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Abstract: Electrospun porous nanofibers have gained a lot of interest recently in various fields
because of their adjustable porous structure, high specific surface area, and large number of active
sites, which can further enhance the performance of materials. This paper provides an overview
of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly,
the polymers commonly used to construct porous structures and the main pore-forming methods in
porous nanofibers by electrospinning, namely the template method and phase separation method, are
introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water
treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame
retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions
for the future study of electrospun porous nanofibers are discussed.
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1. Introduction

Under the influence of external electrostatic fields, electrospinning technology, a
sophisticated technique for fiber production, rapidly stretches polymers into continuous
fibers with sizes varying from microns to nanometers [1–3]. Electrospinning technology
has several advantages over other fiber film production techniques, including ease of
operation, controllable process, high operability, low cost, and flexibility. Additionally,
nanofiber membranes prepared by electrospinning also have special qualities, such as
high porosity, large specific surface area, controllable fiber structure, and easy recovery.
As shown in Figure 1, electrospinning equipment is primarily made up of components
including a high-voltage power source, a propulsion pump, a syringe, a spinneret, and
a collection apparatus [4–6]. The high voltage applied at the spinneret tip is used as the
viscous electrospinning solution in the spinneret and is extruded at a steady rate to be
charged. A polymer solution’s hemispherical surface is stretched into a cone, which is
called a Taylor cone [7,8], when the applied voltage rises. The electrostatic force defeats
the droplet’s surface tension once the voltage is sufficiently high. Charged solution jets
are simultaneously released from the Taylor cone’s tip and divided into numerous smaller
jets between the tip and the collection device. The jets are ejected from the surface of the
liquid, forming straight jets, which subsequently enter the region of whipping and bending
instability. The jets are rapidly stretched as a result of the whipping motions and then
solidify into continuous fibers on the receiver with quick solvent evaporation [9].
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duction of a porous structure can better solve these problems. Different from the pores 
between fibers, the porous structure of electrospun porous nanofibers refers to the pres-
ence of pores on the surface of a fiber or within a fiber, which can be divided into three 
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tions. Due to the vast surface area of micropore structures with small pore diameters, 
some small molecules with small diameters can be adsorbed [47,48]. In addition, a single 
active center can also be stabilized by a unique spatial structure, making it available as a 
catalyst carrier. Mesoporous structures, which are larger than micropores, have uniform 
size, narrow distribution, and continuous adjustable apertures. Therefore, the ability of 
these mesoporous materials to adsorb and segregate some bigger molecules makes them 
crucial in the field of catalysis [49,50]. Macroporous structures with pores much larger 
than those of molecules frequently serve as spreading passageways. The porous struc-
tures are conducive to the diffusion and transfer of substances and are frequently em-
ployed in biomedical and battery energy materials [51–54]. In addition, a layered porous 
structure can integrate microporous, mesoporous, microporous, and other multilayer 
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A series of experimental variables, including the electrostatic field force [10,11], poly-
mer parameters [12], solvent [13], spinneret [14–16], environment humidity [17], and tem-
perature [18], have an impact on the morphology and structure of electrospun nanofibers.
Coaxial and triaxial multifluid electrospinning processes have also been reported in recent
years [19–21]. In this field, polymer fibers are functionalized by adding active ingredients in
a mixed electrospinning process. Additionally, by adjusting post-treatment operations, dif-
ferent types of nanofibers, such as carbon nanofibers, metal oxide nanofibers, or composite
nanofibers [22,23], can be produced (for instance, by heating nanofibers in different atmo-
spheres). Electrospun nanofibers with various structures can be obtained using different
spinning processes and by adjusting spinning parameters appropriately [24–26], such as
porous fibers [27,28], hollow structures [29,30], hollow porous structures [31,32], core–shell
fibers [33–36], Janus fibers [37,38], beaded fibers [39,40], and side-by-side structures [41,42].

Among them, porous nanofibers have drawn the most interest owing to their rich
pore framework, large specific surface area, increased active sites, and easy functionaliza-
tion, which show great potential in the areas of adsorption separation, water treatment,
catalysis, energy storage, air filtration, drug delivery, tissue engineering, sensors, and food
packaging [24,43–46].

In the process of electrospinning, fibers pile up layer by layer and form interconnected
network pores. However, these pores are disordered, with large sizes and finite specific
surface area, which cannot satisfy application needs to a large extent. The introduction
of a porous structure can better solve these problems. Different from the pores between
fibers, the porous structure of electrospun porous nanofibers refers to the presence of
pores on the surface of a fiber or within a fiber, which can be divided into three categories:
micropores (less than 2 nm), mesopores (about 2–50 nm), and macropores (more than
50 nm) [44]. Different pore sizes and shapes are needed for various applications. Due
to the vast surface area of micropore structures with small pore diameters, some small
molecules with small diameters can be adsorbed [47,48]. In addition, a single active
center can also be stabilized by a unique spatial structure, making it available as a catalyst
carrier. Mesoporous structures, which are larger than micropores, have uniform size,
narrow distribution, and continuous adjustable apertures. Therefore, the ability of these
mesoporous materials to adsorb and segregate some bigger molecules makes them crucial
in the field of catalysis [49,50]. Macroporous structures with pores much larger than
those of molecules frequently serve as spreading passageways. The porous structures
are conducive to the diffusion and transfer of substances and are frequently employed in
biomedical and battery energy materials [51–54]. In addition, a layered porous structure
can integrate microporous, mesoporous, microporous, and other multilayer pores and
can provide layered porous channels by designing the pore size and porous structure of
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materials at various scales, which can further improve the performance of materials and
shows greater application prospects.

Combining the merits of nanofibers and porous structures, electrospun porous nanofibers
have specific porosity and increased surface area, additional active sites, heterogeneous
interfaces, and interior spaces, all of which are critical for the performance and function of
nanomaterials. They can increase a material’s accessibility to an active site by accelerating
the diffusion and transmission of materials. By creating nanofiber porous structures of
various sizes, including the pores between, inside, and on the surface of fibers, it is possible
to produce materials with various functions that can be used in various fields. We discuss
the preparation and application of electrospun porous nanofibers in this review. Polymer
materials and the pore-forming process of electrospun porous nanofibers are systematically
introduced. Then, we summarize the most typical applications of electrospun porous
nanofibers in air purification, water treatment, energy storage, biomedicine, tissue engineer-
ing, and other areas. Finally, the challenges and prospects of electrospun porous nanofibers
are evaluated.

