (ALP) activity using nano-CT. The peptide hy-
drogelator Nap-Phe-Phe(I)-Tyr(H2PO3)-OH was prepared, and after exposure to ALP, it
was activated by dephosphorylation and self-assembled into hydrogels. This approach
could lead to accumulation of iodine on the surface of bacteria as an ALP-rich region and
provide high CT contrast [242]. New research indicated that imaging sensitivity, specificity,
and efficiency could be enhanced via peptide-based photoacoustic tomography contrast
agents [252,253]. A smart ICG-encapsulated peptide hydrogel was prepared by Huang et al.
for in vivo tumor PAI. The designed peptide hydrogelator had the potential to be activated
by phosphatase-induced dephosphorylation and self-assembled to nanofibers. It was re-
vealed that this nanostructure could enhance PAI signals with higher tumor accumulation,
longer retention time, and stronger FL signals compared to free ICG [237].

In summary, peptide hydrogels exhibit high biocompatibility, prominent loading
capacity, and long intracellular retention, presenting several advantages to improve the
properties of bioimaging agents under different modalities. The hydrogelators can be
smartly activated by certain environment stimuli and spontaneously self-assemble into
nanofibers and then form hydrogels. So, the imaging agents could accumulate in the
stimuli-rich region, consequently exhibiting amplified signals and prolonged retention.
Therefore, precise, sensitive, and sustainable in vivo bioimaging of biological events could
be achieved using smart peptide-based supramolecular hydrogels.

4.9. Stem Cell Therapy (Transplantation) by Peptide Hydrogels

Stem cells (SCs) are specialized potential cells in different tissues that can perpetuate
and differentiate to diverse cell types in a tissue or organ, or act as carriers for complex
signal delivery. There are different types of SCs, from an origin point of view, including
embryonic and adult SCs, of which adult ones are usually found in particular ECM con-
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ditions resulting in proliferation and differentiation, as well as cell specialization when
needed [254,255]. The first idea of SC therapy was initiated in 1998 by successfully creating
ESC [256]. Much research has been carried out on SCs in different fields, including cancer
therapy, tissue engineering, cardiac diseases, osteoarthritis, diabetes, regenerative medicine,
and neurological disorders [255,257]. According to them, it is suggested that SCs are a
promising therapeutic candidate in regenerative applications [255]. For example, pluripo-
tent SCs (PSCs) can differentiate into specified cell lines relying on signal cascades and
micro-environmental cues. In contrast, in the lack of mesodermal and endodermal signals,
ESCs can be converted to neural cell lines. Besides, mice- or human-isolated hematopoietic
SCs (HSCs) can generate immune cells and bone marrow cells. Despite all progress, SC
therapy encounters challenges in clinical applications, such as uncontrolled differentiation
and functional engraftment of the implanted tissue. To overcome these limitations, cell-
based systems that mimic ECM are necessary to establish and 3D assemblies of SC [255].
Recently, numerous biocompatible materials have been introduced as support scaffolds
for the 3D culture of SCs, primarily porous materials for the preparation of appropriate
3D micro-environment used for cell growth, growth factor availability, and environmental
communication between cells and cells with ECM. So, biocompatibility should first be
evaluated in different conditions when researchers design and fabricate a scaffold with effi-
cient mechanical and chemical features and without induction of inflammatory responses.
Besides, biodegradability, inert construction, and decoration by immobilized biological
components are also concentrated more attention as essential parameters. SCs have sparked
a great interest in regenerating injured tissue and organs in spinal cord injury, epilepsy, or
neurodegenerative diseases. Many 3D scaffolds in literature are hydrogels prepared from
natural materials, hydrophilic or hydrophobic nanomaterials [255]. SC-niche interaction
needs to be effectively regulated in tissue regeneration and has been possible via cell-cell
and cell-ECM connections as well as the existence of growth factors. It is proved that
glycoproteins and proteoglycans cause these actions, which are composed of half of the
ECM proteins [258].

As promised by traditional methods in regenerative medicine, hydrogel-based mate-
rials have typically been employed as carriers for cell or growth factors [259]. There is a
plethora of reports that highlight the advantages of peptide hydrogels to circumvent the
limitations of traditional strategies. Some of them are mentioned below and classified by
types of SCs:

4.9.1. Neural SCs (NSCs) Transplantation and Delivery

Patients with neurological diseases are travailing from the functional deterioration
of the central nervous system (CNS) due to cellular degeneration and death. Plenty of
efforts have been recently directed towards developing several approaches for cellular
regeneration. It has been demonstrated that SC transplantation can play a therapeutic
role in mice when transplanted cells are broadly distributed in the CNS. CH3CO-(Arg-
Ala-Asp-Ala)4-CONH2 (ac-(RADA)4-CONH2) hydrogelator peptides can encapsulate NSC
and endow them with the differentiation possibility into neurons, neural progenitor cells,
astrocytes, and oligodendrocytes. It is demonstrated that neural cells can survive for at
least five weeks, so for long-term studies, self-assembled peptide hydrogel is strongly
recommended [260]. Since there is a 1000 times size difference between mouse and human
brains, SC therapy needs efficient, targeted delivery to the broad areas of the CNS. Recently,
hydrogels have been introduced as appropriate scaffolding biomaterials for SC therapy
to provide ECM proteins directing cell fates during migration, differentiation, and regen-
eration in the CNS. Besides, hydrogels can mimic the SC niche. They have attracted the
interest of researchers to use these systems for SC delivery which is achievable due to the
ability of hydrogels in precise localization and controlled cell delivery (Figure 9A) [257].
Due to acute inflammatory and immune responses during transplant surgery or SC therapy,
the survival of transplanted cells is one of the critical issues. An efficient hydrogel system
needs to circumvent this challenge in treating CNS-related disorders. Qiao et al. suggested
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a smart, double-layer, alginate hydrogels-grafted MMP and RGD polypeptides at the inner
layer and Crypto-1 antibody to the outer layer for NSC delivery (Figure 9B). The prolifer-
ation of NSCs was carried out in the inner layer obtained by immobilized RGD peptide.
Furthermore, blocking Crypto-1 was done via a Crypto-1 antibody in the outer materials
by which the differentiation of dopaminergic neurons was improved in vitro. When the
inflammatory storm was finished, the NSCs were found at the outer layer because of MMP
secreted by transplanted SC to cut the MMP polypeptide on the inner layer. As a result, an
NSC culture on a designed hydrogel demonstrated considerable neuronal differentiation
and neurite formation and over-expression of the genes related to dopaminergic neurons
(Figure 9C,D) [261].
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Figure 9. Hydrogel-based scaffolds to support and deliver neural stem cells (NSCs). (A) Schematic
representation of hydrogel injection encapsulated NSCs into the spinal cord and short- and long-term
outcomes. Reproduced with permission from Ref. [257], Copyright 2018, Springer Nature. (B) An
illustration of intelligent double-layer hydrogel along with matrix metalloproteinases (MMP) and
arginine-glycine-aspartate (RGD) peptides at the inner layer and Cripto-1 antibody at the outer
layer for NSCs delivery and proliferation. (C): (a–d) Scanning electron microscopy (SEM) images of
differentiated NSCs cultured with 50 µg.mL−1 of Cripto-1 antibody hydrogel. (D) Promoting the
survival and differentiation of NSCs transplanted in vivo by the designed hydrogel. (a,d) are GFP
staining, (b,e) represent β-III Tubulin, and (c,f) demonstrate the merged channels of GFP and β-III
Tubulin. Reprinted with permission from Ref. [261], Copyright 2018, Wiley VCH.

