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Abstract: Process-data-supported process monitoring in injection molding plays an important role in
compensating for disturbances in the process. Until now, scalar process data from machine controls
have been used to predict part quality. In this paper, we investigated the feasibility of incorporating
time series of sensor measurements directly as features for machine learning models, as a suitable
method of improving the online prediction of part quality. We present a comparison of several
state-of-the-art algorithms, using extensive and realistic data sets. Our comparison demonstrates that
time series data allow significantly better predictions of part quality than scalar data alone. In future
studies, and in production-use cases, such time series should be taken into account in online quality
prediction for injection molding.

Keywords: injection molding; process monitoring; online part quality prediction; time series

1. Introduction

Injection molding is one of the most widely used industrial plastic processing methods.
Around 110,000 new injection molding machines are put into operation worldwide every
year. With an average service life of 10 years, more than 1 million injection molding
machines are currently in industrial use. On average, about five to six molds run on each
of these machines. As a specific configuration is set for each mold, 5 to 6 million different
running injection molding processes can be expected [1].

Despite extensive setting parameters and integrated control systems in standard
injection molding machines, the influence of disturbance variables repeatedly causes fluc-
tuations in process stability during ongoing production, and thus, deviations in the quality
of the injection-molded parts.

To compensate for the resulting production capacity losses, many approaches to
monitoring and optimizing the injection molding process have been developed. Recent
approaches have been dedicated to the evaluation of process data, which provide infor-
mation about the course of the injection molding process: based on this data, disturbing
influences on the process can be detected at an early stage, and dampened or compensated
for accordingly. The process data come from pressure, temperature, force, and displacement
sensors, and are collected during each injection molding cycle. Many studies have shown
how partial aspects of the injection molding process can be monitored or optimized based
on indices derived from the process data, or modeling concepts based on process data [2–8].

One approach to detecting process instabilities in the injection molding process is to
predict the quality properties of the molded parts. Consistency in the part quality properties
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of the molded parts is crucial for every processor. Predicted quality properties can be used
similarly to measured ones, e.g., for the evaluation of process capability; however, perma-
nent automatic online measurement of gravimetric and geometrical quality properties on
every injection molding machine is not an option for most industrial applications, due to
the high costs of such measurements (manual work or dedicated additional hardware). In
contrast to such part quality data measurements, process data from a machine’s internal
sensors are already provided within standard injection molding machine controls. The
main purpose of the sensors is internal process control: if the sensory process data can be
made available, it can also serve additional purposes, e.g., the predicting of molding quality
without explicitly measuring it on the product. Recent work has shown that part quality
prediction is possible using machine learning (ML) algorithms: in this context, the features
that serve as input for the algorithms are measurements represented as scalar values, i.e.,
single numerical aggregates, such as maximum injection pressure, residual mass cushion,
and metering time [9].

In this paper, we investigated the use of full time series of sensor measurements in
place of, or in addition to, such scalar features. Time series can be continuously collected
from a machine’s internal sensors throughout each injection molding cycle. A time series
usually includes injection pressure over time, injection flow over time, and cavity pressure
over time. Recent work has shown that scalar features derived from time series are relevant,
in the context of part quality prediction, and can lead to an improvement in prediction
accuracy. Ke et al. used indices (integrals and maxima) extracted from cavity pressure
and injection pressure curves, and achieved promising prediction accuracy for geometric
dimensions, using a multilayer perceptron mesh model [10]. Huang et al. extended this
approach, by integrating an autoencoder network for automated feature extraction [11].
Párizs et al. demonstrated another approach, whereby features were generated from cavity
pressure curves, by forming integrals for quality prediction in a multi-cavity injection
molding process [12].

Scalar values, such as the maximum injection pressure or the switchover injection
pressure, represent only one value at a specific point in time during the molding process.
Scalar indices, which are derived from time series, extract specific information, by discard-
ing other information from the data set: by contrast, high-resolution time series contain a
large number of individual values, and thus more information about the course of a cycle.
The high information content of the time series can lead to inaccurate and biased models,
due to overfitting, in classical modeling approaches, but is particularly well-suited to the
use of machine learning methods, if the right precautions are taken. Very few studies have
been conducted using complete time series directly as features—i.e., without aggregating
the series into scalar features—for ML models in quality prediction: Nagorny et al. utilized
Long Short-Term Memory networks on a small data set (204 samples), to make quality
predictions from time series data, but required in-mold pressure and in-mold temperature
sensors [13]. Chen et al. obtained promising results, using time series with self-organizing
maps and a back-propagation neural network model based on one data set with 180 sam-
ples [14]. Both studies showed the benefits of using non-aggregated time series, including
data from in-mold sensors. Thus, at this stage it is unclear how generalizable and reliable
such results are, or if the inclusion of time series is also beneficial using only data exported
from unmodified standard injection molding machines, without the need for in-mold
sensor data.

Learning ML algorithms are known to depend on random influences, such as the
splitting of the data into test and training sets, the initialization of parameters, or random
choices in the learning steps. Moreover, to assess generalization, it is imperative to test
the inclusion of time series data on diverse, large-scale data sets: therefore, in this article,
we approached this task by conducting extensive experiments on three extensive data
sets, using a resilient ML setup and multiple algorithms relying on different prediction
principles to get reliable results.
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For the successful application of online part quality prediction in industrial applica-
tions, the accuracy of the predictions—the deviation between predicted and actual value
for a specific quality property—must be reliably high. As the relationships between process
data and part quality are very complex, machine learning models are employed to automat-
ically learn functions that approximate the actual quality property based on certain sensor
data features: their accuracy depends on the choice of features (the type of process data),
and on an appropriate mathematical approximation model (the machine learning method).
For a reliable impression of the performance of such models and the selected features, it is
imperative to test and evaluate them on the basis of extensive data sets that represent a
realistic, industrial injection molding process. As mentioned above, the learning process in
ML involves random choices: therefore, such approaches have to be compared in repeated
experiments, to mitigate the influence of random factors.

To that end, this paper examined and compared several state-of-the-art machine
learning algorithms, to assess their prediction performance. To determine the influence
of the feature data category on the prediction quality, each combination of model and
feature data category was evaluated separately: this meant that, initially, all machine
learning models were trained solely on scalar data, as in previous approaches; then, similar
evaluations were conducted, but using either the time series only or the combination of
both scalar and time series data.