2. Polymers in Electrospun Porous Fibers

In the last few decades, researchers have made great efforts in electrospun porous
fibers. Phase separation and sacrificial templates are widely used pore-forming methods
for preparing electrospun porous nanofibers [55,56]. In the study of porous materials,
polymers have the advantages of flexible chains, low cost, excellent spinnability, and easy
processing and have been widely used as the main raw material. Porous nanofibers made
from a variety of polymers have been successfully fabricated. The following list includes
some common polymers used to create electrospun porous fibers (the specific pore-forming
mechanism is described in Chapter 3).

Hydrophobic polymers are usually used to prepare electrospun porous nanofibers by
the principle of phase separation. In electrospinning, for polymethyl methacrylate (PMMA),
polylactide (PLA), polycarbosilane (PCS), and polystyrene (PS) polymers, chloroform (CF)
and tetrahydrofuran (THF) usually serve as high-volatile solvents to form porous structures
under high humidity by breath figures (BFs) [57,58]. Megelski et al. [59] prepared porous PS
and PMMA nanofibers with CF as a solvent using electrospinning technology. Lu et al. [60]
used THF as a solvent to prepare porous PS nanofibers with porous structures both on the
surface of the fibers and within the fibers under high humidity. Although PS nanofibers
exhibit porous structures by employing dimethylformamide (DMF) as a solvent, it only
exists on the surface. Based on vapor-induced phase separation (VIPS) [61,62], porous
nanofibers can also be prepared under certain humidity by using low-volatile solvents with
good water miscibility, including DMF, dimethylsulfoxide (DMSO), and dimethylacetamide
(DMAC) [63]. According to Wang et al. [64], porous PCS fibers could be created using DMF
as a solvent.

In addition to BFs and VIPS, porous nanofibers can also be induced through nonsolvent-
induced phase separation (NIPS) [65,66]. In NIPS, a solvent (capable of dissolving poly-
mers)/ non-solvent (immiscible with polymers) binary solvent combination can be se-
lected for polymers such as polycaprolactone (PCL), PLA, polyvinylidene fluoride (PVDF),
PS, polyacrylonitrile (PAN), CA (cellulose acetate), and so on. For example, porous
PCL fibers were electrospun from a PCL/CF/DMSO solution [67]. In order to produce
porous PLA nanofibers, a number of solvent/nonsolvent systems have been used, in-
cluding dichloromethane (DCM)/hexane [68], DCM/DMF [69], DCM/DMAC [70,71],
DCM/butanol [72], and CF/DMF [73]. In electrospun PVDF nanofibers, DMF/acetone solu-
tions could be used to create porous fibers [74]. Both the surface and the interior of PS fibers
could have porous structures by determining a suitable solvent ratio of THF/DMF [75].
H2O has also been employed as a nonsolvent to create porous structures in a PAN/DMF
system [76–78]. Ji et al. [79] constructed porous CA fibers in a highly volatile binary solvent
system of DCM/DMAC.
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The sacrificial template method (removal of hydrophilic polymers by post-treatment
washing) is usually used to prepare electrospun porous nanofibers for hydrophilic polymers,
including polyethylene pyrrolidone (PVP), polyethylene glycol (PEG), and polyethylene ox-
ide (PEO). Zheng et al. [80] reported that porous PVDF fibers can be obtained by removing
PVP through washing in electrospun PVDF and PVP nanofiber membranes. With suitable
solvents, some hydrophobic polymers, such as poly (AN-co-MMA) (PLLA) [81], PS [82],
and poly (3-hydroxybutyric-3-hydroxyvaleric acid) (PHBV) [83], can also be extracted from
precursors of immiscible polymer/polymer blends. In addition, a few polymers, including
PMMA, PLA, PS, PEO, polyacrylic acid (PAA), polyvinyl alcohol (PVA), and polyvinyl
butyral (PVB) are usually used as conventional precursor templates of porous electrospun
nanofibers. These polymers degrade after high-temperature calcination in air and are
removed from the matrix to obtain porous structures [84–86].

In short, porous fibers can be prepared with different solvents and post-processing
methods depending on the various features of polymer materials. The resulting porous
fibers have various pore states and morphologies. Additionally, different polymers are also
used in different fields and can be selected according to the application.

3. Pore Formation in Electrospun Porous Fibers

Since porous nanofibers were effectively generated by electrospinning in the late
1990s, research has been focused on the preparation and optimization of these materials.
After 20 years of research and development, numerous methods have been developed to
construct the porous structures inside fibers in order to meet the requirements for various
practical applications [87,88]. For porous nanofibers, either a polymer blend or a sacrificial
component is electrospun and then post-treated to remove one of the polymers or the
sacrificial component and to form a porous structure. Alternatively, pore sizes are directly
generated by selecting an appropriate polymer–solvent system during electrospinning. The
preparation methods for electrospun porous nanofibers are primarily split into the template
method and the phase separation method based on various pore-forming mechanisms.

3.1. Template Method

A typical technique for creating porous nanofibers is the template method. There are
two steps to the process: (1) a sacrificial template is added to the spinning solution to create
a homogeneous solution and (2) the template is then removed by post-treatment (such as
solvent extraction or heat treatment) to obtain porous nanofibers. Polymers, metals, metal
oxides, and inorganic salts are frequently used as sacrificial templates in the production of
porous structures [89–109]. This method has wide adaptability in the selection of polymer
materials and can construct multifunctional porous structures in both hydrophilic and
hydrophobic polymers.

3.1.1. Using Polymers as Templates

In electrospinning, the polymer serves as a template to create porous structures in
addition to acting as a matrix for nanofibers. To create porous nanofibers, a variety of
mixed polymers with various characteristics can be employed. For example, hydrophilic
polymers (such as PVP, PEO, and PEG) can be added to PAN, PVDF, and PCL nanofibers
as sacrifice templates and can be further removed by immersion in deionized water. After
drying, porous nanofibers can be formed. In Hong et al.’s [89] research, water was used
as an extraction solution to remove PVP from PAN/PVP fibers, and diethylene-triamine
(DETA) was then added to obtain aminated porous PAN fiber membranes (Figure 2a),
which showed a relatively large adsorption capacity for lead ions. Ning et al. [90] obtained
porous PVDF fibers coated with silver nanoparticles via removing PEO from a mixed
solution of PVDF and PEO blends used as raw materials, which had effective methyl
orange photocatalytic degradation activity. Gao et al. [91] prepared PCL/PEO fibers with
different morphs by an electrospinning method. A porous PCL structure was formed by
selectively removing the PEO phase in the fiber through water treatment. By varying
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the amount of PCL in the blend solution, porous nanofibers with different porosities and
diameters were obtained. In addition to hydrophilic polymers, hydrophobic polymers can
also be selectively eliminated from polymer mix precursors. Guan et al. [92] fabricated
polyoxymethylene (POM)/PLLA nanofibers using electrospinning technology and then
soaked them in chloroform for 12 h. PLLA was removed with the rapid evaporation of
the solvent. At the same time, the fibers’ surfaces developed porous structures, and their
interiors formed nanochannels (Figure 2b). The porous membrane showed a high oil
absorption capacity.
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Figure 2. (a) SEM image of porous PAN nanofibers after amination. Reprinted with permission
from Ref. [89], Copyright 2015, The Royal Society of Chemistry. (b) SEM image of cross-section of
porous POM/PLLA nanofiber after chloroform immersion. Reprinted with permission from Ref. [92],
Copyright 2016, The Royal Society of Chemistry. (c) SEM image of hollow, porous carbon nanofibers.
Reprinted with permission from Ref. [31], Copyright 2021, Elsevier. (d) Schematic for the preparation
of Zn@PCNFs and (e) pore size distribution of CNFs and Zn@PCNFs. Reprinted with permission
from Ref. [97], Copyright 2022, American Chemical Society. (f) SEM image of porous PVDF/PAN
nanofibers after HCl extraction. Reprinted with permission from Ref. [105], Copyright 2018, Springer.