The adult brain’s poor regenerative ability seeks more research on effective long-term
approaches for neurological brain deficit, including cell transplantation. The self-renewal
and differentiation potential of NSCs benefits providing diverse neural cells in CNS, and
bioactive scaffolds can guarantee cell viability and cell differentiation for transplantation
therapy. Self-assembled peptide RADA16 modified by laminin-derived peptide isoleucine-



Polymers 2023, 15, 1160 25 of 52

lysine-valine-alanine-valine (IKVAV) was evaluated to provide a functional 3D hydrogel
accelerating CNS regeneration. It can be helpful in enhancing the renovation of the dam-
aged brain. It was shown that the in situ hydrogel formation was performed immediately
after the designed peptide injection, and RADA16-IKVAV hydrogels could give birth
to NSC, reduce glial astrocytes content and induce differentiation into neural cells. Six
weeks of post-transplantation studies revealed that the neural differentiation was sup-
ported by hydrogels (Figure 10A,B) [259]. The 12-amino acid IKVAV motif present on
the α-laminin chain is well recognized as an effective factor on the expression of various
markers for cell adhesion, proliferation, differentiation, and migration as well as neurite
outgrowth [262,263]. The formation of neural cells is not limited to NSCs. Other stem cells,
such as ESCs, are also able to differentiate into neural cells, as was shown by Li et al. They
utilized a RADA-based 3D matrix modified with IKVAV peptide to guide ESCs undergoing
neuronal differentiation without any soluble additive. IKVAV peptides also can inhibit glial
scar formation and subsequently increase neural regeneration [264].
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Figure 10. NSCs encapsulation in hydrogel for brain tissue regeneration. (A) Immunohistochem-
istry of the damaged brain tissues at six weeks after transplantation staining of Nesttin/β-tubulin
(a,b), NF-H/MAP2 (c,d), and GFAP/Synapsin I (e,f). DAPI was used to stain the nuclei. (B) Im-
munohistochemistry of NSCs encapsulated in peptide hydrogel after two weeks. Cells were stained
with protein markers such as Nestin (green) for neural progenitor, GFAP (green) for astrocytes,
β-tubulin, MAP2 (red) for premature and mature neurons, NF-H (green), and Synapsin I (red)
for neural cytoskeleton, and neurotransmitters. The results has been shown for RADA16 (a,c,e)
and RADA16-IKVAV (b,d,f). Reprinted with permission from Ref. [259], Copyright 2013, Elsevier.
(C) field-emission SEM (FE-SEM) images of unmodified (a) and IKVAV-modified (b) silk fibroin
hydrogel (Scale bar: 2 µm). (D) Live/dead assay of hNSCs encapsulated in hydrogels at 0 and seven
days with confocal microscopy (Scale bar: 100 µm); and immunohistochemistry of hNSCs stained
with (a) Nestin (green) and βIII-tubulin (red) and (b) MAP-2 (green) and GFAP (red) after 7 days
(Scale bar: 100 µm). Reprinted with permission from Ref. [265], Copyright 2017, Wiley VCH.

Injectable hydrogels were proposed due to their advantage in replacing the injured
environment during the cell therapy process and inhibiting more harm in surgery. For
this purpose, owing to low immunogenic and inflammatory responses, silk fibroin-based
injectable hydrogels immobilized with the IKVAV as a critical component in the brain ECM
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were prepared to encapsulate human NSCs (hNSCs) used in brain tissue engineering. It
was proved that cell encapsulation in IKVAV-modified hydrogel increased cell viability and
growth rate compared to unmodified hydrogels because of the more open, porous structure
of modified hydrogel or cell-adhesive activity of IKVAV peptide. Additionally, modified
hydrogels provided higher ratios of neurons at seven days after differentiation, but the
modification of hydrogels did not result in improving the length of neurite outgrowths
(Figure 10C,D) [265].

The encapsulation of NSCs was studied into ac-(RADA)4 self-assembled peptide
hydrogels as 3D neural tissue culture exhibited the differentiation of NSCs into neural cells
(neurons, astrocytes, and oligodendrocytes) (Figure 11A). To compare peptide hydrogels,
Collagen I, and Matrigel, cell survival experiments were performed, and it was observed
that adult mouse NSCs cultured in collagen I scaffold formed clusters and were poorly
differentiated. In contrast, Matrigel and peptide hydrogels promoted NSC proliferation and
differentiation for 1–2 weeks and at least five months, respectively. So, peptide hydrogels
showed better cell survival rates and differentiation (Figure 11B) [260].
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the functional motifs. (b): Peptide nanofiber formation by self-assembly of the peptide monomers.
(c): SEM image of the peptide nanofiber. (d): Transplant peptide hydrogels. (e,f): Schematic
of 96-well plate and a well with peptide hydrogel-encapsulated cells. (g): Microscopy image of
NSCs encapsulated in the peptide hydrogels. (B) Inverted fluorescence microscopy (a–f) and con-
focal microscopy (g–i) images of NSCs cultured in ac-(RADA)4-GG-SKPPGTSS-CONH2 hydrogel:
(a,b): after 2-week culture, nestin(+) neural progenitors, cells (green) and Tuj1(+) neurons (red) appear
at different z-planes; (c,g): Stained neural progenitors with anti-nestin (green), (d,g): Stained neurons
with anti-Tuj1 (red), (e,h): Stained astrocytes with anti-GFAP (green), and (f,i): Stained oligodendro-
cytes with anti-GalC (green). Cell nuclei were stained with DAPI (blue). (Scale bar: 200 µm (a,b) and
20 µm in images (c–i)). Reprinted with permission from Ref. [260], Copyright 2013, Elsevier.

