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Abstract: This study proposes a novel process that integrates the molding and patterning of solid-
state polymers with the force generated from the volume expansion of the microcellular-foaming
process (MCP) and the softening of solid-state polymers due to gas adsorption. The batch-foaming
process, which is one of the MCPs, is a useful process that can cause thermal, acoustic, and electrical
characteristic changes in polymer materials. However, its development is limited due to low pro-
ductivity. A pattern was imprinted on the surface using a polymer gas mixture with a 3D-printed
polymer mold. The process was controlled with changing weight gain by controlling saturation time.
A scanning electron microscope (SEM) and confocal laser scanning microscopy were used to obtain
the results. The maximum depth could be formed in the same manner as the mold geometry (sample
depth: 208.7 µm; mold depth: 200 µm). Furthermore, the same pattern could be imprinted as a layer
thickness of 3D printing (sample pattern gap and mold layer gap: 0.4 mm), and surface roughness
was increased according to increase in the foaming ratio. This process can be used as a novel method
to expand the limited applications of the batch-foaming process considering that MCPs can impart
various high-value-added characteristics to polymers.

Keywords: solid-state batch-foaming process; surface-patterning process; polymer–gas mixture;
surface roughness; compression molding; volume expansion

1. Introduction

The microcellular-foaming process (MCP) is a representative engineering technol-
ogy that is commercialized owing to the attention it receives from the industry, solving
the problem of plastic consumption with three constraints: reducing plastic usage, main-
taining mechanical properties, and not changing the geometrical shape of a product [1].
Previously, MCPs were primarily used in packaging, automatic interior and exterior mate-
rial manufacturing, construction, and insulation [2]. However, MCPs have been widely
used in high-value-added industries, such as drug delivery [3], bioscaffolds [4,5], EMI
shielding [6,7], and filtration [8,9].

An MCP includes three stages. The first step is to combine a polymer and a physical
blowing agent (PBA), which are separated into individual phases from a single phase under
high pressure [10]. Because of gas adsorption, some property changes occur in polymers,
such as tensile strength, elastic modulus, and impact strength [11]. After the first step,
diffusion occurs due to Gibbs free energy in a single phase, and cell nucleation and cell
growth occur owing to thermodynamic instability, which is caused by a rapid change in
solubility due to a change in temperature or pressure. Additionally, the third step is the cell
stabilization step, which is described in Figure 1 as the step of generating and stabilizing
cells [12]. Furthermore, MCPs include a solid-state batch process, injection molding, and ex-
traction foaming. Additionally, based on the continuity of the process, they can be divided
into a solid-state batch-foaming process and the remaining processes [13]. The solid-state
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batch-foaming process is easy to control because all the stages are separated independently.
However, the processing time to produce a single phase in the first step is very large. Thus,
it is primarily used for fundamental studies or lab-scale experiments [14]. In the case of
the injection-molding and extraction-molding processes, although variables should be
controlled, it is a continuous process with high productivity. Therefore, it is selected and
used in various industrial fields based on target requirements [15]. MCPs also can be used
for overcoming shrinkage or warpage, which frequently occurs in injection-molded plas-
tics [16]. Recently, there is research about combining MCPs with other injection-molding
technology, such as in-mold decoration [17]. Furthermore, there are other controllable
process parameters, such as mold temperature [18], and counterpressure [19]. By optimiz-
ing these variables, MCP injection molding has kept developing [20,21]. Although the
solid-state batch process was developed 40 years ago, due to its low productivity, industrial
applications are limited to McPET and McPC, which utilize changes in reactivity after
foaming [22]. Injection molding and extrusion are utilized in industry and actively used
in automobile interior materials and structures, whereas batch solid-state processing with
insufficient application is considered a minor part of MCPs and a basic field that cannot be
applied to industry. However, new studies on application processes using batch solid-states
have recently emerged. A novel continuous batch-foaming process was proposed by com-
bining an additive management process and solid-state batch foaming, resulting in effective
cell delay [22]. Additionally, studies have been conducted to form a solid polymer–gas
mixture through a batch process and then perform foam patterning on its surface through
thermal activation [23,24]. A solid-state process performed at room temperature and pres-
sure has the advantage of significantly reducing energy consumption [25]. In addition,
because of easy-to-control foaming conditions in the batch-foaming process, it is easy to
achieve target properties, such as optical reflectivity [26] and electronic characteristics [27].
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Figure 1. Mechanism of the microcellular-foaming process.