For the experiments, we created three extensive data sets of cycles and parts, containing
1167 samples, 829 samples, and 1332 samples, respectively: thus, we were able to compare
the algorithms’ performance for different types of produced parts, made of polyamide filled
with 30% glass fiber, from two different manufacturers (see Section 2.2). Moreover, in
each data set, various process states were artificially induced by manually changing the
disturbance variables: thus, the data sets were more representative of various actual
industrial production environments and, therefore, the resulting machine learning models
were more broadly applicable.

Each data set contained scalar quantities as well as time series; furthermore, for each
produced part, two quality properties were recorded: the weight and a geometric dimension
of the molded part. It is the goal of this research to make such quality measurements
gratuitous in the industrial setting; however, for the experiments, these measurements
were used as a gold standard against which the machine learning model predictions were
compared.

In the selection of the sensors whose data measurements were included in the study,
again we focused on broad applicability: industrially used injection molds are not always
equipped with in-mold sensors, for technical or economic reasons, while sensor data for
injection pressure and injection flow curves can be made available on all modern injection
molding machines; therefore, such sensors were deliberately omitted in this study, in order
to make the findings applicable to molds without them.

The three data sets were collected through a novel software, called AVAPS, that allows
the real-time query of high-resolution time series in addition to scalar data from standard
(not modified for research purposes) injection moldings machines, under industrial condi-
tions: this approach allowed us to export high-resolution (>100 Hz) time series inline from
a standard injection molding machine control, without the use of additional hardware, such
as measurement amplifiers. AVAPS directly provides the means to run the most successful
models in industry, without further hardware or any kind of modification to the machines.

In summary, the three main contributions of this article are:

1. Through a novel comparison, it is shown that high-resolution time series fed directly
into ML models—without reducing their information content through the prior for-
mation of indices—are essential features for quality prediction. This is shown by
comparing models using only scalar data, only time series data, and a combination of
both, as features in state-of-the-art machine learning models.

2. The presented approaches are feasible for the quality prediction of part weights and
geometric dimensions, and achieve high prediction quality only on the basis of the
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high-resolution injection pressure and injection flow curves from the machine. All the
data used are available on modern standard injection molding machines, without the
need for in-mold sensors or other additional hardware.

3. Large-volume experiments were carried out, in which realistic manufacturing condi-
tions were simulated by artificially inducing disturbances. The resulting extensive
data sets allowed the validation of the findings, suggesting their generalizability for
similar injection molding processes: thus, they can serve as a baseline for future
research. The data will be made publicly available with the publication of this study.

2. Materials and Methods

In the following, Section 2.1 describes the equipment and experimental setup used
to generate the data. The general structure of the data sets is explained in Section 2.2.
In Sections 2.2.2–2.2.4, the individual data sets are presented, the underlying experimental
plans are explained, and the measured part properties are shown.

2.1. Experimental Setup

All experiments were carried out in a specially built, fully automatic injection molding
measuring cell. The aim was to operate an unmodified injection molding machine in
industrial, fully automatic mode, while retrieving, in real time, all process data from the
machine control and, at the same time, to be able to measure the part quality characteristics
online, without human influence and without varying time delays, over several hundred
injection molding cycles.

A conventional injection molding machine Allrounder 520E 1500-800 (manufactured
by Arburg GmbH + Co KG, 72290 Loßburg, Germany), with a screw diameter of 45 mm,
was used. Two different single-cavity molds, with a hot runner, were mounted on the ma-
chine, for the experiments. Both the molds and the part geometries were chosen to represent
an industrial application in the experiments. The injection molding machine was equipped
with an OPC UA server interface, according to the EUROMAP 63 standard. The machine
was integrated into a local IP network. A standalone software tool (AVAPS 1.0, 34131 Kassel,
Germany) was programmed to retrieve the static data and time series from the OPC UA
interface of the machine control. AVAPS enables the querying of all data from the machine
control, which are offered under so-called node IDs in the machine-internal OPC UA server.
The data are then stored in a specialized database, and can be exported in suitable data for-
mats or passed internally to a machine learning model for evaluation. All data queries and
collections can be performed over any number of cycles, during a fully automated industrial
injection molding process. The assignment of the individual data—both time series and
static data–to one other and to the respective cycle or molded part, is ensured. The software
tool is run on a conventional personal computer or server, and connected to the machine
via the IP network. The controller of the machine is configured to provide time series with a
sampling time of 6 ms. Following the results given in [15], sample rates of 100 Hz and more
lead to very good results for machine learning models part quality prediction. With slower
sampling, the results deteriorated in the studied example: for this reason, sampling rates of
100 Hz or more are referred to as high sampling rates in the following, and the sampling
time of 6 ms (166 Hz) used in this study was thus within this range.

In order to collect the geometric dimensions of the components, a digital measure-
ment projector was added to the injection molding measurement cell. The measurement
projector was a IM-7020 (manufactured by Keyence Cooporation 1-3-14, Higashinakajima,
Hihashiyodogawa-ku, Osaka, 533-8555, Japan), which enables optical (contactless) 2D mea-
surement of the geometry of the molded parts. The projector had a maximum measurement
deviation of 8 µm. The measurement projector was integrated into the test setup. At each
cycle, the handling robot took the molded part out of the mold, and placed it on the object
table of the measurement projector. The measurement was triggered automatically by a
signal from the robot. After the measurement, the molded part was picked up again by the
robot, and fed to a scale.
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The scale was an Entris BCE323i-1S precision balance from Sartorius, with a maximum
linearity deviation of 2 mg. After gravimetric measurement, the next part was fed to the
quality measurement setup. The whole process took place within the cycle time of the
injection molding machine. All data—both process data and quality data—were stored
together, and assigned to the respective machine cycle in the AVAPS database. Note that
the setup—with a robot, measurement projector, and scale—was only added to create
extensive quality data that could be used to initially train the model and evaluate against
the respective predictions from the machine learning algorithms. When using the quality
prognosis on an injection molding process in a real industrial application, this part of the
setup can be omitted (provided that the quality predictions are precise enough): predicting
part quality with a successfully trained model only requires querying the process data via
OPC UA from the injection molding machine control, and processing the data in the trained
model.

2.2. Data Sets

The main concerns in the evaluation of machine learning models are their ability to
generalize (i.e., to be applicable in various different situations), and their dependence on
the experimental conditions in which they were learned: therefore, we evaluated the same
models on three different data sets that were created under different conditions. For each
data set, we recorded a large number of cycles over several days, thus simulating naturally
occurring process influences. Additionally, we artificially induced process influences—
different setting parameter sets and process influencing factors, as they occurred under
realistic process conditions—which led to diverse and therefore more representative data
sets.