Degeneration or promoting neural repair is known to be influenced by neurotrophic
growth factors with some limitations such as short half-life and susceptibility to enzymatic
degradation, and the presence of BBB against large molecules. So, there is a substantial
gap to replace traditional strategies prolonging in situ glial cell-derived neurotrophic
growth factor (GDNF) in damaged sites. An N-fFmoc self-assembled peptide was proposed
by Rodriguez et al. [266] as a hierarchical scaffold with the purpose of growth factor
stabilization and promoting stem cell integration for Parkinson’s disease treatment. The
Fmoc-DIKVAV with sustained release of GDNF during one week exhibited spatial and
temporal delivery in the rodent model and simulated the niche environment for grafted
cells [266]. In stem cell therapy, the cells firstly need to attach and spread on the synthetic
scaffolds that it is possible by a specific bioactive peptide derived from the ECM or a
non-specific cationic cell adhesive motif with the contribution to cellular adhesion and
differentiation. It was assumed that the combination of both approaches in a hydrogel might
improve cell adhesion in a lower concentration of RGD peptide. Interestingly, a synergistic
effect was exerted on NSC adhesion and differentiation compared to a GRGDSF-peptide
alone or the cationic motif. The mechanism of cell adhesion was firstly by electrostatic
interactions promoted by cationic motif on the negative surface of PCM, and integrin-
receptor interactions were observed [267].

Following spinal cord injury, glial scarring and post-traumatic inflammation are com-
mon challenges that self-assembled peptides can overcome. For this purpose, K2(OL)6K2
(QL6) is introduced because of the ability to self-assemble into β-sheets at physiological pH
and support neural growth and spinal cord injury repair. QL6 injection revealed decreased
apoptosis, glial scarring, and attenuated inflammation. It was also caused to improve
axonal conduction and tissue preservation at spinal cord injury [268]. Moreover, Iwasaki
et al. demonstrated the synergistic effect of transplanted neural stem/ progenitor cells and
injection of self-assembled QL6 on an injury of the cervical spinal cord. At 12 weeks after
injury, tissue preservation was significantly observed alongside forelimb neurobehavioral
recovery [269].

4.9.2. Hematopoietic Stem Cell Transplantation

HSCs with the potential for self-renewal and differentiation have sparked more in-
terest in SC therapy. The differentiation of PSC toward different hematopoietic cells has
provided a novel method as an alternative for bone marrow transplantation. It should
be noted that the cell-cell interactions and ECM proteins such as laminin and collagen
play an appreciable role in embryonic development and need to be considered in sug-
gested approaches. Shan et al. proposed a self-assembled peptide hydrogel combined with
hematopoietic cytokines as a 3D superstructure to generate hematopoietic cells in vitro
from small-model PSCs. It was first shown that hematopoietic differentiation was induced
by apparent expression of specific markers such as c-kit, CD41, and CD45 in mouse PSCs
(mPSCs) into the designed hydrogels by which a 3D environment was supplied for mPSCs
differentiation. Furthermore, multi-potential progenitor cells could be developed by mPSCs
differentiation. Among them, prepared HSCs on a 3D system could potentially differentiate
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into lymphocyte cells. The in vivo experiments in mice revealed the short-term engraftment
potential of mPSCs, which are efficiently embedded into NOD/SCID mice after three weeks
of transplantation [270].

4.9.3. Multipotent Skin-Derived Precursors (SKPs)

Skin as the first defense against infections and fluid loss is the largest vital organ in
the body [271]. Skin SCs induced by hair follicle neogenesis, reside in the dermis of the
skin and need appropriate signals and a particular niche for skin morphogenesis [271]. In
addition to seeded stem cells, scaffolds also play climacteric roles by mimicking the SC
niche to promote cell survival, differentiation, and functional tissue formation. This fact
obligates researchers to find suitable materials as a support for SCs during organogenesis.
Self-assembled peptide hydrogels formed by RADA16 and PRG and a combination of them
enhanced the proliferation of SKPs. It is noteworthy that the SKP encapsulated RADA-PRG
hydrogel exhibited enhanced cell survival and proliferation, and the expression of hair
genesis genes in vitro and de novo hair biogenesis. Also, they had a better result in cell
adhesion. In this proposed scaffold, the RADA16 peptide helped the formation of adequate
nanofiber and PRG rendered the integrin-binding motif, and increased cell survival and
hair follicle biogenesis (Figure 12) [230].

4.9.4. Mesenchymal Stem Cells (MSCs)

Owing to self-renewal and multi-differentiation capability into mesenchymal and
non-mesenchymal cells, hMSCs have directed scientists towards combining them with
biomaterials used in culturing and delivery [272]. In principle, culture dimensions di-
rectly influence cell behavior and differentiation of stem cells at various matrix rigidities.
This behavior stems from the differences between 2D and 3D systems, including mass
transport, cell adhesion, cell-cell, and cell-biomaterial interactions, as well as mechano-
transduction [273]. Self-assembled peptide hydrogels composed of fibrous KFE-8/KFE-
RGE are suitable biomimetic substrates to directly compare 2D and 3D matrices studied
by Hogrebe and Gooch on hMSCs differentiation [274]. In the various matrix stiffness,
constant RGD peptide, and similar inducers, 2D culturing facilitated efficient osteogenesis,
while chondrogenesis has resulted in encapsulation in 3D scaffolds. It was shown that
at given stiffness, adipogenesis was induced by 3D matrix better than 2D culture. This
study proved that matrix dimensionality and stiffness play an essential role in tissue en-
gineering [274]. The combination of 2D and 3D systems exhibited a promising scaffold
that the surface features of the 2D design can be effectively transcripted in 3D cultures.
An injecTable 3D composite composed of graphene oxide (GO) and polypeptide thermo-
gel was proposed for adipogenic differentiation of MSCs derived from tonsils, by which
the expression of adipogenic biomarkers was enhanced. Additionally, the incorporated
MSCs supplied insulin as an adipogenic differentiation factor, which was adhered to GO,
partially denatured in the presence of GO, and participated in adipogenic differentiation.
In conclusion, the suggested thermogel composite could provide tissue volume and a 3D
matrix for adipogenic differentiation [273].