This study seeks to solve the reduction in energy used in the patterning process by
compression molding while maintaining resolution through gas saturation and the foaming
process. First, the gas adsorption is predicted through two experimental values (weight
gain) using a suggested model [28], and the experimental parameters are determined
through this curve. A specimen is placed in a patterning jig manufactured using a 3D
printer to perform a compression-molding process, and the force generated by volume
expansion is converted into a force taking a pattern in reverse. Through this study, the
process of patterning a solid-phase polymer surface is successful with multiple scales of
pattern, and the procedure is named solid-state surface patterning on a polymer using a
microcellular-foaming process.
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2. Materials and Methods
2.1. Materials
2.1.1. Specimen

In this study, polymethyl methacrylate (PMMA) (LX MMA, Yeosu City, Jeollanam-do,
Republic of Korea) was used, which is known as acrylic and is a representative amorphous
thermoplastic. Additionally, it is currently used as a substitute due to high resistance to
wear. This study proposed a novel solid-state surface-pattern-imaging process based on
volume expansion that occurred during the foaming process; a specimen with large volume
expansion was more advantageous. Therefore, to increase the volume expansion, PMMA,
which has a carbonyl group friendly to CO2 as a functional group [29], was selected as the
target of the experiment, with a much higher amount of CO2 gas adsorption than other
amorphous thermoplastics. The geometry and properties of the specimen are listed in
Table 1.

Table 1. Specifications of the PMMA in this study.

Property Value

Width × height (mm) 25 × 25 (±0.5)
Density (g/cm3) 1.19
Thickness (mm) 1.25–1.28

Purity (%) 99.98
Glass transition temperature (◦C) 110

Melting temperature (◦C) 158
Coefficient of thermal expansion (/◦C) 6 × 10−5

2.1.2. Blowing Agents

Nitrogen and CO2 were the primary gases used as physical blowing agents (PBAs),
and the two gases were selected based on the target properties of the experiment and
the cellular plastic. CO2 shows relatively high solubility compared to nitrogen, with low
diffusivity [30]. Therefore, in the case of an injection-molding process that implements a
low expansion ratio (high-density foam), nitrogen is used rather than carbon dioxide as a
physical foaming agent [31]. In contrast, as described in the previous chapter, CO2 is used
as a physical foaming agent due to conditions where gas addition should be high (purity:
99.9%; 40 L; Samhung GasTech, Seoul, Republic of Korea).

2.2. Experiment Setup
2.2.1. Solid-State Batch-Foaming Process

A high-pressure vessel was used to form a solid-state polymer–gas mixture, and an im-
age of the actual equipment used in this experiment is shown in Figure 2. A batch-foaming
process is classified as a one-step technique, which induces thermodynamic instability
through a pressure drop, or as a two-step technique, which induces thermodynamic in-
stability through temperature [32]. In this study, cell nucleation and growth was omitted
despite using the two-stage technique of quenching the polymer–gas mixture in glycerin
above the glass transition temperature. Therefore, a compression force was applied to the
polymer–gas mixture to induce cell nucleation and growth after producing the polymer–gas
mixture through the gas saturation process. The inner and outer radii of the pressure vessel
were 75 and 100 mm, the inner and outer heights were 150 and 185 mm, and the total
thickness was 25 mm, respectively. The gas adsorption, or weight gain, was measured
using the gravimetric method with an acuity of 0.01 g, (OHAUs, Model no. AR2130), and
the expression for the measurement method can be observed in Equation (1).