This approach made it possible to represent, as comprehensively as possible, most
of the process states in the data sets that can occur in an industrial injection molding
process over several thousand cycles over a long period of time. Training machine learning
algorithms on such data tackled the problem of having to perform extensive recordings of
such data on “real” industrial processes, which is very demanding due to the high time
and technical requirements for 100 % measurement of the molded part quality.

Furthermore, to examine the behavior of machine learning algorithms in different
processes, two molds with completely different process settings were used, as well as two
types of polyamide granules.

2.2.1. Data Set General Structure

The data sets consisted of the recorded process data from the injection molding
machine control, and the measurement data from the quality measuring devices. Both data
categories were assigned to the respective machine cycle counter while the experiments
were carried out, and were therefore unmistakably assigned to each other and to the
respective injection molding cycle and molded part. The process data could again be
divided into two categories: on the one hand, they consisted of the scalar data that can
usually also be seen in the actual value log of an injection molding machine control (max.
injection pressure, switchover injection pressure, melt cushion, injection time, hot runner
temperature, and cylinder heating zone temperatures 2–8); on the other hand, they consisted
of time series, which were the injection pressure curve and the injection flow curve that
were recorded during each cycle. Each of the time series had a high-resolution sample
rate of 6 ms, and consisted of 2049 data points. The measurement data consisted of the
scalar values from the scale (part weight) and the digital measurement projector (geometric
measurements). Fifteen different geometric measurements were collected from each of the
two parts. For this study, the measure with the largest variance was used for the evaluation.
The selection of geometric measurements is described below specifically for each data set.
In the following, the process data are referred to as features, and the quality measurement
data as targets.
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2.2.2. Housing Part Data Set

For the experiments to generate the first data set, a mold for a housing part with
external dimensions of about 99 × 90 × 42 mm (length × width × height) and a part
weight of around 59 g (PA6 30GF) was used (Figure 1). The processed plastic material
(Dinalon® B1S25 G30-0288, manufactured by Repol S.L., 12550 Almazora Castellón, Spain)
was dried according to the manufacturer’s specifications. The housing part consisted of a
complex structure and features that were thin (0.5 mm), partially double-walled and ribbed
structures. The process conditions were changed in several trials (Table 1) over four days.
At the beginning of each test day, several cycles were performed without changing any
parameters: this allowed typical start-up states of the machine, up to the stable running
states, to be represented in the data. After that, the barrel and hot runner temperatures,
the mold temperatures, and the injection flow were varied at different levels. In addition,
pause times typical in practice were induced: for this reason, the machine was stopped
at the beginning of the respective stage, for the period of the specified pause times. The
melt remained in the heated cylinder during this time, and there was no exchange of the
melt after the pausing time had elapsed. The machine was then operated in fully automatic
mode. The mold temperature was varied on four levels.

Figure 1. Housing part.

In Figure 2, the quality properties resulting from the experiment are plotted over the
cycles, using the measurement systems described in Section 2.1. The geometric dimension
Distance A is shown, together with the part weight. Distance A was the inside diameter
at the position indicated in Figure 3. The mean value of Distance A over all 1167 cycles
was 84.9372 mm. Although the measured values of Distance A were obviously influenced
by the disturbance variables, the variance was 0.000 43 mm2. The parts weight reached a
mean value of 58.92 g. Here, the variance is 0.0024 g2.
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Figure 2. Part weight and Distance A vs. cycle or part in Housing Part data set.

Figure 3. Geometrical measurement at X = 65 mm (top view).
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Table 1. Varied parameters for Housing Part data set.

Cycles Day Machine
State

Barrel and Hot
Runner

Temperatures

Injection
Flow

Pausing
Time

Mold
Temperatures

0001–0100 1 start-up
0101–0166 1 running +5 %
0167–0178 2 start-up
0179–0253 2 running −5 %
0254–0323 2 running −10 %
0324–0384 2 running −10 %
0385–0467 2 running +10 %
0458–0528 2 running +20 %
0529–0589 3 start-up
0590–0651 3 running 15 min
0652–0712 3 running 35 min
0713–0773 3 running 15 min
0774–0834 3 running 15 min
0835–0893 4 start-up
0894–0983 4 running +20 ◦C
0984–1042 4 running +30 ◦C
1043–1174 4 running +10 ◦C

2.2.3. Stacking Box I Data Set

The experiments for generating the Stacking Box I data set were carried out in the
injection molding measuring cell, using a single-cavity mold with a hot runner for a
molded part, in the form of a stacking box (Figure 4). The stacking box had external
dimensions of about 160 × 100 × 73 mm (length × width × height), and a part weight of
about 113.5 g (PA6-GF30). A polyamide (PA) granulate PA6-GF30 (Ultramid® B3EG6,
manufactured by BASF SE, 67056 Ludwigshafen, Germany) was processed. The stacking
box was a predominantly thick-walled (2 mm) injection-molded part with two partially
freestanding side walls, which could be affected by warpage.

Figure 4. Stacking box.
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The process conditions were changed in several trials (Table 2), by varying the moisture
content of the PA granulate, and the mold temperature. The moisture content was varied
on six levels (0.05−-0.18 %). The mold temperature was varied on three levels (70 °C,
80 °C, and 90 °C). The data contained both start-up processes and stable running processes,
performed on three different days. The process was influenced both by controlled input
parameters (mold temperature) and by disturbances (material moisture content), leading
to a large variation in the molded part quality (see Figure 5). In order to create artificial
disturbances, the moisture content was varied by prior treatment of the granulate. These
values were only recorded to show the variance in the process input, and will not be used
as model features.

Table 2. Varied parameters for Stacking Box I data set.

Cycles Day Machine State Avg. Moisture
Content

Mold
Temperature

001–089 1 start-up 0.066% 90 ◦C
090–187 1 running 0.097% 90 ◦C
188–303 1 running 0.150% 90 ◦C
304–379 2 start-up 0.086% 90 ◦C
380–465 2 running 0.180% 90 ◦C
466–526 2 running 0.046% 90 ◦C
527–625 3 start-up 0.083% 80 ◦C
626–728 3 running 0.067% 90 ◦C
729–829 3 running 0.067% 70 ◦C

Examination of the resulting measured quality data (see Figure 5) showed the clear
influence of the input parameters and the disturbance variables induced in the experimental
plan. The part weight reached an average of 115.16 g, and had a variance of 0.7084 g2 over
all 829 cycles. The geometric dimension Distance B (see Figure 6), an outside diameter, had
a mean value of 101.55 mm and a variance of 0.0068 mm2.