Another main factor in hydrogel development is their bio-functionality reached by
functional sequences such as RGD and its analog, RGE, peptides. Due to the very hy-
drophilic nature of RGD peptides, mixing with F-moc-diPhe increased the stability of
hydrogelators. A 3D self-assembled network of Fmoc-diPhe and F-moc-RGD peptides was
fabricated to present bioactive moieties at the hydrogel surface appropriate for cell adhesion.
Furthermore, proliferation and cell survival were increased by F-moc-diPhe/Fmoc-RGD
hydrogel in the case of MSCs-induced osteogenic, adipogenic, and chondrogenic differenti-
ation in both in vitro and in vivo conditions. It is proved that as-prepared hydrogels can
improve cell attachment, proliferation, and multi-differentiation useful for musculoskeletal
tissue engineering because of the viable cell culturing and a mild immune response [275].
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nude mice. (E) Calculation of the number of hair shafts and the average number of hair shafts per
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Under certain conditions, neurons and glial cells can be developed by differentiating
bone marrow-derived MSCs in vitro and in vivo. Bone marrow MSCs modified by neu-
rotrophic factor genes have unveiled higher biocompatibility and differentiation potential
when embedded in a functionalized peptide hydrogel. The modification of MSCs was
investigated by specific surface markers such as CD90, CD29, and CD45. RADA16-PRG
hydrogel was synthesized as a carrier for modified MSCs. Cell growth and proliferation, the
expression level of growth factor mRNA, neuron-specific enolase (NSE), and glial fibrillary
acidic protein were evaluated to determine hydrogel efficiency. It is observed that the mod-
ified hydrogels compared with control revealed a significant increase in gene expression,
cell growth and proliferation, and enhancement of NSE and reporter protein levels. Luo
et al. concluded that bone marrow-derived MSCs were differentiated into neural cells when
they were modified with neurotrophic growth factor and seeded in RADA16-PRG peptide
hydrogels. There was a synergetic relationship between gene modification and designed
hydrogels valid for spinal cord injury [276].

The functionalization of peptide hydrogels via spatial organization can significantly
influence cell functions and biological mechanisms [277]. In this regard, peptide hydrogels
can be designed and fabricated for diverse applications relying on the bioactive pep-
tide epitopes. Considering the roles of saccharides in cell attachment and the effect of
glycosaminoglycans in ECM, bioactive glycol-PA (Glc-PA) were used to create peptide
nanofibers, including E-Glc-PA and K-Glc-PA with flanking amino acids of Glu and Lys,
respectively, placed around bioactive sequences. Then, the influence of spatial organiza-
tion was investigated on cellular responses of rat-derived MSCs cultures on designed PA
nanofibers. It was demonstrated that the brown fat adipogenesis of MSCs significantly
induced by E-Glc-PA/K-PA rather than K-Glc-PA/E-PA and controls. As a result, the
spatial organization of bioactive groups developed different conformational signals by
which a significant difference was created in MSCs behavior. The suggested cost-effective
supramolecular structure revealed a great potential to culture SCs and tune the differ-
entiation profile into mature brown adipocytes without the requirement for any other
differentiation factors (Figure 13) [278].
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4.9.5. Embryonic Stem Cells

Patients with sensorineural hearing loss often have a problem in their inner ear. In
these cases, the use of cochlear implants can be promising as standard care with the
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regeneration of spiral ganglion neurons (SGNs) of the cochlea [279]. The implantation of
human ESCs into the inner ear can promote the regeneration of SGNs in animal models. At
the same time in the clinic, the efficiency of cell production, differentiation, niche condition,
and long-term survival should be improved [280]. Among all, supportive cell niches play
a vital role in regulating SC proliferation, differentiation, and survival. For this reason,
self-assembled PAs are known as appropriate structures to construct a functional niche
and meet needs as mentioned earlier. Self-assembled PAs are affected by hydrogen bonds
between amino acids and physiological conditions such as Ca2+ concentrations to form
3D gels, by which cell migration outgrowth is prepared. It is demonstrated that IKVAV-
PA gels are functional biomaterials to develop a robust SC niche in vitro and in vivo and
enhance the survival and differentiation of hESC-derived otic neural progenitor cells in
the inner ear. Additionally, IKVAV-PA gels were successfully injected into the human
cadaveric temporal bone and revealed positive effects for SC delivery in the clinic. So,
the combination of ESC transplantation with injectable PA gels is suggested to create an
appropriate microenvironment for inner ear regeneration [281].

4.9.6. Pluripotent Stem Cells Regenerative Application

Induced PSCs (iPSCs) attracted a great deal of attention regarding their potential
applications in regenerative medicine for transplantation, in vitro disease modeling, and
drug screening [282]. They are remarkable potential bio-systems able to differentiate
into osteoblasts and osteocytes [283]. In recent years, bone tissue engineering has been
introduced as a novel strategy for repairing bone defects and combining SCs and growth
factors with a porous biocompatible and biodegradable scaffold. In a study, in vivo bone
regeneration was investigated through iPSCs delivered in self-assembled 16-amino acid
peptide hydrogel. Micro-CT analysis demonstrated an increased regeneration in bone
tissue with iPSC seeded hydrogels compared to a salt solution or nanofiber scaffold [284].

In recent years, the transplanTable 3D scaffolds have attracted more attention due to
their potential to support cells and providing required surviving conditions and mechanical
maintenance [285]. It has been previously shown that human neurons can be derived from
human iPSCs by cell reprogramming. Accordingly, RADA16-I-based nanofibrous scaffolds
were designed as a 3D in vitro niche to evaluate the reprogramming and maturation of
iPSC-derived neurons by lentiviral-mediated transfection [286]. Also, a microfluidic-based
method was used to fabricate RADA16-I microspheres for in vivo delivery of neurons
into a mouse brain for the first time. It is demonstrated that the encapsulation of human
infected iPSC (iPSC-RN) was successfully carried out in designed hydrogels, and eight
days after induction, robust neurite outgrowth and expression of neural markers were
observed (Figure 14A,B). Despite the lack of bioactive domains in the RADA16-I hydrogel,
it could improve the proliferation of iPSCs by which the secretion of collagen I and laminin
as the ECM proteins was possible (Figure 14C). However, ECM protein secretion was
stopped after neural induction, along with limitations in viability and neurite outgrowth.
Electrical stimuli 12 days after induction were responded to by 89 ± 3.4% of encapsu-
lated neurons exhibiting the scaffold’s ability to mature the induced neurons functionally
(Figure 14D). Finally, microfluidic-base synthesized RADA16-I microspheres were injected
into the striatum of NOD-SCID IL2Rγc mice, and in vivo cell survival was screened three
weeks after transplantation to show the potential of the designed hydrogel as a neural trans-
plantation vehicle. Overall, RADA16-I hydrogels were introduced as an effective scaffold
in reprogramming and transplantation processes and promising for in vivo regenerative
medicine [286].
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Figure 14. Reprogramming and transplantation of hPSC-derived neurons supported by SAPNS
hydrogels. (A) Live/dead assay of cells encapsulated in RADA16-I SAPNS hydrogels. (B) Immuno-
chemical assay revealed neurite outgrowth at pre-induction and post-induction. (C) Secretion of
collagen I and laminin by hydrogel-encapsulated iPSCs. (D) Immunocytochemical assay of neuron
maturing with synaptophysin expression (up) and live-cell calcium images from time-lapse videos
(bottom). Reprinted with permission from Ref. [286], Copyright 2016, American Chemical Society.