Weight gain (%) =
Weightadsorption (g)−Weightneat (g)

Weightneat (g)
(1)
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2.2.2. Compression Molding

The equipment of the compression-molding machine used in this process is shown in
Figure 3. The compressor connected to the compression-molding machine had a maximum
air pressure of 848 kPa, 3.375 kW, and a 40 L air tank. A mold-releasing agent was not used
in this research. The temperature of the top and bottom could be controlled up to 350 ◦C
with a thermocompression molding machine. The research only conducted experiments
with simple compression and did not apply heat since the research was conducted at
room temperature without thermal activation. The compression-molding jig is illustrated
in Figure 3b, and the inner part was 60 mm in width, 60 mm in length, and 5 mm in
thickness. Even if the thickness of the specimen used in this experiment was 1.25–1.28 mm
and swelling by CO2 was considered in a situation where foaming did not occur and a
single phase of polymer–CO2 was formed, compression did not proceed because a gap of
3–3.5 mm occurred immediately. Therefore, for an accurate compression-molding process
and surface patterning, a jig capable of fixing a specimen to the compression mold was
produced using a 3D printer.

2.2.3. Specimen Jig Using 3D Printer

A 3D printer was used to manufacture a jig for surface patterning in a specimen
injected with PBA inside the polymer. The experimental equipment used was a 3Dwox1
instrument (Sindoh, Seoul, Republic of Korea), and 1.75 mm of PLA filament was used.
Furthermore, PLA has a glass transition temperature in the range of 50–80 ◦C, which
is unsuitable for compression molding, which gives general temperature and pressure
together. However, since thermal activation was not required in this experiment, a PLA
with relatively high numerical stability was used. For accurate compression, a jig that could
fix the specimen was produced with a 3D printer, as illustrated in Figure 4. The 3D printer
jig had an outer length of 29 mm, an outer height of 5 mm, a jig wall of 1 mm, and an inner
depth of 1.3 mm. The pattern was created as a two-line model, the width of the pattern
was 0.1 mm, and the depth of the pattern was 0.1 mm.

2.2.4. Overall Process

In Figure 5, the entire process used in this experiment is integrated into a schematic.
First, to form the polymer–gas mixture state of the specimen, the specimen was saturated
using a solid-state batch-foaming process. After saturation, pressure was discharged from
the pressure vessel at a constant depressurization ratio and fixed to the jig drawn with
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the 3D printer, and the specimen was positioned on the compression-molding jig. In the
steady state where the process was sufficiently completed, each experimental variable and
the depth of the pattern was checked based on several factors, including weight gain and
cell morphology.
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3. Results
3.1. Gas Adsorption

Gas saturation was conducted to form a polymer–gas mixture (i.e., a single phase).
The experimental conditions are listed in Table 2. The microcellular-foaming process had
six experimental parameters: saturation pressure, saturation temperature, saturation time,
depressurization ratio, foaming temperature, and foaming time. In this study, because
thermodynamic instability through thermal stimulation was not desired, the saturation
temperature was set to room temperature, where the patterning process proceeded and
foaming temperature and foaming time were not considered. Because the intention was
to confirm the tendency of surface patterning as a function of gas concentration in the
polymer, the experiment was conducted while changing only the saturation time in a fixed
state. The trend of the adsorption curve was confirmed using Equation (2), which was
proposed for gas adsorption in a solid polymer based on Fick’s diffusion [28].