Figure 5. Part weight, Distance B vs. cycle or part in Stacking Box I data set.
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Figure 6. Geometrical measurement at X = 25 mm (top view).

2.2.4. Stacking Box II Data Set

The experiments for the Stacking Box II data set were also performed with the mold
for the stacking box. A polyamide granulate PA6-GF30 (Repol Dinalon® B1S25 G30-0288)
was used. The material was dried according to the manufacturer’s specifications. As in
the other experiments, at the beginning of each test day, a few cycles were run to represent
the machine start-up in the data, before the process was artificially influenced (Table 3).
Next, the injection flow and holding pressure were decreased. To simulate a typical process
interruption, the machine was paused for 15 min, with the melt staying in the barrel with
switched-on barrel heaters, before starting the next batch of cycles. Finally, the barrel and
hot runner temperatures were varied.
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Table 3. Varied parameters for Stacking Box II dataset.

Cycles Day Machine
State

Injection
Flow

Holding
Pressure

Pausing
Time

Barrel and Hot
Runner

Temperatures

0001–0199 1 start-up
0200–0247 1 running −10 %
0248–0374 1 running −10 % −10 %
0375–0425 2 running
0426–0476 2 paused 15 min
0477–0522 2 paused 15 min
0523–0571 2 paused 15 min
0572–0619 2 paused 15 min
0620–0669 2 paused 15 min
0620–0705 3 start-up
0706–0802 3 running
0803–0900 3 running −5 %
0901–0907 3 running −10 %
0908–1002 3 running −5 %
1003–1043 4 start-up
1044–1141 4 running + 5 %
1142–1240 4 running −10 %
1241–1340 4 running + 10 %

As shown in Figure 7, the observation of the measured quality properties over 1332
cycles again shows the clear influence of the experimental design. The part weight reached
a mean value of 113.54 g, with a variance of 0.1929 g2. The measurement of the geometric
quantity Distance B yielded a mean value of 101.44 mm, with a variance of 0.0116 mm2.

Figure 7. Part weight, Distance B vs. cycle or part in Stacking Box II data set.

3. Machine Learning Methodology

Regression methods are used to predict numeric values (the target values) based on
given features (explanatory variables). For molding quality prediction in injection molding,
the process data are considered as features: the scalar features or the elements of the time
series data. A measure of product quality data can be used as the target.

Regression models belong to the field of supervised machine learning: this means
that a model has learnable parameters, which have to be determined through a training
procedure that takes both features and target values for a representative set of instances.
The learned model can then be used on data where the target values are unknown, to
predict them. For the molding process, this means that, for a number of cycles, the desired
quality feature has to be measured. Once the model is learned properly, it can be applied
to new products, and can predict the quality feature with a certain precision: if the latter
is sufficient, further expansive quality measurements can be omitted and replaced by the
regression model’s predictions.
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Next to their learnable parameters, many models also have to be parameterized by
hyperparameters, which are variables that are chosen, rather than learned, by the user,
before the learning process begins. Different choices yield different models, and are thus
an influence on the resulting predictive power of a model. Usually, a fixed set of these
hyperparameters is selected and, for each combination, a model is learned and evaluated.
Then, the hyperparameter combination that yields the highest quality is chosen to be run
in production.

To evaluate a model, again, feature data with known targets (in-cycle sensor measure-
ments with known quality results) are used. The model is run on the features, and the
thus-predicted value is compared to the actual target.

3.1. Nested Cross-Validation

The above-described learning process comprises three steps: learning the learnable
parameters; selecting the best hyperparameters; and comparing different algorithms against
one other. In machine learning, it is well known that for these three tasks, three different
(disjoint) sets of data have to be used, to minimize the risk of overfitting the model [16].
The latter means that the model might pick up on patterns, in the data that it is trained
on, that are specific artifacts of that data, but that are not generally true: in such cases, the
model would yield good predictions on the data that it is trained on, but severely worse
predictions on previously unseen data. Thus, the training performance overestimates the
actual predictive power in the real-use case. As observed in Section 3, due to the large
number of individual values per cycle or iteration, the number of features is very high
(compared to the number of elements—cycles—in the data sets), and the risk of overfitting
is particularly high.

To counter these effects, we employed the procedure of repeated, nested cross-
validation [16], a procedure which splits the available data (features with targets), at
random, into three parts: the training data, for training learnable parameters; the vali-
dation set, for selecting the best hyperparameters; and the test data, for evaluating the
best-configured model, and for comparing it to other algorithms. Thus, each part has
its own subset of the data, and the models are evaluated on data that has neither been
used for training nor for hyperparameter optimization (and so the evaluation is similar to
the real-use case, where the model also encounters new, unseen data). To avoid random
artifacts resulting from choosing one particular split, algorithms are compared on multiple
splits.

In our experiments, we repeated each cross-validation five times, and split the data
into 10 folds: each time, one of the splits was selected as test data; the remaining nine splits
were merged, and again split into a 10-fold cross-validation (hence, nested cross-validation),
to compare the hyperparameters and train the models. Thus, for each algorithm and each
selected set of features, 50 tests were conducted, using models that had each been optimized
on 50 data sets, yielding a total of 2500 experiments per algorithm and feature set.

Consequently, each considered algorithm was evaluated on 50 different subsets of the
available data. By the design of the procedure, each instance in a data set was used five
times in a test set: thus, every cycle in the data had the same influence on the overall results.
The numbers reported in the next section were averaged over these 50 runs.

3.2. Feature Selection

The feature categories available for each molding cycle were scalar data and time
series data. To determine the influence of the selection of the feature data category on
prediction quality, three feature combinations were evaluated separately, and were then
compared: the models were computed, based only on the scalar data (s), only on the time
series (t), and on the combination of both data categories (st). While the scalar data for
a cycle consisted of only 12 individual values, the time series consisted of a total of 4098
values. In the models, where the combination of both data categories, i.e., scalar and time
series data, was used as a feature, we had a total feature count of 4110 values per cycle.
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3.3. Targets

Machine learning models have to be optimized, with respect to exactly one quantity;
therefore, in our experiments, a single quality property was used, to learn and compare
models. We conducted two series of experiments: one where the target was the weight of
the corresponding molded part, and one where a particular geometric dimension of the
part served as the target.