4.10. Peptide-Based Hydrogel Assemblies for Wound Regeneration

Wound healing is an intricate process comprising a plethora of cellular and molecular
stages, including the homeostasis, inflammatory, proliferative (granulation, contraction,
and epithelialization), and maturation (remodeling) phases [287–291]. Due to certain con-
ditions such as bacterial infection, renal disease, ischemia, diabetes, and local hypoxia
developing the complex wound with a length of healing time, and life-threatening ability,
the focus of fundamental research is more on antimicrobial properties and cost-effective
materials [288]. Proteolytic enzymes such as elastase, MMP, plasmin, and reactive oxygen
and nitrogen species (ROS & RNS) are exuded from chronic wounds. They are interrupting
the balance between the degradation and maturation process and also changing the oxi-
dant/antioxidant condition in non-healing cells. It is previously studied that ROS can be
served as an MMP inducer and cause necrosis and permanent damage in injured tissues. To
solve this problem, Barros et al. proposed that the decline in ROS/RNS and elastase levels
can pave the road for chronic wounds to accelerate wound healing via normal process [288].
They successfully found small peptides including Pep4 (KRCCPDTCGIKCL) and Pep4M
(KRMMPDTMGIKML) from the antimicrobial domain of an endogenous elastase inhibitor
useful in wound dressing applications [288].

Providing a moist environment, inhibiting secondary infections, absorbing the wound
exudates, reducing wound necrosis, preventing wound desiccation, and the delivery
and stimulation of the growth factors are the main features to select a desirable wound
dressing [287]. Considering the potential of biodegradable and biocompatible hydrogels in
swelling, in situ gelling, small molecule delivery, and their hydrophilicity, there is a plethora
of reports that have developed hydrogel-based platforms to heal various wounds [292–294].
The swelling capability minimizes the risk of bacterial infections since it avoids the for-
mation of fluid-filled pockets. Likewise, in situ gelling can form a cross-linked network
and provide a platform to control small molecule (drugs or growth factors) delivery and
the complete closure of the wound. Tending toward the fabrication of healing materials
with antimicrobial properties has attracted more attention to antimicrobial agents such as
antibiotics, AgNPs, and antimicrobial biopeptides with potent inhibition activity against a
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broad range of bacteria [295]. The hydrogel wound dressing is an essential application of
hydrogels, concentrating more attention on the wound and burn management [287].

Owing to biocompatibility, chemical and physical degradation, high water content,
porosity, mechanical strength, and tissue-like viscoelasticity, as well as cell adhesion prop-
erties, peptide hydrogels have attracted the interest of the scientific community for biomed-
ical applications. Some reported hydrogels have exhibited good mechanical features and
biodegradability useful to wound sites for tissue repair [296–298]. Hydrogels with a 3D
network structure and tunable physicochemical properties have opened a new gateway in
biomedical fields, including commercial wound dressing, contact lenses, and hygiene prod-
ucts [299]. Various commercial products are introduced in the market to aid external wound
healing. For instance, the products formulated with hydrocolloids, alginate, polyurethane,
silicone, or nylon can be mentioned. However, the investigation of new materials becomes
the focus of fundamental research for wound healing applications. In this regard, hydrogels
formed by synthetic polymers, especially peptide-derived hydrogels, have sparked great
interest in tissue regeneration. In recent years, a series of peptide sequences with three to
seven amino acid residues are identified able to be self-assembled in water and form cost-
effective, non-immunogenic, elastic, and biocompatible hydrogels [290]. Self-assembling
peptides are forming various reversible supramolecular structures including fibrils, mem-
branes, and gels by weak non-covalent interactions and mimic the natural fibrillar proteins
in ECM [294]. Aggregation of these structures results in 3D networks revealed the capa-
bility to support cell growth and differentiation for in vitro and in vivo applications [300]
and as carriers for transplanted cells. As an example, Ac-(RARADADA)2-CONH2and Ac-
(RADA)4-CONH2 are organized β-sheet superstructures known as appropriate scaffolds
for wound healing, 3D culture, and synapse growth [301].

In the case of peptide-derived hydrogels, the optimization of different sequences
is necessary to find nanostructures with greater stiffness, elasticity, and shape fidelity
in water after a prolonged period. As an example, cysteine-mediated disulfide cross-
links introduced to ultrasmall peptide sequence by which the conjugation of peptide
fiber to bioactive signals and gels purification were quickly possible. Furthermore, their
elasticity and shape maintenance were rendered by oxidation. Using these features, the
prepared peptide gels were esteemed as a candidate for diverse applications in regenerative
therapies, especially in wound healing [302]. Consequently, several hydrogels based on a
Cys-containing peptide, LIVAGKC, were considered to further the characterization suitable
for skin applications, in particular, efficiency in cutaneous wound healing as an ideal
cost-effective, straightforward, and easy to handle dressing with a removal ability in
comparison to commercial DuoDerm and Tegaderm products. The cross-linked LIVAGKC
functionalized with CRGD endowed these properties. In this study, it was unveiled that
the properties of peptide-based hydrogels can be controlled via crucial mutation at a single
amino acid residue; thereby, each prepared sequence exhibited unique physical properties,
including gelation concentration, stiffness, elasticity, and transparency. Measuring the rate
of water lost from the gel sample proved that peptide nanofibers impressively entrapped
water to moisten the wound for at least seven days without physical changes in gels. In vivo
investigations in mice suggested accelerated wound healing by topical usage of peptide
hydrogels infused with a supplemented medium by serum and growth factors [290].