Mt −M0

M∞ −M0
= 1− 8

π2

∞

∑
n=0

1

(2n + 1)2 exp

(
− (2n + 1)2π2Dt

4L2

)
(2)

where Mt and M0 are the gas concentrations in the polymer at saturation time t and
the initial time, respectively, and M∞ is the solubility, which is the amount of gas in a
full saturation state. L is the thickness of the specimen, D is the diffusion coefficient,
and t is saturation time. Two experimental datapoints were required to calculate the
diffusion coefficient and full saturation among the unknowns in Equation (2). When the
saturation process was performed for 10 and 20 min, the weight gains were 7.87 and 11.09%,
respectively. Calculated by substituting the above data into Equation (2), the solubility was
18.99%, and the diffusion coefficient was 8.8668 × 10−3 mm2/min under the saturation
conditions of this study. In this study, to prevent gas adsorption of the polymer (PLA)
jig, only the PMMA sample was put into the high-pressure vessel. After the saturation
time, the specimen was taken out of the vessel and combined with the PLA jig under
atmospheric pressure.

Table 2. Experimental parameters used in this study.

Property Value

Saturation pressure (MPa) 5.5 (±0.05)
Saturation temperature (◦C) 20 (±0.5)

Saturation time (min) 10/60/180
Depressurization ratio (MPa/s) 5.5

Foaming temperature (◦C) -
Foaming time (min) -

The tendency of weight gain during this process is shown in Figure 6. The x-axis
represents saturation time, and the y-axis represents the weight gain calculated using
Equation (1). To provide an appropriate difference in weight gain, the saturation times
were selected as 10, 60, and 180 min, and the resulting weight gains were 6.13, 14.65, and
18.51%, which were confirmed to have a relative error within 0.2% compared to the value
predicted by Equation (2).
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3.2. Theoretical Mechanism

The conventional nucleation theory (CNT), which describes the formation of cells
inside polymers, describes cell nucleation as a calculation of required critical work. The
process of forming a polymer–gas single phase at high pressure increases the Gibbs free
energy. To lower the Gibbs free energy, bubbles are voluntarily formed inside a polymer, and
the change in the required work for the system is changed by increasing and decreasing the
size of the bubbles, which can be expressed by Equation (3). Although various models are
available for CNT, Equation (3) represents the change in work for homogenous models [33].

∆W = −(Pbub − Plocal)Vbub + γlgAbub (3)

where W is the required work for bubble formation, Pbub is the bubble pressure, Plocal is the
local pressure, Vbub is the bubble volume, γlg is the surface tension between the bubble and
the polymer–gas mixture, and Abub is the surface area of the bubble. When the derivative
of Equation (3) becomes zero, the corresponding change in work value can be regarded as
the maximum value, that is, it can be calculated as the critical required work. The radius at
that moment is determined as the critical radius and can be expressed by Equation (4) [34].

Rcr =
2γlg

Pbub − Plocal
=

2γlg

Pbub −
(
Psys + ∆Plocal

) (4)

where Psys is the total system pressure, and ∆Plocal is the local pressure fluctuation. Plocal
is considered as the internal pressure of the machine. Thus, Plocal can be separated into
Psys and ∆Plocal and can be expressed as the right term of Equation (4). If compression
stress is applied to a specimen through this process, it has the same effect as tensile stress.
Therefore, ∆Plocal has a negative pressure, thereby reducing the critical radius, as shown
in Equation (4). This implies that the probability of cell nucleation increases. Therefore,
theoretically, compression pressure can play a role in increasing the probability of foaming.
The weight gain and bubble pressure are linearly proportional according to Henry’s law. If
the critical radius is sufficiently small due to the synergistic effect of compression stress
and weight gain in the polymer, the activation energy for foaming is extremely small,
resulting in foaming without thermal activation. When cells are created inside a polymer,
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a phenomenon occurs in which a transparent specimen appears opaque. This is because
the path of visible light is interrupted by the cells inside the polymer and cannot penetrate.
This is one of the drawbacks of foamed polymers, and research is currently underway
to make foamed specimens transparent by forming sizes of cells that are smaller and
more evenly spaced than 300 nm, the wavelength of visible light [35]. Images of the four
specimens (neat, 10 min, 60 min, and 180 min) are shown in Figure 7, and we observed
that the foaming process occurred at 180 min. A foaming process in which the cell was
nucleated was conducted, so it was possible to visually check that the specimen turned
opaque when saturated for 180 min compared to other specimens. It could be verified that
a specimen that was not saturated (neat) was not patterned with compression molding
under ambient pressure at room temperature. Additionally, it was found that the glass
transition temperature was lowered through gas adsorption, so processing was possible,
but the desired patterning could not be performed without nucleation of cells when the
specimens saturated for 10 min and 60 min were checked. The quantitative analysis of the
patterning is discussed in the following section through various microscope analyses.
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3.3. Cell Morphology