3.4. Evaluation Measures and Significance

In the comparison of different models, as well as in the comparison of different
hyperparametrizations, evaluation measures were needed, that summarized the difference
between the actual target and the predicted value over multiple cases into one score. For
the optimization of hyperparameters, and during the training process, the mean squared
error (MSE) was used, i.e.,

MSE =
1
n

n

∑
i=0

(yref,i − ypred,i)
2 (1)

where N is the number of instances (cycles) in the data set, yref,i is the actual value (the
measured quality of a cycle’s product), and ypred,i represents the corresponding predicted
values.

In the overall comparison, we used two different measures. The coefficient of determi-
nation

R2 = 1 −
∑n

i=0(yref,i − ypred,i)
2

∑n
i=0(yref,i − ymean)2 (2)

was used to quantify the explained variance of the data: to that end, it related the mean
squared error of the predictions (numerator) to the variance of the data (denominator).
Higher values meant better predictions.

The mean absolute percentage error (MAPE)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yref,i − ypred,i

yref,i

∣∣∣∣ (3)

quantified the average relative error, i.e., the prediction error, relative to the actually
expected value.

R2 was directly dependent on MSE, and therefore punished large differences more
than smaller ones. In contrast, MAPE focused on the average relative deviation from
the expected value, and was more easily interpretable, as it directly stated by how many
percentage points the predictions were off, on average.

When we compared the results of two algorithms, or the same algorithm on two
different feature sets, we compared their average performance on 50 different subsets of the
data (see above). While the win of one algorithm over another on only one data set could be
the result of random artifacts, this became less likely when compared to multiple data sets
(here, 50). To quantify this, we followed the suggestion in [17], and used the Wilcoxon
signed-rank test [18] to confirm whether the observed differences between two models
were significant.

3.5. Baselines

When approaching a prediction problem, it is not a priori clear how hard this problem
will be—are predictions easy or difficult? To get an impression of the difficulty of a
problem, and to get a grasp of the value of investing in complex regression models, it helps
to compare them to the results of simple baselines.

In regression, two baselines are common: baseline mean and baseline median, which
can be seen as dummy models or naive predictors. Baseline mean simply predicts the mean
target of the values seen during training, whereas baseline median does the same with the
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median of the training targets. Both baselines completely ignore the actual feature data,
and always “predict” the same constant value (the mean or median, respectively).

Every regression model that is considered for use in production should significantly
outperform both baselines: only a significantly higher prediction quality justifies the effort
of training and employing such models. If baseline mean or median models provide high
coefficients of determination R2, and low errors (MAPE), this indicates targets with low
variance, and thus, possibly, tasks where prediction models are inappropriate [19].

3.6. Regression Algorithms

In order to investigate the influence of the selection of available features (scalar, time
series, scalar, and time series) on the prediction performance of the molded part quality
prognosis, five different state-of-the-art and well-established supervised machine learning
regression algorithms were chosen. These model approaches were considered to be well-
investigated, and were therefore suitable for benchmarking performance on different
feature sets.

Robust implementations were available in the open-source machine learning software
library, Scikit-learn, for the Python programming language. The following five algorithms
were used:

• Decision Tree Regression [20], which learns a partition of the feature space by cutting
through orthogonally to one of the feature axes. For each resulting segment of the
space, one target value is learned, which is predicted for all instances that fall into that
segment.

• k Nearest Neighbors [21], which classifies a new instance by identifying the k most
similar instances from the training data, and computing their average target value as
a prediction for the instance at hand.

• Linear Regression [22], which learns an affine–linear multivariate function, mapping
the vector of features onto a real number (the predicted target).

• Ridge Regression [23], which is similar to Linear Regression, and adds a regularization
component to the optimization in the learning process, that is designed to minimize
overfitting.

• Support Vector Regression with radial basis function kernel (SVR RBF) [24], which also
learns a linear model; however, the feature space is first transformed by a non-linear
function—the RBF kernel. The resulting regression model is linear in the transformed
space but non-linear in the original space of features.

All these algorithms have different hyperparameters, e.g. the number k of considered
nearest neighbors in k Nearest Neighbors, or the heuristic by which a decision tree decides
the next cut in the features space partition. Others include various numerical parameters
controlling the influence of certain components in algorithms, such as the influence of the
regularization in Ridge Regression, or coefficients in the RBF kernel. These hyperparameters
have to be selected by the user. To find proper choices, a set of candidates is chosen and
evaluated. The best-performing combination is then used in production (see Section 3.1).

Finally, the two baselines (mean and median) are also regression algorithms, albeit
simple ones without hyperparameters.

4. Results

In this section, we present the results of our part quality regression experiments on all
three data sets. In particular, we not only compared multiple typical regression algorithms,
regarding their predictive power, but we also leveraged different types of features (s, st,
or t), and compared the respective regression quality (using MAPE and R2); therefore,
we compared results using solely scalar features (s) to those using time series (t) or the
combination of time series and scalar features (st).

All the reported values are averaged results from 50 experiments (10-fold cross-
validation, repeated with five different splits). We tested the significance of the differences
between those results (“s vs. t” or “s vs. st”): to that end, we followed the suggestion in [17],
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and used the Wilcoxon signed-rank test [18]. While most differences were confirmed signif-
icant, there were some where both types of features yielded comparable results: these cases
are reported in italics. Naturally, this always includes the two baselines (mean and median),
as they yielded the exact same results, independent of the chosen features. To estimate
the variation of prediction performance within the 50 experiments, for each algorithm and
feature combination, the standard deviations for R² and MAPE are given in Appendix A.

4.1. Housing Part Data Set

The results for the prediction of a parts weight in the Housing Part data set are shown
in Table 4. The highest R² were obtained when using k Nearest Neighbors regression. Based
on scalar features only, (s), R2 was 0.660; with time series features only, (t) R2 was 0.750. The
highest R² of 0.777 was achieved with the combination of scalar and time series features (st).
The lowest mean average percentage errors (MAPE) were also achieved by using k Nearest
Neighbors regression—0.029 % for (s), 0.024 % (t), and 0.023 % for (st): thus, the best value
was reached using st. The R2 for the baselines mean and median were all below zero;
however, the MAPEs were not particularly high, at 0.063 % and 0.062 %, respectively. The
results for Target Distance A in Table 5 show the highest R2 results for the Ridge Regression.
The highest R2 was reached with 0.502, and with the lowest MAPE of 0.017 % with the st
features. As with molding weight, the R2s for the two baseline comparisons were negative,
although very low MAPEs were also obtained here.