The last decade has witnessed increased interest in applying self-assembled peptide
hydrogels as a promising alternative to the traditional scaffold in regeneration medicine.
They spontaneously form nanofibers and subsequently a scaffold-like tissue-bridging struc-
ture. Peptide self-assembly can be further served as regenerative agents for soft tissues
(e.g., blood vessels and skin), forming new blood vessels from existing ones through angio-
genesis [4,303]. Nanoscale peptide fibers can induce a direct interaction between peptide
scaffold, ECM, and damaged tissue on both sides of the lesion, allowing cell migration into
the scaffold. For instance, one of the ionic self-complementary peptides, the RADA16-I
peptide, has attracted plenty of attention due to its capability to promote neural cell pro-
liferation and synapse formation, fill wound sites, and repair injured optical pathways.
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RADA16-I can confer several features such as the formation of a nanofiber network similar
to ECM to provide an in vivo cell growth microenvironment; degradation to L-amino acids
utilizable by circumambient tissue; lack of biological and chemical contaminants common
in animal-derived materials like collagen; and avoiding the tissue rejection due to non-
immunogenic responses [297]. However, the acidic pH of RADA16-I can restrict further
broad applications because it may damage the cells and host tissues in 3D culture. To
enhance the efficiency and overcome this limitation, Sun et al. proposed a stable nanofiber
hydrogel composed of IKVAV from laminin and the sequence RGD from fibronectin at
natural pH [294]. Contrary to RADA16-I, 3D-IKVAV/-RGD presented high viability in
neural progenitor cells/stem cells without the need for a growth factor for differentia-
tion. In addition, nerve regeneration and promotion of myelination were proved in vivo
on Schwann cells by designed hydrogels compared to RADA 16-I [298]. Loo et al. [292]
introduced an intelligent L-lysine-containing peptide hydrogel with an innate tendency
to self-assembly and formation of helical fibers. So, it can be a perfect building block
to accelerate wound closure in vivo in rat burn model as they maintain an ideal water
hydration condition for partial-thickness burn wound healing. On these terms, they carried
out a comparative study between two peptide-based hydrogels and a standard-of-care
(Mepitel®, a silicon-coated polyamide net). Early exploration demonstrated earlier onset
and completion of autolytic debridement to promote epithermal and dermal regeneration
without the need for exogenous growth factors. Hypertrophic scar formation and infection
risks play a pivotal role in determining the rate of wound closure. It was shown that the
ultrashort peptide hydrogels filled a niche sorely neglected by current treatment options.
In this case, to enhance wound healing, the regenerative properties can be further increased
by the incorporation of bioactive moieties such as drugs, antimicrobials, growth factors,
and cytokines. It is noteworthy that peptide hydrogels are more highlighted as scaffolds
for skin regeneration able to serve in case of deep, partial, and full-thickness burns with
a non-immunogenic response. Aiming to develop cost-effective “just-add-water” formu-
lations, the high stable hydrogels at room temperature can be reconstituted by adding a
specific volume of clean water to lyophilized peptide powder [292].

Xie et al. reported an in situ formation of novel biodegradable hydrogels using a
copolymer network of poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene
glycol) diacrylate (PEGDA) as a biodegradable dressing. It can be advantageous to conform
to the skin wound shape and prevent bacterial invasion in vitro and in vivo in rats using
functionalization by antimicrobial peptides including CHRG01, ABU-CHRG01 (ABU), Tem-
porinA (TEMP-A), and Ala5-Tritrp7 (ALA5). They successfully developed an optimized
hydrogel with ideal mechanical and physical performance, biodegradability, and antimi-
crobial properties, achievable due to biocidal peptides. The feasible usage of prepared
hydrogels on the rat skin wound model was illustrated by a preliminary in vivo study that
promoted wound healing and prevented infections [295].

Xiao et al. [304] proposed a wound healing approachable to promote keratinocyte
migration, protect the cells against ROS, and change the ECM to improve cell attachment.
The glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine (QHREDGS)
peptide was introduced as an angiopoietin-1–derived peptide capable of interacting with
integrins with a plethora of applications such as endothelial cell metabolism enhancement,
neonatal rat cardiomyocyte attachment, survival promotion, osteoblast matrix deposition,
and mineralization induction. It is assumed that QHREDGS peptide can also function
in diabetic wound healing. According to the hypothesis, the QHREDGS peptide within
chitosan–collagen film coating immobilized on normal and diabetic keratinocytes to find
its influence on the attachment, survival, and migration of cells. It is also assessed in
the diabetic mice model to prove wound repair promotion in vivo. The in vitro study
on normal neonatal human epidermal keratinocytes (HEKs) illustrated no significant
effect of the peptide on proliferation and migration rate (Figure 15A). At the same time,
the HEKs under oxidative stress presented a dose-dependent survival increase in the
presence of QHREDGS (Figure 15B). To enhance the efficiency, the QHREDGS peptide



Polymers 2023, 15, 1160 35 of 52

was covalently immobilized to a chitosan-collagen hydrogel. It is indicated that the HEK
attachment was promoted by the QHREDGS peptide but the presence of collagen masks
this impact. Due to the importance of keratinocytes migration in wound healing, the effect
of the immobilized peptide was assessed on HEK migration and confirmed the influential
role of the immobilized QHREDGS peptide to accelerate collective HEK migration in a
dose-dependent manner (Figure 15C). Likewise, the immobilized QHREDGS peptide was
examined on adult diabetic HEKs (DHEKs) and found similar results in the promotion of
DHEK attachment to chitosan-only films as shown in Figure 15D. The effect of immobilized
QHREDGS peptide on DHEK survival under oxidative stress conditions showed significant
improvement in DHEK survival (Figure 15E). The capability of immobilized QHREDGS
peptide to accelerate wound healing in diabetic mice models was also shown and it resulted
in more minor wounds after 14 days of therapy (Figure 15F). To compare the proposed
system with an FDA-approved treatment, the potential of a high-peptide hydrogel against
CloActive collagen dressing was demonstrated in vivo, and closed wounds were found
after 21 days in the high-peptide hydrogels (Figure 15G). As a result, the QHREDGS peptide
can act as an alternative candidate to promote diabetic wound healing [304].

To treat the chronic wound defect, injectable self-assembled peptide (RADA-16) hy-
drogels conjugated with substance P were proposed for skin regeneration in diabetic rat
models. Furthermore, substance P (an 11-amino acid neuropeptide) used in designed hy-
drogels remained in the wound area for three weeks due to its homing effect and mobilized
the endogenous MSCs from bone marrow to wound sites which had a therapeutic impact
on the wound. It is confirmed that wound healing was promoted by P conjugated-self
assembled peptide with increased mobilization of MSCs and without cell transplantation
in the type I diabetic model [305].