Thermal treatment is an additional approach to generating porous structures in porous
nanofibers. The polymer template is typically entirely decomposed by heating the polymer
mix precursor to a specific temperature (usually the decomposition temperature of the
sacrificial phase). Due to their different thermal stabilities, polymers with lower thermal
stability are pyrolyzed into pores in the fibers during heat treatment, while polymers
with higher thermal stability are carbonized into the fiber skeleton. The compatibility (or
solubility) and thermal stability of different polymers can be used to influence the size
and configuration of pores, and significant variances in these properties result in larger
pores. Asare et al. [31] used PAN and PMMA as raw materials to prepare nanofibers by
blending electrostatic spinning and coaxial electrostatic spinning. After high-temperature
carbonization, PMMA was completely decomposed, forming a porous structure (Figure 2c).
The fiber’s electrochemical performance was enhanced by its porous structure. In order to
maintain nanofiber shape and skeleton, the sacrificial polymer’s breakdown temperature
must be greater than that of the polymer matrix. In contrast to solvent removal methods,
the integrity of porous fibers may be damaged after heat treatment, as heat flow usually
inevitably causes damage to the original nanofibers.
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3.1.2. Using Metals or Metal Oxides as Templates

For the fabrication of porous fibers, some metals or metal oxides, such as SiO2 [93,94],
Sn [95], ZnO [96,97], Fe3O4 [98], and Ni [99,100], are commonly used templates. By using
suitable nanoparticles as templates, pores’ sizes and morphologies can be easily regulated.

Highly porous carbon nanofibers (PCNFs) were created by Nan et al. [94] utilizing
electrospinning, carbonization treatment, and acid etching. The blend solution of polyamide
acid (PAA) and tetraethoxysilane (TEOS) was first electrospun. The TEOS decomposed into
SiO2 and evenly dispersed in the fibers after carbonization. To eliminate SiO2 nanoparticles,
the fibers were finally immersed in an acidic solution called HF. The prepared PCNFs
had a huge surface area and a microporous structure, with excellent lithium ion storage
capacity (730 mAh/g). After 50 cycles, it still showed good reversible capacity (445 mAh/g).
Nie et al. [97] obtained porous carbon nanofibers (Zn@PCNFs) containing zinc by adding
ZnO nanoparticles to PAN nanofibers and then carbonizing them at a high temperature
(Figure 2d). PAN was carbonized into a skeleton in the carbonization process, and some
ZnO was reduced to Zn and further evaporated to produce pores. The produced fibers
had greater surface areas and porosities than PAN carbon nanofibers (Figure 2e), which
enhanced the adsorption capacity of methylene blue (MB). Fe3O4 nanoparticles were
introduced by Liu et al. [98] to a PVA solution for electrospinning and then soaked in a
glutaraldehyde (GA) and HCl acetone solution for 12 h. The Fe3O4 nanoparticle template
was removed while the PVA was crosslinked, and crosslinked porous PVA nanofibers were
obtained. The pores, which had an average size of 12 nm, were uniform throughout the
nanofibers. Compared with pure fibers, the crosslinked porous PVA nanofibers showed
higher thermal stability. The successful fabrication of porous PVA nanofibers provided a
reference for preparing other porous fiber membranes using nano-Fe3O4 as template.

3.1.3. Using Inorganic Salts as Templates

In addition to polymers and metal oxides, the production of porous electrospun
nanofiber templates can also be performed using certain kinds of inorganic salts, such as
CaCO3 [101–103], NaHCO3 [104,105], NaCl [106], GaCl3 [107], and dialkyl sodium sulfate
(SDS) [108].

In Li et al.’s [109] research, PAN and PVP blends were employed as a solution for
electrospinning, and then fibers were mixed with salt in an acid solution at a specified time
and temperature using water baths with different concentrations of HCl to extract salt. In
this case, nanoporous PAN microfibers with ultra-high specific surfaces were prepared
by a two-step method. Mehraban et al. [102] used HCl to remove a CaCO3 template from
PAN/CaCO3 nanofibers to produce porous nanofibers, and the porous fibers were also
studied. Adhikari et al. [103] proposed a technique for creating TiO2 porous nanotubes
utilizing PVAc as a matrix material and incorporating coaxial electrospinning with heat
treatment and HCl etching. The dissolution of CaCO3 led to pore formation at its location.
Compared with nonporous TiO2 nanofibers, the synthetic porous TiO2 nanotubes were
more biocompatible for bone implantation and regeneration. Mokhtari-Shourijeh et al. [105]
added NaHCO3 into a PVDF/PAN blend solution and prepared PVDF/PAN nanofibers
using electrospinning technology. The fibers were immersed in a HCl solution to remove
NaHCO3 and produce porous PVDF/PAN fibers (Figure 2f). The obtained porous structure
increased the nanofibers’ surface areas, further improving the adsorption capacity of dyes.

In summary, the preparation of porous nanofibers by electrospinning can select differ-
ent sacrificial substances as templates and obtain them through post-treatment. When using
metals or metal oxides as templates, they need to be removed with acid, while polymers and
inorganic salts as sacrificial templates can be simply removed by washing or carbonization.
Therefore, the uses of polymers and inorganic salts as sacrificial components have better
environmental friendliness and greater application prospects. A small amount of sacrificial
phase may persist in the polymer matrix and alter the characteristics of nanofibers, even
though the majority of the sacrificial phase can be eliminated from the precursor with
suitable post-treatment. In addition, the process of constructing a porous structure is
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relatively complex and has strict requirements for the composition of the sacrificial phase
and post-treatment.