Table 4. Data Set Housing Part: results for Target Weight. The differences in comparisons of st or t vs.
s were tested for significance, using the Wilcoxon signed-rank test (α = 0.05). Where the test did not
confirm significant differences, the respective st or t values are printed in italic. The highest R2 and
the lowest MAPE are shown in bold for each algorithm.

R² MAPE in %
s st t s st t

Decision Tree Regression 0.527 0.553 0.542 0.031 0.033 0.034
K Nearest Neighbors 0.660 0.777 0.750 0.029 0.023 0.024
Linear Regression 0.308 −0.129 −0.187 0.047 0.037 0.037
Ridge Regression 0.306 0.463 0.506 0.047 0.031 0.030
SVR RBF 0.172 0.066 0.060 0.057 0.062 0.062

Baseline mean −0.010 −0.010 −0.010 0.063 0.063 0.063
Baseline median −0.056 −0.056 −0.056 0.062 0.062 0.062

Table 5. Data Set Housing Part: Results for Target Distance A. The highest R2 and the lowest MAPE
are shown in bold for each algorithm. The differences in comparisons of st or t vs. s are all significant
according to the Wilcoxon signed-rank test (α = 0.05).

R² MAPE in %
s st t s st t

Decision Tree Regression 0.179 0.314 0.349 0.021 0.019 0.019
K Nearest Neighbors 0.082 0.424 0.456 0.022 0.018 0.018
Linear Regression 0.222 −0.383 −0.447 0.021 0.025 0.025
Ridge Regression 0.223 0.502 0.494 0.021 0.017 0.017
SVR RBF 0.209 0.461 0.449 0.021 0.018 0.018

Baseline Mean −0.010 −0.010 −0.010 0.023 0.023 0.023
Baseline Median −0.011 −0.011 −0.011 0.023 0.023 0.023

4.2. Stacking Box I Data Set

The results of the model comparison on the Stacking Box I data set are shown in Table 6.
Compared to the results on the previous data set, the R2s of all the models were much higher.
Except for the Decision Tree Regression, the highest R2s were obtained for the st features.
The R2s were 0.993 for SRV RBF, 0.993 for K Nearest Neighbors, 0.992 for Ridge Regression,
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and 0.989 for Linear Regression—very close to each other. The MAPEs were similar: they
were also very close to each other at a low level. The results of the baseline mean and median
comparison show the MAPEs that were significantly higher than those of the regression
models. Table 7 shows the results for the model comparison for the target geometric
dimension, Distance B: here, the SVR RBF performed best, with an R2 0.785 for the st
features. The MAPE for the SVR RBF was 0.027 %, about half of the baseline mean and
median MAPEs.

Table 6. Stacking Box I data set: results for Target Weight. The differences in comparisons of st or t vs.
s were tested for significance, using the Wilcoxon signed-rank test (α = 0.05). Where the test did not
confirm significant differences, the respective st or t values are printed in italic. The highest R2 and
the lowest MAPE are shown in bold for each algorithm.

R² MAPE in %
s st t s st t

Decision Tree Regression 0.985 0.980 0.899 0.044 0.056 0.134
K Nearest Neighbors 0.980 0.993 0.946 0.056 0.036 0.094
Linear Regression 0.932 0.989 0.877 0.147 0.055 0.192
Ridge Regression 0.932 0.992 0.920 0.147 0.047 0.149
SVR RBF 0.987 0.993 0.943 0.060 0.047 0.115

Baseline Mean −0.012 −0.012 −0.012 0.654 0.654 0.654
Baseline Median −0.105 −0.105 −0.105 0.640 0.640 0.640

Table 7. Stacking Box I data set: results for Target Distance B. The differences in comparisons of st or
t vs. s were tested for significance, using the Wilcoxon signed-rank test (α = 0.05): where the test did
not confirm significant differences, the respective st or t values are printed in italic. The highest R2

and the lowest MAPE are shown in bold for each algorithm.

R² MAPE in %
s st t s st t

Decision Tree Regression 0.703 0.697 0.557 0.033 0.032 0.037
K Nearest Neighbors 0.721 0.780 0.711 0.032 0.027 0.030
Linear Regression 0.039 0.524 0.525 0.063 0.042 0.042
Ridge Regression 0.039 0.700 0.697 0.063 0.033 0.033
SVR RBF 0.577 0.785 0.717 0.039 0.027 0.031

Baseline Mean −0.013 −0.013 −0.013 0.063 0.063 0.063
Baseline Median −0.021 −0.021 −0.021 0.063 0.063 0.063

Stacking Box II Data Set

The results for the Stacking Box II data set, in Table 8—also performed with the stacking
box tool—show similar high R² for part weight, compared to the Stacking Box I data set.
Decision Tree Regression, K Nearest Neighbors, Linear Regression, Ridge Regression, and
SVR RBF all had an R2 above 0.900 for the st and t features. The highest R2 of 0.991 was
achieved with Ridge Regression and the st features: with a low MAPE of 0.023, it was much
more accurate then the baseline models. The lowest errors were achieved across all models
with the st features.
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Table 8. Stacking Box II data set: results for Target Weight. The differences in comparisons of st or t
vs. s were tested for significance, using the Wilcoxon signed-rank test (α = 0.05): where the test did
not confirm significant differences, the respective st or t values are printed in italic. The highest R2

and the lowest MAPE are shown in bold for each algorithm.

R² MAPE in %
s st t s st t

Decision Tree Regression 0.870 0.919 0.908 0.060 0.051 0.053
K Nearest Neighbors 0.914 0.972 0.969 0.052 0.030 0.032
Linear Regression 0.738 0.988 0.985 0.132 0.028 0.030
Ridge Regression 0.739 0.991 0.988 0.131 0.023 0.026
SVR RBF 0.908 0.973 0.963 0.072 0.046 0.050

Baseline Mean −0.010 −0.010 −0.010 0.323 0.323 0.323
Baseline Median −0.050 −0.050 −0.050 0.323 0.323 0.323

The results for Distance B for the Stacking Box II data set in Table 9 have the highest
R2s for any geometric target in this work. The st and t features achieved the highest R2s.
The MAPEs behaved analogously: they were also below those of the baseline models.