Connexin43 (Cx43) is identified by pre-clinical studies as a therapeutic target in
dermal wound healing that can accelerate wound re-epithelialization. In a survey by
Grek et al. [306], a 25-amino acid synthetic peptide mimetic of the C-terminus of Cx43,
ACT1, was evaluated on non-healing neuropathic diabetic foot ulcers with standard care
treated in adults with ulcers of at least four weeks duration. It was concluded that ACT1
embedded in a hydroxyethyl-cellulose hydrogel could significantly reduce the ulcer area,
accelerate wound closure, and cause 100% ulcer re-epithelialization without adverse effects
and any immunogenic responses. Likewise, the combination of adipose tissue-derived
stem cells’ activity in wound healing and Exendin-4 (a glucagon-like peptide-1 receptor
agonist) effects on diabetes revealed an accelerated reduction in wound size and skin
reconstruction. As a result, migration, invasion, and proliferation were surpassed in human
endothelial cells and keratinocytes via combination therapy of Ex-4 and SCs [306]. These
proof-of-concept studies can be utilized for further experiments in the wound healing
process and use the mentioned peptides in superstructures such as hydrogels.

4.10.1. Peptide Hydrogel as a Tool in Angiogenesis-Mediated Wound Healing

Tissue regeneration is strongly dependent on angiogenesis. This process plays an
essential role in diverse wound healing [307]. It is proven that the semi-occlusive usage
of hydrogel dressing can initiate the angiogenesis process due to temporary hypoxia,
by which the growth of tissue in an adequate supply of oxygen and nutrients to the
wound surface is ensured [287]. For instance, Moore et al. suggested a simple nanofibrous
peptide (K2(SL)6K2) hydrogel innately promoting a robust angiogenic response in vivo
while containing no drugs and proteins, nor cells or bioactive sequence. It is finely revealed
that this implantable hydrogel can infiltrate many target cells, provoke an inflammatory
reaction in a few days and result in the maturation and remodeling process (Figure 16). The
selected amino acid sequence was an amphiphilic peptide with self-assembling property in
an aqueous solution by which β-sheet secondary structure could form nanofibers acting as
native ECM. Due to the inflammatory response and hydrogel density, the peptide hydrogel
has sparked great interest as a candidate material for tissue regeneration applications [293].
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Figure 15. Regeneration and re-epithelialization evaluation of non-healing diabetic wounds with
peptide hydrogels treatment. (A) Kct-positive human epidermal keratinocytes (HEK) cultured in low
(100 µM) and high (650 µM) concentrations of QHREDGS peptide exhibited no significant amount
of BrdU and similar proliferation rates in all samples. (Scale bar: 50 µm; Kct: green; BrdU: red;
and DAPI: blue). (B) The EarlyTox Cell integrity assay demonstrated HEK survival after hydrogen
peroxide treatment due to peptide protection (Scale bar: 200 µm). (C) HEK-wounding experiments
on designed films in different concentrations of the conjugated peptide by which HEK migration
was accelerated in a concentration-dependent manner (scale bar: 200 µm). (D) DHEK attachment
was demonstrated on the chitosan-collagen films in different concentrations of QHREDGS peptide
(scale bar: 200 µm). The presence of the peptide caused the promotion of DHEK attachment on
chitosan films rather than on chitosan-collagen films. (E) DHEK wounding experiment on designed
films immobilized with peptide (scale bar: 200 µm). DHEK migration was increased with peptide in
comparison with control. (F) Gross images of the initial wounds on days 0 and 14 treated with no
hydrogel, peptide-free hydrogel, and low-dose peptide-immobilized hydrogel. (G) Gross images of
initial wounds on days 0 and 21 treated by no hydrogel, peptide-free hydrogel, ColActive collagen
dressing, and High dose peptide immobilized hydrogel. Wound size measurement showed an
accelerated wound closure in treatment with peptide. Reprinted with permission from Ref. [304],
Copyright 2016, National Academy of Sciences.
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Figure 16. Angiogenesis and neurogenesis elicitation by nanofibrous peptide hydrogel. (A) A
dimer of K2(SL)6K2 peptides represents a hydrophobic sandwich; (B) Nanofiber formation by
self-assembled K2(SL)6K2 peptides; (C) SEM representation of the K2(SL)6K2 hydrogel (Scale bar:
200 nm); (D) Schematic illustration of hydrogel injection into dorsal tissue; (E–H) Hydrogel remod-
eling representation during six weeks initiated with cell infiltration followed by angiogenesis and
innervations and finishing with slow biodegradation. Reprinted with permission from Ref. [293],
Copyright 2018, Elsevier.

In another study, owing to self-assembled ability, antimicrobial activity, feasible modi-
fication for biological activities, and ECM mimetic behavior, the placental growth factor-
1(PlGF-1)-loaded supramolecular composite hydrogel generated by multi-domain peptide
nanofibers and liposomes attracted a great deal of attention acting as time-controlled drug
delivery systems. The fabricated composite was examined for PlGF-1 release and its ability
in spatial- and temporal-controlled angiogenesis induction in vitro and in vivo. It is proved
that the modulation of HUVEC VEGF receptor activation in vitro and mature blood vascu-
lature in vivo is endowed by MDP(Lipo(PlGF-1)) implant. There is scientific consensus on
MLCs ability to serve as matrices for tissue regeneration, by which high levels of cellular
infiltration and preparation of suitable scaffold for stable vasculature are possible [308].