3.2. Phase Separation Method

The phase separation mechanism is another method to prepare porous structures in the
context of polymer nanofibers. Three categories are typically used to categorize the phase-
separation-mechanism-based fabrication of porous nanofibers [110]: steam-induced phase
separation (VIPS), thermally induced phase separation (TIPS), and nonsolvent-induced
phase separation (NIPS). The electrospinning of porous nanofibers may include one or more
phase separation techniques. The preparation of porous materials via phase separation
methods requires suitable solvents and polymers.

3.2.1. Steam-Induced Phase Separation (VIPS)

The following describes how VIPS produces electrospun porous nanofibers: (1) A
hydrophobic polymer is immersed in a low-volatile solvent to build a homogeneous
solution. (2) In the process of jetting, the low-volatile solvent evaporates slowly, and the
water vapor in the air interacts with the surface of the fiber and easily diffuses inside the
fiber, mixing with the solvent to form a nonsolvent of the polymer. (3) The polymer and
solvent quickly separate into a polymer-rich phase and a solvent-rich phase. (4) Lastly, the
polymer-rich phase eventually solidifies into the entire skeleton of the nanofiber, while the
solvent-rich phase forms holes inside the fiber.

The pore formation in VIPS is significantly influenced by the relative humidity of the
air and the solvent’s volatility. In a DMF solvent system and a high-humidity environment,
Pai et al. [111] attributed the generation of internal porosity of PS electrospun nanofibers
to the miscible solubility of the solvent and water. They believed that, when water vapor
saturated the area near the interface between the jet and air, liquid (DMF)–liquid (water)
phase separation occurred rapidly, and the water in the air diffused and penetrated into
the fibers. With the solidification of the fibers, the captured water formed pores. Lu
et al. [60] used DMF as solvent in the process of electrospinning PS under different relative
humidities. As shown in Figure 3a, they found that relative humidity influenced the fiber’s
interior pore formation in addition to its surface shape. Low relative humidity prevents
phase separation from occurring, resulting in the formation of smooth-faced nanofibers.
Increasing the relative humidity can promote the accumulation and penetration of water
vapor on the surface of a fiber, resulting in rapid phase separation and, thus, forming a
porous structure. However, small circular depressions a left on a fiber’s surface after drying
if the relative humidity is too high. The reason is that, while the solvent quickly evaporates,
tiny water droplets adhere to the polymer fiber’s surface.

By choosing various volatile solvents, the porosity structure of a fiber can also be
modified. When DMF with low volatility was used, Lu et al. [60] also found that pores
were generated both on the fiber’s surface and inside in the preparation of electrospun
PS nanofibers (Figure 3a). When THF with strong volatility was employed as the solvent,
only a porous sheath layer was generated on the fiber’s surface, and the interior was
typically solid (Figure 3b). This was related to the solvent’s volatility. When a solvent
is less volatile, water molecules have enough time to enter the fiber before the polymer
dries entirely, causing phase separation and the development of fiber holes. However,
when a high-volatile solvent is applied, the interface between the air and the fiber is often
saturated because of the presence of highly volatile solvent molecules, which prevents water
molecules from infiltrating and phase separation from occurring. The quick evaporation of
a solvent causes the nearby area to cool at the same time that water molecules condense on
the surface of the fiber, leaving holes. As a result, the formation of pores on a fiber’s surface
and inside it is greatly influenced by the volatility of solvents. By choosing an appropriate
proportion of different solvent compositions, a porous structure can be produced on the
surface and inside of a nanofiber simultaneously through the action of mutual competition.
In addition, the morphology of porous fibers can also be impacted by the selection of
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different solvents, which is crucial for constructing hierarchically porous structures. Li
et al. [112] reported the effects of various solvents (methylene chloride, acetone, CF, THF,
and ethyl acetate) on the microstructure of a PMMA nanofiber and discussed its formation
mechanism. Fibers with different pore morphologies were obtained in different solvents.
When acetone (Ac) was used as the solvent, the fibers showed a bead structure. When
choosing methylene chloride, CF, or ethyl acetate as the solvent, the fibers showed a banded
structure. When THF was employed as the solvent, the fibers had a uniform structure, but
the surface collapse was serious. With the exception of using acetone and THF, the fiber
surfaces developed a porous structure. With a poor-volatile solvent (CF), elliptic pores
were formed, while circular pores were with a high-volatile solvent (methylene chloride
and ethyl acetate).

The VIPS method has high pore-forming efficiency, but the relative humidity and sol-
vent volatility need to be strictly controlled. In addition, it is necessary to select hydrophobic
polymers to generate porous nanofibers using VIPS in conjunction with electrospinning,
and the solvent must be well miscible with water.

3.2.2. Thermally Induced Phase Separation (TIPS)

The following steps describe the TIPS method used to fabricate electrospun porous
nanofibers: (1) A polymer is dispersed in a poor-volatile solvent to generate a homogeneous
solution. (2) The precursor solution is electrospun into fibers, and (3) phase separation
between the polymer and the remaining low-volatile solvent in the fiber occurs during
cooling because of the large temperature difference between the nanofiber and the nearby
microenvironment. (4) Finally, porous structures are formed inside the nanofibers.

The temperature difference between nanofibers and the environment is the primary
driver for TIPS. The creation of a porous structure is more advantageous when there
is a greater temperature difference. Generally, there are two strategies to increase the
temperature difference: one is to use a liquid bath at a very low temperature or to collect
electrospun polymer nanofibers with a freezing collector, while the other is to increase
the microenvironment temperature during electrospinning. McCann et al. [113] used
electrospinning technology to fabricate fibers that were placed directly into a liquid nitrogen
bath. Due to the extremely low temperature of the liquid nitrogen, the fibers cooled down
quickly, and phase separation between the remaining solvent and the polymer occurred,
resulting in the formation of a highly porous structure. Li et al. [114] prepared porous PCL
nanofibers by designing a self-made vertical low-temperature electrospinning system that
could temporarily solidify polymer jets on a freezer collector (Figure 3c). When the polymer
jet temperature was –3.6 ◦C, TIPS transition occurred in a PCL/glacial acetic acid (GAC)
solution, resulting in crystallization of the GAC. When the jet was sprayed on the frozen
substrate at a specified distance of less than 110 mm, porous fibers appeared after vacuum
freeze-drying (Figure 3d). The experiments showed that that the production of pores on
the fibers throughout electrospinning required a freezing temperature and a significant
amount of residual solvent. Ye et al. [115] successfully prepared isotactic polypropylene
(iPP) fibers with a layered porous structure by high-temperature electrospinning technology
combined with TIPS. By regulating the temperature of the polymer jet to 300 ◦C during
electrospinning and collecting the nanofibers in a 25 ◦C revolving drum, the jet cooled
rapidly. Within 0.35 s, there was rapid phase separation that resulted in a porous structure.