Table 9. Stacking Box II data set: results for Target Distance B. The differences in comparisons of st or
t vs. s were tested for significance, using the Wilcoxon signed-rank test (α = 0.05): where the test did
not confirm significant differences, the respective st or t values are printed in italic. The highest R2

and the lowest MAPE are shown in bold for each algorithm.

R² MAPE in %
s st t s st t

Decision Tree Regression 0.738 0.788 0.783 0.030 0.026 0.026
K Nearest Neighbors 0.829 0.880 0.882 0.027 0.023 0.023
Linear Regression 0.163 0.743 0.741 0.068 0.035 0.035
Ridge Regression 0.165 0.870 0.870 0.068 0.025 0.025
SVR RBF 0.609 0.837 0.863 0.037 0.025 0.024

Baseline Mean −0.011 −0.011 −0.011 0.080 0.080 0.080
Baseline Median −0.121 −0.121 −0.121 0.072 0.072 0.072

5. Discussion
5.1. Housing Part Data Set

The best performing model for predicting the part weight in the Housing Part data
set was obtained with the k Nearest Neighbors algorithm, and achieved the highest R2, of
0.777, and the lowest MAPE, of 0.023 %, with the feature combination of scalar data and
time series (st). For part weight prediction, the R2 was low: this was due to the low variance
of the measured part weights in the data set. The low variance was also reflected in the
comparatively low MAPE of 0.062 % of the baseline median algorithm. Despite the large
manual variation of the input parameters when performing the experiments, the resulting
variance in the part quality was not large enough: the machine-mold combination had
yielded a very robust process. While this is good news for the operators, it makes it hard to
learn the influences of process parameters; nevertheless, the k Nearest Neighbors algorithm,
with its MAPE of 0.023 %, provided significantly better predictions than the baselines. The
stability of the predictive performance across all test data set splits was also reflected in the
low standard deviations for MAPE (shown in Table A1). For the prediction of the geometric
dimension, lower prediction performances were achieved across all algorithms. Although
this tendency can also be observed in other studies [9], the particularly low level of R2 was
again due to the low variance of the target in the data set (see baseline MAPE).

In summary, for this data set, it can be deduced that the best prediction results were
achieved based on the combination of time series and scalar data. As the second-best
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results were achieved with the time series alone, it can be concluded that the time series
were highly relevant.

5.2. Stacking Box I Data Set

For the Stacking Box I data set, significantly higher R2s were achieved for the prediction
of the target part weight: this was due to the significantly higher variance of the measured
target data, and was also represented by the high MAPE of the baseline. The highest
R2 for the individual algorithms were above 0.980: except for one outlier (Decision Tree
Regression), these were achieved by the feature combination of time series and scalar data.
The algorithm best suited for this prediction task was, again, the K Nearest Neighbors
algorithm, with an R2 of 0.993 and a MAPE of 0.036 %. The low standard deviations for
R2, of 0.0027, and MAPE, of 0.000 50 %, across all test data set splits, confirm the stable
prediction performance of the K Nearest Neighbors algorithm (see Table A3). The SVM
RBF achieved the same R2, but had a higher MAPE, of 0.047 %. For the prediction of the
feature geometric dimension, again—due to lower variance and the baseline MAPE being
one power of ten lower—a lower overall level of R2 was achieved. The SVR RBF achieved
the highest R2, of 0.785, with a MAPE of 0.027 % based on the combination of time series
and scalar data. The same low MAPE was achieved by the K Nearest Neighbors algorithm,
but with slightly lower R2, of 0.780. Looking at the standard deviations in Table A4, it can
be seen that the SVR-RBF algorithm achieved more stable predictions in this case.

Similar to the Housing Part data set, it can be summarized for this data set that the
best prediction performance was achieved by a combination of time series and scalar data
as features.

5.3. Stacking Box II Data Set

Although the induced disturbances in the experimental design for the Stacking Box
II data set were completely different compared to I, similar high R² for the prediction of
part weight were achieved. The higher R2 for the feature combination of time series and
scalar data across all algorithms were also clear for this data set. The results of the analysis
for the geometrical target with slightly higher variance and baseline MAPE, show the
highest R2 for geometrical targets in this investigation: they were achieved with the feature
combination. For k Nearest Neighbors, even the features time series alone showed a slightly
higher R2, but the MAPE were the same.

5.4. Further Discussion

In the presented comparison, the best prediction models, with the highest coefficients
of determination across all algorithms, were archived for the feature combination of time
series and scalar data for the Target Weight in the Stacking Box I and II data sets. In addition
to the low MAPE for these algorithms, the standard deviations of the MAPE were also very
low, which indicated stable learning processes and reliable prediction performance results.
For the Target Distance B, the highest coefficients of determination across all the algorithms
were lower. The relatively large differences in prediction performance between the two
quality attributes can be explained by the lower variance in the measured quality data of
the Distance B target; however, the MAPEs of the best models for Target Distance B in the
Stacking Box I and II data sets were still very low and, depending on the manufacturing
tolerances, did not exclude an application for process monitoring in practice. The same
observation can be made for the Housing Part data set: here, the measured quality data
varied even less, and did not allow for better coefficients of determination for both target
categories.

To generate well-performing prediction models, it is important to use representative
training data: we saw this tendency clearly when comparing the results from the Housing
Part data set to those from the Stacking Box I and II data sets. It can be assumed that
the lower the variance of the targets (with still-varying feature data), the more difficult
the modeling task is for the algorithms. It can be concluded that the nature of the data
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sets, especially the variance of the measured quality data, has a strong influence on the
prediction performance characteristics. It is important to test new approaches on different
large data sets with realistic process influences. In summary, however, it can be said that
even if the prediction performance characteristics of the presented algorithms are low, the
quality in the real process also varies little, i.e., in the context of process monitoring for
injection molding, small deviations from product specifications are to be expected.

The experiments confirm once more that, by including time series features, the perfor-
mance of ML prediction algorithms can be improved.

6. Conclusions

The evaluation of the extensive data sets shows that time series and the combina-
tion of time series and scalar data as features allow significantly higher coefficients of
determination and lower errors, i.e. better prediction models.

The time series were used directly as features for the models, without reducing
their information content through prior formation of indices. The results show that the
inclusion of injection pressure curve and injection flow curve, as features for molding
quality prediction in injection molding, produces a significant improvement in prediction
quality: therefore, high-resolution time series should be considered directly as features in
future process monitoring methods based on the prediction of molding quality models.