4.10.2. Antibacterial Peptide Hydrogel for Wound Healing

Chronic and acute wounds are seldom hampered by infections developed initially by
gram-positive bacteria as a normal skin biota. After more than four weeks, gram-negative
bacteria result in chronic infections [309]. In recent years, most studies have concentrated on
research efforts to develop cost-effective, antibacterial substances for wound dressing. The
utilization of nanotechnology in the treatment of wound infections attracted tremendous
attention due to its high surface area-to-volume ratio, controlled physical properties (poros-
ity, size, shape, etc.), and feasible sustained drug release. Fluoroquinolone ciprofloxacin, as
an effective antibiotic, has been used widely in topical applications, including skin and eye
infections. For the first time, Marchesan et al. [310] reported the self-assembly of soluble
antibiotic and a hydrophobic tripeptide (DLeu-Phe-Phe) to prepare a macroscopic hydrogel
with high drug loading (30% w/w). It could act as a novel stable antibacterial formulations
and control release of the ciprofloxacin. The antibacterial effect of a self-assembled hydrogel
loaded by ciprofloxacin was evaluated against Staphylococcus aureus, Escherichia coli, and
Klebsiella pneumonia exhibited sustained drug release. It should be mentioned that the
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hydrogels alone also revealed a mild antibacterial effect on gram-negative bacteria without
producing undesirable side effects or cytotoxicity on L929 fibroblast cells. According to
these results, the designed nanostructure can prolong drug release and manage wound heal-
ing infections (Figure 17) [310]. Besides, antibacterial NPs such as AgNPs become the focus
of some research in the case of wound management and antibacterial Ag-hydrogels pre-
pared by various materials via different approaches. Among all, self-assembled Ag-doped
diPhe-constructed hydrogels demonstrated an Ag dose-dependent antibacterial activity
against Staphylococcus aureus with a synergistic combination of antibacterial properties of
Ag and structural features of hydrogels. There was no antibacterial activity in hydrogels
without silver. The proposed hydrogel not only plays a key role in ECM simulation to
entrap Ag but also can prepare the moist environment to promote accelerated wound
healing [311].
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ciprofloxacin (CIP) and tripeptide DLeu-Phe-Phe; (B) hydrogel formation by self-assembly with
pH change; (C) Cryo-TEM (C1) and TEM (C2–C4) images of hydrogels loaded by CIP (C1,C3,C4)
and tripeptide (C2) (Scale bar: 200 nm). (D) Microgel well diffusion assay measured the antibacterial
efficacy of CIP-gel on Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia at low (top) and
high (bottom) bacterial densities; (E) Live/dead assay for L929 fibroblast cultures on hydrogel or
plastic used as control after three days (Scale bar: 50 µm). Reprinted with permission from Ref. [310],
Copyright 2013, Elsevier.
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Antimicrobial hydrogels are prepared by cationic polymers or peptides, by which im-
munogenicity and inflammation, as well as cytotoxicity to mammalian cells, are concluded.
To circumvent these challenges, supramolecular biocompatible and fibrous hydrogels were
synthesized via self-assembly of oligopeptides modified by a 9-fluorenylmethoxycarbonylin
aqueous solution. So, modified phe as a novel hydrogelator was co-assembled with antibac-
terial peptides to generate antibacterial hydrogels with selective Gram-positive antibacterial
activity to treat wound infections’ bacteria [312].

In wound healing, wound infection resistance to some antibacterial treatments is more
concerning [309]. Due to their fibrous architecture and high water content, as well as ECM-
like functionality, self-assembled peptides are considered promising candidates for wound
dressing. Furthermore, ultrashort self-assembled peptides are introduced that have an extra
advantage of antibacterial activity. As an example, Lacerty et al. reported an ultrashort
cationic dipeptide conjugated to naphthalene with antimicrobial properties to prevent
infections in wound healing. The antibacterial activity of hydrogels was explored against
bacterial biofilms common in implant-related infections, revealing concentration-dependent
antibiofilm activity [313]. In another study, the ultrashort peptide hydrogels impregnated
stable AgNPs were synthesized by self-assembly in water applicable in wound healing and
assessed for antibacterial properties. The hydrogel was made from aliphatic amino acids,
Ac-LIVAGK-NH2, as a matrix in which AgNPs were synthesized with silver nitrate by in
situ UV irradiation method in a size-controlled manner. Using this strategy, the initial burst
release within 48 h, followed by the sustained release of AgNPs, was observed for 14 days,
necessary for antibacterial therapy. Inhibition of gram-negative (E. coli and P. aeruginosa)
and positive (S. aureus) bacterial strains was proved by the disc diffusion method. The best
results were for P. aeruginosa responsible in multidrug resistance. Owing to the low AgNPs
content, sustained release, and biocompatibility on HDFa cells, the suggested hydrogels
are proposed as a promising candidate in wound healing application [168].

5. Conclusions and Outlook

The present review has summarized supramolecular peptide hydrogels as self-assembled
3D structures, including their fundamental building blocks and formation together with
their applications in various biomedical fields such as targeted drug delivery, wound
healing, and 3D cell culture scaffolds. Owing to their inherent low toxicity, high biocompat-
ibility, mechanical tunability, plus the capability to target small therapeutic drugs, some
of these well-defined self-assembled peptide hydrogels have started to open their way
into many clinical products for tissue engineering [314,315]. Table 2 has outlined some of
the recent works performed regarding the use of self-assembled supramolecular peptide
structures in clinical trials.

Although to date, self-assembled supramolecular peptide structures have shown
outstanding results, there are still some issues to be tackled for these structures to enter
any clinical trial phases. For instance, the in vivo toxicity of these nanostructures following
systemic administration and the biodistribution of these peptide-based hydrogels are
among the most important issues that should be addressed in more detail. A comprehensive
evaluation of these two items will help researchers to design more biocompatible self-
assembled peptide structures, which can be used for in vivo applications.

Additionally, more effort should be made to design peptide carriers with a more
extended range of functions. To do so, the addition of polymers or nanomaterials to
produce the pH, thermos, or magneto-responsive peptide hydrogels is of great importance.
Furthermore, when used as a scaffold for SC transplantation, special attention should be
devoted to the design of peptide hydrogels with the optimum mechanical properties as
mechanical signals play an inevitable role in determining SC’s fate upon integration into a
bio-scaffold [316].

The sterilization process of peptide-based materials is another concern that should be
addressed, especially when used as injectable hydrogels. It is necessary to ensure hydrogel
sterilization without compromising the functionality of the peptide hydrogels.
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Lastly, when designing a peptide-based hydrogel for drug delivery and tissue engineer-
ing applications, the risk of recognition by the adaptive immune system and elimination
should be brought under certain attention. Even though so many short-sequence peptides
are not likely to provoke an immune response, longer sequences may evoke such immuno-
logical reactions [317]. Nevertheless, modification of hydrogel surface charge or using
specific software to compare the hydrogel sequence with a database of known immune
epitopes seems to be some useful suggested solutions to manage this issue [318].

Table 2. A list of the performed works in clinical trials for self-assembled supramolecular pep-
tide structures.

Commercial
Name Target Organ Peptide

Structure Application Field Ref.

Curodont
repair Early occlusal caries P11-4 Dentistry tissue

regeneration [314]

- Initial buccal caries P11-4 Dentistry tissue
regeneration [319]

- Early buccal carious
lesions P11-4 Dentistry tissue

regeneration [320]

- Surface caries lesions P11-4 Dentistry tissue
regeneration [321]

-
Orthodontic

treatment-induced
carious lesions

P11-4 Dentistry tissue
regeneration [322]

PuraStat Bleeding small blood
vessels in cardiac surgery RADA16 Hemostatic agent [323]

SAPB-T45K Skin lesion excision T45K Hemostatic agent+
Faster wound healing [324]

Purastat Endoscopic submucosal
dissection RADA16 Hemostatic agent [325]

PuraMatrix Peritoneal effusion RADA16 Hemostatic agent+
Faster wound healing [326]
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