Membranes can be prepared from semicrystalline polymers that are insoluble in
solvents at ambient temperatures using TIPS. In addition, TIPS processes are typically
binary systems and require fewer variables to control than triadic NIPS systems. However,
owing to the complicated circumstances of the entire process, pores created by various
temperature differences have different morphologies and smaller pore sizes. Meanwhile,
compared with other phase methods, the TIPS method is also relatively energy intensive.
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3.2.3. Nonsolvent-Induced Phase Separation (NIPS)

The preparation process of electrospun nanoporous fibers fabricated by NIPS is as
follows: (1) A polymer/solvent/nonsolvent ternary solution is prepared by dispersing a
polymer in a volatile solvent/low-volatile nonsolvent solution. (2) During the electrospin-
ning jet process, solvent evaporation causes a shell to solidify rapidly, while the evaporation
rate of the nonsolvent is slow, which causes it to permeate and diffuse into the jet. (3) The
composition of the solution system changes rapidly, and phase separation occurs, forming
a nonsolvent and polymer two-phase heterogeneous binary solution. (4) The nonsolvent
volatilizes at a slower rate and remains in the polymer system. After the nonsolvent is
completely volatilized, it leaves pores in its position, forming a porous structure. The
earliest nonsolvent induction method for pore formation was to dissolve a polymer in
a two-component solvent solution combination made up of a non-volatile bad solvent
and a volatile good solvent and then to cast the two-component solution onto a glass sub-
strate. The polymer accumulated in the solution contained the poor, non-volatile solvent
when the excellent solvent volatilized and, finally, solidified to form a porous membrane
structure [116].

In the process of preparing porous materials by NIPS, sufficient interaction time
between the nonsolvent and the polymeric fluid jet is a key factor to promote the creation
of interior pores. Therefore, by designing suitable solvent/nonsolvent combinations, the
differences in volatility between the solvent and nonsolvent, as well as the sizes and
morphologies of holes, can be precisely regulated. Qi et al. [72] prepared porous PLA
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electrospun nanofibers using electrospinning technology and NIPS. DCM, as a solvent of
PLA, had high volatility, while DMF, as a nonsolvent, had low volatility. The significant
difference between the solvent and nonsolvent volatility led to rapid volatilization of DCM
and a slower volatilization rate of DMF in the process of electrospinning, resulting in
liquid–liquid separation and the production of porous structures inside the fiber and on the
surface of the fiber. If the difference between the solvent and nonsolvent volatilization rates
is not sufficient, the speed of solution entry into the two-phase zone is slowed, making it
difficult to form pores.

The porosity structure of a fiber can be modified by adjusting the solvent/nonsolvent
component ratio to some extent. To create porous PS nanofibers, Lin et al. [75] used DMF
as a solvent and employed THF as a nonsolvent. The generation of porous structures on
the fiber’s surface and inside was observed to increase with the concentration of DMF
in the DMF/THF binary solvent. This was due to the mutual diffusion of the solvents
in the jet and the competition between the fast phase separation and the crystallization
of the surrounding water. In contrast, pores could only be generated on a fiber surface
when the content of THF was high. The rapid phase separation brought on by solvent
evaporation and the following cooling and curing of the fiber were what caused pores to
form on the surface. Katsogiannis et al. [67] used the NIPS mechanism to prepare porous
PCL fibers and studied how solvent characteristics affected the size and shape of PCL
nanofibers. As shown in Figure 3e, on the fiber surface, pores were made using a solution
of CF (a good solvent) and DMSO (a bad solvent). They found that, when 12.5% (w/v)
PCL was dissolved in a CF/DMSO (v/v: 75–90%) solution, porous, beadless nanofibers
with approximate diameters in the range of 1470–2270 nm could be obtained. Therefore, a
high solvent/nonsolvent ratio was favorable for pore formation. In addition to a polymer
solvent, water can be introduced straight to a polymer solution as a nonsolvent to make
porous nanofibers. In the study of Yu et al. [77], a PAN/DMF/H2O solution was employed
to fabricate electrospun porous nanofibers. In order to cause phase separation and create
porous structures, water was utilized as a nonsolvent. With increases in the water content
and polymer concentration, fibers’ specific surface areas and diameters increased.

Alternatively, a polymer solution can be electrospun directly into a nonsolvent cell,
where fibers are collected before the solvent evaporates completely to obtain a porous
structure. Nayani et al. [117] used the electrospinning technique to fabricate porous PAN
fibers by spinning a PAN/DMF solution into a nonsolvent cell. When fibers made contact
with the surface of a nonsolvent bath, phase separation occurred, and pores were generated.
They also found that the miscibility of the solvent and nonsolvent also had a significant
effect on the shape of nanofibers. By spinning into an ethanol or water bath, fibers having
pores on the surface and interior could be generated, while no pores were formed by
spinning into a hexane bath. The reason is that DMF is highly miscible with water or
ethanol and, thus, could easily penetrate into the interior of PAN fibers. In this case, liquid–
liquid separation took place, resulting in the generation of structures with high porosity.
Therefore, selecting an appropriate solvent and nonsolvent system is crucial for the porous
structure resulting from NIPS.

Compared with the other two phase separation methods, the pores created by NIPS
are irrespective of outside humidity. The pores are elliptical and typically smaller in size.
Nanofibers with both surface and interior porous structures can be obtained in one step by
selecting an appropriate solvent-to-nonsolvent ratio and polymer content. NIPS typically
requires two or more solvents. The formation mechanisms, formation conditions, and pores
formed by different phase separation methods are shown in Table 1.
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Table 1. Comparison of different phase separation mechanisms, formation conditions, and pores.

Type Mechanism Polymer Solvent Humidity Pore
Structure

Pore Size
(nm) Porosity Ref.

VIPS

Water molecules are
mixed with a low-volatile

solvent, resulting in
phase separation.

Hydrophobic
polymer

Single,
low-volatile,

miscible
with water

High
Surface and

internal,
elliptical

Large,
50–300

Reached
92% [118,119]

TIPS

Significant temperature
difference between fibers

and the surrounding
environment results in

phase separation.

Not
required

Single,
low-volatile

Not
required Surface Small,

2–50

Lower
than
other
pore-

forming
mecha-
nisms

[113,120]

NIPS

Volatility difference
between the solvent and

nonsolvent results in
phase separation.