We observed that a cell was formed inside the specimen with 18.51% weight gain
after saturation for 180 min. To examine the internal structure, the cell morphology of the
patterned material was confirmed using a field-emission-scanning electron microscope
(JEOL, Model JSM-IT-500HR), and the images are shown in Figure 8. For the neat sample
and samples with saturation processes performed for 10 and 60 min, no cells were generated.
In contrast, a patterned part could be confirmed at 10 min and 60 min in which no cells
were generated because gas molecules were dissolved into the polymer to reduce its chain
bond, thereby lowering the glass transition temperature below room temperature [36,37].
The specimens with 10, 60, and 180 min of saturation time had maximum depths of
33.33, 129.5, and 208.7 µm, respectively. These values were 16.67, 64.75, and 109.7%,
respectively, compared to the original patterning depth of 200 µm. The maximum depth
of patterning was measured from the surface, and when cells were formed inside and
foaming proceeded, patterning was successfully performed on a polymer of the desired
depth at room temperature and ambient pressure. To confirm the exact cell morphology of
the specimen subjected to saturation for 180 min, a scanning electron microscope (SEM)
image with a higher resolution was captured. Figure 9 confirms that 1–10 µm cells were
located between large cells of 200–300 µm, which can be identified in Figure 8. The cell
density appeared to be lower than that of microcellular-foamed polymers, which generated
cells through rapid phase changes using thermal activation energy. This was due to the lack
of energy for cell growth. After the cell nucleation site was determined, it was determined
through cell growth whether cells were formed or dissipated in the corresponding site.
Additionally, if no external energy was present after the formation of cells, they coalesced
into large cells to minimize surface energy.
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The coalescence of the cells caused low cell density, which reduced the pressure
generated between the cells and generated large cells with sizes from 200 to 300 µm for
the aforementioned reasons. Due to the pressurization applied to the surroundings of
the largely grown cells, geometry restrictions due to compression molding, and lack of
energy for growth, small cells of approximately 1–10 µm were nucleated between the
large cells at the same time. Foaming activation energy is energy required for the foaming
process, and the process could proceed if the energy exceeded the foaming activation
energy through energy transfer via compression stress and rapid temperature changes used
in the microcellular-foaming process.

3.4. Surface Topology

The surface change through this process consisted of three stages: (i) macropatterning
through the 3D-printing mold geometry, (ii) micropatterning by the layer height of 3D
printing, and (iii) submicropatterning (roughness) by the volume expansion of cell nucle-
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ation. A schematic of this process is illustrated in Figure 10. A confocal laser scanning
microscope (KEYENCE, Model. VK-X210) was used to observe the surface topology, and
the results are shown in Figure 11. In the case of the neat specimen, it was a perfectly
flat specimen. The top image in Figure 11 shows the surface, and the color map for the
height of the specimen is shown at the bottom. In the case of the bottom image, the scale
of the legend is different, indicating h0, h1, and h2. Each value is listed in Table 3. From
the upper image, the patterning clearly performed better than other conditions at 180 min.
The layer thickness of the 3D printer was 0.4 mm, and in the case of 180 min, the pattern
was engraved every 0.4 mm in the layer-stacking direction. In the case of 10 min, only
macroscale patterning by mold geometry was performed, and this depth was 32 µm, as
measured by SEM image in Figure 8. In the case of 60 min, the pattern was engraved every
0.8 mm, and the dimension of the pattern was thicker and wider than intended. A graph
plotted by measuring the height of the AA’ plane for each specimen is shown in Figure 12.
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Figure 10. Schematic for the three-stage solid-state surface-patterning process.
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Table 3. Height parameters of legend in Figure 11.