The time series contain more information about the process dynamics (e.g., effect of
disturbances) than do aggregated scalar values. In our experiments, we demonstrated
that standard ML algorithms are able to utilize this additional information for the benefit
of the resulting prediction accuracy. Moreover, we can be confident that the increase in
accuracy from including time series is a general tendency, as it showed repeatedly in
different settings (different parts, quality measures, and process variations).

The price for the higher prediction accuracy is the inclusion of significantly more
features: in our example, the feature count went up from 12 scalar features to 4089 different
features. A large number of features means high complexity and many degrees of freedom
in the learning process of machine learning algorithms: this, in turn, is known to cause
these algorithms to overfit. It is therefore imperative to evaluate such settings carefully: in
this work, we met this challenge by training with extensive experimental data and state-of-
the-art validation methods, applying nested cross-validation followed by significance tests.
We saw stable results in all comparisons, with either comparable results or (in most cases)
significant improvements when including the full time series.

Furthermore, we demonstrated that a comparably high prediction performance can be
achieved without sensor data from the mold: this suggests that the relevant information
required for the models is already contained in the injection pressure and injection flow
curves from the machine’s internal sensors. This would enable the use of process data-
based quality prediction models in practice, for injection molding processes without in-
mold sensors. Of course, the mandatory effort for creating a training data set (collecting
quality data) for each new injection molding process is not reduced; however, when using
prediction algorithms, such measurements have to be taken only for a set of training
instances, instead of every produced item.

In future research, the presented approach will be extended by applying machine
learning methods that can be specifically adapted for the interpretation of time series as
features using Convolutional Neural Networks (CNN): these may be even better suited to
extracting relevant information from the data. CNN can be used to make the information
contained in the dynamic context of the individual values within a time series accessible
for the model. The data sets generated and the results presented in this paper will serve
as the basis for this future work. The data sets will be made publicly available with the
publication of this paper, and can be used by the scientific community for comparison.
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Appendix A

The following tables present the standard deviations (SD) for R² and MAPE for all data
sets and targets. The standard deviation is an indicator of the stability of the prediction
performance: each value is computed over the individual data splits in the context of the
applied nested cross-validation (see Section 3.1).

Table A1. Housing Part data set: standard deviations for the results of Target Weight.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.1403 0.1345 0.1367 0.0043 0.0042 0.0043
K Nearest Neighbors 0.0769 0.0700 0.0795 0.0030 0.0029 0.0030
Linear Regression 0.0923 1.2863 1.3485 0.0038 0.0068 0.0069
Ridge Regression 0.0910 0.3270 0.2898 0.0038 0.0038 0.0034
SVR RBF 0.0709 0.0792 0.0617 0.0038 0.0036 0.0042

Baseline Mean 0.0126 0.0126 0.0126 0.0048 0.0048 0.0048
Baseline Median 0.0403 0.0403 0.0403 0.0053 0.0053 0.0053

Table A2. Housing Part data set: standard deviations for the results of Target Distance A.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.1587 0.1612 0.1599 0.0021 0.0018 0.0018
K Nearest Neighbors 0.1107 0.1290 0.1358 0.0023 0.0016 0.0015
Linear Regression 0.1785 0.6294 0.6715 0.0019 0.0028 0.0029
Ridge Regression 0.1796 0.1324 0.1363 0.0019 0.0013 0.0013
SVR RBF 0.1300 0.0973 0.0872 0.0022 0.0016 0.0016

Baseline Mean 0.0153 0.0153 0.0153 0.0025 0.0025 0.0025
Baseline Median 0.0132 0.0132 0.0132 0.0025 0.0025 0.0025
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Table A3. Stacking Box I data set: standard deviations for the results of Target Weight.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.0100 0.0080 0.0396 0.0082 0.0087 0.0243
K Nearest Neighbors 0.0110 0.0027 0.0170 0.0079 0.0050 0.0129
Linear Regression 0.0112 0.0029 0.0314 0.0126 0.0050 0.0168
Ridge Regression 0.0111 0.0022 0.0186 0.0126 0.0043 0.0126
SVR RBF 0.0049 0.0015 0.0165 0.0057 0.0038 0.0122

Baseline Mean 0.0172 0.0172 0.0172 0.0333 0.0333 0.0333
Baseline Median 0.0658 0.0658 0.0658 0.0349 0.0349 0.0349

Table A4. Stacking Box I data set: standard deviations for the results of Target Distance B.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.0668 0.0767 0.1127 0.0026 0.0030 0.0044
K Nearest Neighbors 0.0483 0.0601 0.0770 0.0027 0.0027 0.0030
Linear Regression 0.0381 0.0990 0.1006 0.0050 0.0030 0.0031
Ridge Regression 0.0375 0.0642 0.0665 0.0050 0.0029 0.0029
SVR RBF 0.0606 0.0504 0.0751 0.0037 0.0024 0.0028

Baseline Mean 0.0130 0.0130 0.0130 0.0052 0.0052 0.0052
Baseline Median 0.0247 0.0247 0.0247 0.0053 0.0053 0.0053

Table A5. Stacking Box II data set: standard deviations for the results of Target Weight.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.0652 0.0504 0.0541 0.0131 0.0089 0.0102
K Nearest Neighbors 0.0419 0.0219 0.0214 0.0089 0.0060 0.0062
Linear Regression 0.0550 0.0048 0.0070 0.0128 0.0024 0.0023
Ridge Regression 0.0552 0.0052 0.0074 0.0130 0.0028 0.0029
SVR RBF 0.0308 0.0089 0.0231 0.0073 0.0039 0.0050

Baseline Mean 0.0168 0.0168 0.0168 0.0171 0.0171 0.0171
Baseline Median 0.0551 0.0551 0.0551 0.0187 0.0187 0.0187

Table A6. Stacking Box II data set: standard deviations for the results of Target Distance B.

SD for R² SD for MAPE in %
s st t s st t

Decision Tree Regression 0.1709 0.1020 0.1077 0.0036 0.0034 0.0033
K Nearest Neighbors 0.0669 0.0486 0.0483 0.0030 0.0027 0.0028
Linear Regression 0.0881 0.1239 0.1233 0.0060 0.0031 0.0031
Ridge Regression 0.0861 0.0367 0.0366 0.0060 0.0025 0.0025
SVR RBF 0.1403 0.0587 0.0467 0.0075 0.0075 0.0075

Baseline Mean 0.0182 0.0182 0.0182 0.0058 0.0058 0.0058
Baseline Median 0.0586 0.0586 0.0586 0.0075 0.0075 0.0075
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