Not
required

High-
volatile

solvent and
low-volatile
nonsolvent

Not
required

Surface and
internal,
elliptical

Small,
20–100

Less
than 80% [55,121]

4. Applications of Electrospun Porous Nanofibers

Owing to their large surface area and rich pore structure, highly porous nanofibers
based on electrospinning have gained a great deal of attention in the past few decades.
In the environmental field, a porous structure can improve specific surface area and give
membranes a superhydrophobic surface, as well as being employed as a trap for filtering.
In terms of energy storage, high porosity and large specific surface area are advanta-
geous for maximizing the use of active sites during redox reactions and high-flux mass
transfer [122]. In the field of biology, porous structures can improve drug release, fur-
ther enhancing drug efficacy, and can improve cell adhesion and have a great deal of
promise for vascular tissue engineering and regeneration [123]. Based on the developed
electrospun porous nanofiber preparation process, researchers can take advantage of the
characteristics of porous nanofibers in combination with other processes, such as fiber
surface modification [124,125] or the addition of functional substances [126–128], which can
have a significant impact in different fields. Electrospun porous nanofibers are employed
extensively in a variety of disciplines, including air purification, water treatment, energy
storage, biomedicine, tissue engineering, food, sensors, and so on.

4.1. Air Purification
4.1.1. Air Filtration

Air pollution has attracted more and more attention in recent years. It can result in
major health issues, such allergies, cardiovascular disease, and respiratory illnesses, all
of which are mainly attributed to particulate pollutants smaller than 2.5 µm in diameter
suspended in the air. Therefore, capturing and filtering these harmful, fine particles is an
effective way to protect oneself from air pollution. In order to effectively capture particles
and enable airflow to pass through easily, an optimal electrospun air filter ought to possess
a high porosity and a small fiber diameter. Electrospun porous nanofibers have a higher
surface area and a porous structure with interpore connectivity, which can effectively collect
tiny particles [129,130].

By using electrospinning technique, Li et al. [70] produced eco-friendly polylactic acid
(PLA)/chitosan (CS) porous nanofibers. The filtration capacity and antibacterial properties
of pollutants in the air were tested. The results showed that the microstructure of the
porous fibers was significantly affected by the concentration of the electrospinning solution.
When the concentrations of polylactic acid and chitosan were 8% and 2%, respectively,
uniform, smooth porous nanofibers could be obtained. At relatively high humidity, the
larger the pore size of the fiber, the higher the porosity. When the optimum mass ratio
of CS to PLA was 2.5:8 and the rate of air flow was approximately 14 cm/s, the porous
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membrane possessed the best filtration performance. The pressure drop reached 147.6 Pa,
and 98.99% of the filtration was successful. The antibacterial experiments demonstrated
that the porous membrane also had a good bacteriostatic effect on Staphylococcus aureus
and Escherichia coli. The porous fiber membrane might be employed as an air filtration
material with outstanding purification capability, according to air purification experiments.
Song et al. [69] dissolved PLLA particles in a DCM and DMF (19:1 w/w) dual-solvent
system for electrospinning to obtain PLLA nanofibers and then successfully prepared a
layered porous PLLA membrane by an acetone post-treatment process (Figure 4a). Based
on the theory of solvent-induced recrystallization, NIPS during electrostatic spinning and
solvent-induced recrystallization in post-treatment were both thought to contribute to the
production of the layered porous structure. The interior of the single fiber was divided
into thinner fibers by the pores during NIPS. The acetone treatment expanded the PLLA
fiber and encouraged the polymer chain to recrystallize, creating a layered porous structure
(Figure 4b). Benefiting from their lager porosity and specific surface area, the produced
porous PLLA fibers exhibited a low pressure drop and a superior filtering effectiveness for
NaCl aerosol. The layered porous nanofibers with excellent surface area could have a wide
range of potential applications in the air filtration sector.
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Figure 4. (a) Schematic diagram of the preparation of porous PLLA nanofibers; (b) SEM photos
of nanofibers before and after acetone post-treatment. Reprinted with permission from Ref. [69],
Copyright 2019, American Chemical Society. (c) Schematic illustration of the fabrication of
HNTs@CS/PVA/NWF nanofibers; (d) SEM photos of CS/PVA/NWF air filtration membranes.
Reprinted with permission from Ref. [131], Copyright 2020, Elsevier.

In order to achieve higher air-filtering effectiveness and a lower pressure drop, Wang
et al. [131] successfully fabricated an environmentally friendly air filtration membrane
of alloxite nanotubes (HNTs)@Chitosan (CA)/polyvinyl alcohol (PVA)/nonwoven fabric
(NWF) with a homogeneous, layered porous structure using dip coating, NIPS, and an
HNT surface deposition method (Figure 4c,d). The hydrophilic modification of polyester
NWF by a TiO2/H2O2 photocatalytic method was studied. The dip-coating NIPS method
combined with NWF inhibited the transverse and longitudinal shrinkage of the fiber
film during NIPS, greatly reduced the pressure drop, and also enhanced the mechanical
properties of the nanofiber membranes. The surface deposition of HNT further reduced
the pore size of the mixed film, which was conducive to the direct interception of larger
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bis(2-ethyl-hexyl) sebacate (DEHS) particles. In addition, the filtering effectiveness of
DEHS particle removal was greatly improved by electrostatic interactions, hydrogen bonds
within CS/PVA molecule chains, dipole–dipole interactions among CS/PVA/NWF and
DEHS, and the diffusion adsorption of HNTs. The HNTs@CS/PVA/NWF film had a
filtering effectiveness of 96.8% and a pressure drop of 143.9 Pa at a flow rate of 5.3 cm/s.
Additionally, it also performed wonderfully in its antibacterial properties.

4.1.2. Air Adsorption Separation

In recent years, the globe has been gradually warming due to large amounts of
greenhouse gas emission. Carbon dioxide (CO2) has made a sizable contribution to global
warming, and the release of CO2 into the atmosphere is increasing as a result of the burning
of fossil fuels. Therefore, it is imperative to develop CO2-capturing technology and take
the necessary measures to control the concentration of CO2 in the air. Traditional CO2-
adsorbent materials show limited efficiency and low stability [132], while new, porous
carbon nanofibers have great advantages in CO2 capture because of their adjustable pore
structures, easy functionalization, huge surface areas, and excellent thermal, chemical, and
mechanical stability.