Parameters 10 min 60 min 180 min

H0 25 0 0
H1 45 125 150
H2 65 250 300
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Table 4. Surface roughness parameters of all regions and BB’ line in Figure 11.

Parameter
10 min 60 min 180 min

All Regions
(µm)

Line
(µm)

All Regions
(µm)

Line
(µm)

All Regions
(µm)

Line
(µm)

Ra 4 2 29 9 42 22
Rq 6 5 40 23 57 37
Rp 14 3 65 24 98 39

The increase in roughness compared to that of the specimen with a 10 min saturation
time was due to the influence of microscale patterning, and the difference in roughness
between 60 min and 180 min could be judged by the change in roughness based on the
presence of the cellular structure in the polymer. The surface roughness for the entire region
exhibited the same tendency, and 180 min exhibited a higher roughness parameter value
because the macropatterning was deeper and better.

4. Discussion

This study proposed a process for patterning a solid-state polymer surface at room
temperature and atmospheric pressure. A polymer–gas mixture was formed through the
gas saturation process involved in the microcellular-foaming process, and patterning on
three levels of scale on the surface of the polymer was achieved through compression mold-
ing and a jig patterned via a 3D printer. Cell morphology, surface-patterning resolution,
and roughness were confirmed using a confocal laser scanning microscope and SEM, and
as hypothesized, more accurate patterning could be performed if a force was applied in the
opposite direction to the compression press with volume expansion by cell nucleation, as
listed in Table 5. This implies that softening the polymer through gas adsorption did not
allow accurate surface patterning, and the volume expansion force through cell formation
inside the polymer increased the resolution of the patterning, confirming that the depth
and clarity of a pattern can be controlled by controlling gas adsorption.

Table 5. Summary of experiment results of research.

Saturation
Time

Weight
Gain

Maximum Depth Pattern Gap Roughness (All Regions)

Mold Sample Mold Sample Ra (µm) Rq (µm) Rp (µm)

10 min 6.13%
200 µm

335 µm
0.4 mm

- 4 6 14
60 min 14.65% 129 µm 0.8 mm 29 40 65

180 min 18.51% 208 µm 0.4 mm 42 57 98

In summary, a batch-foaming process was applied to a solid-state polymer to pro-
pose a process capable of geometric stamping and pattern imprinting while increasing
roughness at the same time, and it was confirmed that it could be controlled through
gas saturation time control. In addition, the reduction in energy consumption improved
significantly compared to the conventional patterning process of compression molding.
Compression molding is usually performed at high pressures (usually over 200,000 kPa)
and at temperatures between 5 and 10 degrees above the glass transition temperature [38].
The process proposed in this study was carried out at much lower temperatures (room
temperature) and lower pressures (less than 848 kPa) than normal compression molding,
which was efficient and, at the same time, caused internal exchange (cell creation) through
the microcellular-foaming process. This could lead to changes in various characteristics,
such as surface characteristics and mechanical properties, and follow-up research on this
study is essential. It is thought that various potential applications can be found through
further research. Adhesion between polymers by foaming can be a potential application of
this study. By using the process proposed in this study, it is expected that, when adhering
between polymers, the binding force can be increased through increasing friction force



Polymers 2023, 15, 1153 13 of 15

(vertical drag) due to geometry matching and volume expansion, increasing the roughness
between adhesive surfaces, as illustrated in Figure 13.
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