In order to create porous PAN nanofibers, Zainab et al. [133] employed a PAN and
PVP blended solution as the electrospinning raw material and then washed and removed
the PVP. After carbonization, porous/opening carbon nanofibers (PCNFs) with small di-
ameters were formed. The CO2 adsorption capacity of the film was 3.11 mmol/g, about
20 times that of N2 (0.15 mmol/g), showing excellent CO2 gas selectivity and good trap-
ping capacity. This was primarily because of the formation of a rough micropore structure
after PVP washing and the formation of large pore sizes and opening pores in the fiber
after carbonization treatment. More CO2 gas was absorbed by the PCNF nanofibers as a
result of both of these aspects. After adsorption and desorption for 50 cycles, PCNFs still
possessed high adsorption capacity and stability. Yan et al. [134] created PCNFs connected
with medium and large pores for carbon dioxide adsorption by chemical crosslinking
electrospinning and post-heat treatment (Figure 5a). Using polyvinyl alcohol (PVA) as a
carbon precursor and boric acid (BA) and tetrafluoroethylene (PTFE) as a pore inducer and
a crosslinking agent, respectively, after electrostatic spinning, the obtained fibers underwent
oxidative dehydrogenation at 280 ◦C and N2 pyrolysis at 800–1200 ◦C. In this process, micro-
and macrophase separation occurred, forming mesoporous and macroporous structures
(Figure 5b), which later led to the development of B-F-N triple-doped PCNFs (Figure 5c).
The obtained PCNF pores were evenly distributed with a maximum surface area of
750.6 m2/g and a porosity of 80%. The rapid cage control of CO2 molecules was facilitated
by the big pores’ huge internal surface areas. The strong surface interaction between
mesoporous and microporous structures promoted the adsorption of CO2. The maximum
absorption rate was 3.9 mmol/g (Figure 5d), which proved that the high efficiency of both
the adsorption and diffusion of PCNFs could improve CO2 capture.
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In addition to CO2 adsorption, electrospun porous nanofibers can also effectively
absorb volatile organic compounds (VOCs). Highly hazardous and carcinogenic VOCs
are organic compounds with a low point of boiling and high steam pressure. VOCs are
recognized as one of the most important environmental hazards. The adsorption method is
one of the VOC treatment technologies that is effective and affordable and has the promise
of recovery and reuse. Liu et al. [135] successfully prepared flexible PAN fibers with a
large surface area and functionalized SiO2 aerogel by using electrospinning technology
for the adsorption of VOCs. The specific surface area and porosity of the membrane were
significantly increased by the honeycomb porous structure of the SiO2 aerogel. Under
the same experimental conditions, PAN with 100% SiO2 nanofibers had the maximum
adsorption capacity of 1841.1 mg/g for VOCs. Due to the storage of the largest SiO2
aerogel, the composite membrane had good surface area, acceptable pore size, and the
largest pore volume and porosity. Si-O, Si-OH, and C=N organic functional groups also
provided more active sites for VOCs. Therefore, the newly added porous structure could
significantly improve the adsorption properties of the membrane material. Liang et al. [136]
used polymer PAN and zeolitic imidazolate framework-8 (ZIF-8) hybrid nanofibers as
precursors to prepare multilayer porous ZIF-8/PAN nanofibers via a calcination technique.
Layered pores and numerous active sites that contained nitrogen were introduced into
the fibers to promote the adsorption ability of the nanofibers. As a result, the adsorption
capacity of benzene was increased to 694 mg/g. This exploration provided a certain
reference value for the preparation of polymer/metal–organic framework (MOF)-derived
nanofibers by electrospinning.

4.2. Water Treatment

As we all know, the most significant substance on earth is water. In recent years, water
pollution has been one of the biggest global concerns to public health and a significant
hazard to human health. Electrospun porous nanofibers have the advantages of rich pore
structure, adjustable pore size, customizable channel interface, and easy functionalization.
They show great potential in the filtration, adsorption, separation, and photocatalytic
removal of pollutants in water.

4.2.1. Membrane Filtration

Depending on screening effects, membrane filtration could effectively exclude mate-
rials of a particular size. However, due to high film thickness (more than 100 µm), partly
closed pore channels, and low porosity (less than 80%), existing membranes have low
permeability flux (usually less than 1000 L/m2/h) and large operating pressure (more
than 100 KPa). Electrospun porous fiber membranes have large flux velocity and low
membrane pressure in membrane filtration technology because of their interlinked open
porous structure, high porosity, and customizable thickness [137], thus becoming the most
potentially attractive filter.
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Tang et al. [119] prepared nanofiber/nanomesh composite porous microfiltration
membranes for the interception of water-borne pollutants, including TiO2 particles and Es-
cherichia coli, using electrospinning technology combined with VIPS (Figure 6a). Through
the precise control of the solvent and relative humidity conditions, the prepared filter
membrane had a submicron pore size of 0.19 µm, a high porosity of 93.2%, an ultra-thin
thickness of 700 nm, and excellent interconnectivity. At a pressure of 5 kPa, the perme-
ation flux of the membrane could reach 3907 L m−2 h−1, and the filtration ability could
reach 99.75%. Additionally, according to Figure 6b, the membrane had greater filtration
efficiency than the current commercial sterile membrane. The successful construction of
this multifunctional membrane could provide inspiration for the design of high-quality
films for numerous filtration applications. Chen et al. [138] used a poly(tetrafluoroethylene-
co-hexafluoropropylene) (FEP)/polyvinyl alcohol (PVA) blend solution for electrospinning
to prepare fiber film and then sintered it under a N2 atmosphere to obtain microfiber
FEP porous films. When the weight ratio of PVA/FEP was 1:6, the sintering temperature
reached 300 ◦C, and the sintering time was 10 min, the porous membrane showed strong
hydrophobicity, a tiny pore diameter, and high porosity, which met the reasonable pore
size of the filter membrane. The porous film also showed good mechanical properties. The
porous membrane permeation flux could reach up to 15.1 L m−2 h−1 at a feed tempera-
ture of 80 ◦C and a transmembrane pressure of 0.06 MPa. The salt removal rate reached
97.99% when the feed NaCl content was 3.5 weight percent, which showed a broad range
of application potentiality in the purification of seawater treatments.

Polymers 2023, 15, x FOR PEER REVIEW 15 of 34 
 

 

4.2. Water Treatment 
As we all know, the most significant substance on earth is water. In recent years, 

water pollution has been one of the biggest global concerns to public health and a sig-
nificant hazard to human health. Electrospun porous nanofibers have the advantages of 
rich pore structure, adjustable pore size, customizable channel interface, and easy func-
tionalization. They show great potential in the filtration, adsorption, separation, and 
photocatalytic removal of pollutants in water. 

4.2.1. Membrane Filtration 
Depending on screening effects, membrane filtration could effectively exclude ma-

terials of a particular size. However, due to high film thickness (more than 100 μm), 
partly closed pore channels, and low porosity (less than 80%), existing membranes have 
low permeability flux (usually less than 1000 L/m2/h) and large operating pressure (more 
than 100 KPa). Electrospun porous fiber membranes have large flux velocity and low 
membrane pressure in membrane filtration technology because of their interlinked open 
porous structure, high porosity, and customizable thickness [137], thus becoming the 
most potentially attractive filter. 

Tang et al. [119] prepared nanofiber/nanomesh composite porous microfiltration 
membranes for the interception of water-borne pollutants, including TiO2 particles and 
Escherichia coli, using electrospinning technology combined with VIPS (Figure 6a). 
Through the precise control of the solvent and relative humidity conditions, the pre-
pared filter membrane had a submicron pore size of 0.19 μm, a high porosity of 93.2%, 
an ultra-thin thickness of 700 nm, and excellent interconnectivity. At a pressure of 5 kPa, 
the permeation flux of the membrane could reach 3907 L m−2 h−1, and the filtration ability 
could reach 99.75%. Additionally, according to Figure 6b, the membrane had greater fil-
tration efficiency than the current commercial sterile membrane. The successful con-
struction of this multifunctional membrane could provide inspiration for the design of 
high-quality films for numerous filtration applications. Chen et al. [138] used a 
poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP)/polyvinyl alcohol (PVA) blend 
solution for electrospinning to prepare fiber film and then sintered it under a N2 atmos-
phere to obtain microfiber FEP porous films. When the weight ratio of PVA/FEP was 1:6, 
the sintering temperature reached 300 °C, and the sintering time was 10 min, the porous 
membrane showed strong hydrophobicity, a tiny pore diameter, and high porosity, 
which met the reasonable pore size of the filter membrane. The porous film also showed 
good mechanical properties. The porous membrane permeation flux could reach up to 
15.1 L m−2 h−1 at a feed temperature of 80 °C and a transmembrane pressure of 0.06 MPa. 
The salt removal rate reached 97.99% when the feed NaCl content was 3.5 weight per-
cent, which showed a broad range of application potentiality in the purification of sea-
water treatments. 

 
Figure 6. (a) Schematic diagram of the preparation procedure of porous microfiltration mem-
branes; (b) bacterial removal efficiency of porous microfiltration membranes and commercial 
membranes. Reprinted with permission from Ref. [119], Copyright 2020, The Royal Society of 
Chemistry. 

Figure 6. (a) Schematic diagram of the preparation procedure of porous microfiltration membranes;
(b) bacterial removal efficiency of porous microfiltration membranes and commercial membranes.
Reprinted with permission from Ref. [119], Copyright 2020, The Royal Society of Chemistry.

4.2.2. Oil–Water Separation

The rapid expansion of energy and chemical products has made the discharge of oily
sewage increase, and toxic compounds have caused serious pollution to the ecosystem,
even endangering human life and health. Therefore, it is imperative to remove significant
quantities of oil from polluted water. Designing oil absorbents with large surface areas
and proper hydrophobicity is important to increase the adsorption capacity and rate of oil
in oily wastewater. Electrospun porous nanofibers are thought to be a viable candidate
material for oil–water separation because they offer a high surface area and changeable
wettability, which can increase oil adsorption properties [139,140].

By electrospinning crosslinked polyvinyl alcohol/nanoparticles (CPVANPs), Pane
et al. [141] reported a strategy to fabricate a flexible porous nanofiber film (PVANP). On
the basis of amino-functionalized hypercrosslinked polymer nanoparticles (AHCPNPs), a
PVA/CPVANP membrane was prepared via electrospinning and was subsequently sub-
merged in a para-phenylenediamine solution for 6 h. The porous membrane had excellent
mechanical and tensile properties due to the good combination of rigid nanoparticles and
large-molecular-weight, flexible PVA fibers. The high content of AHCPNPs provided the
membrane with good oil capture performance, which was primarily due to the swelling
and solvation actions of the three-dimensional crosslinked network provided by AHCPNPs.
The microporous structure of the CPVANP film promoted the rejection of large oil droplets
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and brought high emulsified oil separation efficiency and large water flux to the film, thus
showing high oil absorption capacity and a high-efficiency separation ratio of emulsified oil.
Yan et al. [142] prepared a reusable polyvinylidene fluoride/nanocellulose (PVDF/CNC)
porous fiber composite by one-step electrospinning (Figure 7a). The addition of CNC
greatly increased the mechanical strength of the nanofiber film, which was 3.14 times that
of pure PVDF (Figure 7b). In addition, the CNC’s surface had a lot of hydroxyl groups,
which encouraged NIPS during the spinning process. A significant number of nanospheres
were produced on the fiber’s surface, and interconnected pores are produced internally by
varying the relative humidity (Figure 7c,d). The composite membrane possessed a large
surface area and outstanding adsorption ability for oils (the maximum adsorption capacity
of engine oil was 73.04 g/g) (Figure 7e). The NC6-85% composite’s adsorption retention
rate for toluene was 85% after ten cycles. By adding reinforcing elements, the mechanical
properties of porous fibers membrane can be increased. The complementary properties of
different materials are beneficial to decrease a material’s application restrictions.
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Figure 7. (a) Schematic diagram of electrospinning preparation of porous PVDF/CNC nanospheres;
(b) stress–strain curve of porous PVDF/CNC and pure PVDF membranes; (c,d) SEM images of
electrospun porous nanofibers with relative humidity of 85%; (e) adsorption capacities of porous
PVDF/CNC membrane to different oils in different humidity. Reprinted with permission from
Ref. [142], Copyright 2022, Elsevier.

4.2.3. Adsorption

The adsorption method has been proved to be one of the most economical ways
to remove pollutants from polluted water due to its simple operation and small energy
usage. The huge specific surface area of porous nanofibers produced by electrospinning
can provide considerable adsorption capacity, so they can be used to absorb heavy metal
ions, dyes, antibiotics, and other pollutants in water. Their porous structure can expand
the exposed area of functional particles and provide more active sites. In addition, the
interconnecting pores in a fiber can also promote the diffusion rate of pollutant molecules,
thus improving the adsorption performance.

Xu et al. [143] used PVP as a porogen to prepare polyethyleneimine (PEI)-porous
polyacrylonitrile (PPAN) nanofibers (PPAN-PEI) via an electrospinning method, which
were used to adsorb and remove methyl orange (MO) organic dyes from water. The
obtained fiber film had an abundant porous structure, and the highly exposed pores
enhanced the surface area in contact with the pollutants, providing a large amount of
MO adsorption sites. In addition, through PEI modification, the surfaces of nanofibers
loaded with rich amine groups not only improved the hydrophilicity but also enhanced the
electrostatic attraction between the nanofiber film and methyl orange, with an adsorption
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capacity of methyl orange up to 726.45 mg/g, which was five times that of the adsorption–
desorption cycle experiments, and the dye still maintained a high adsorption efficiency of
86.7%. It had a good reusable performance. By adjusting the size of the porous structures in
the fiber, pollutant molecules of different sizes could be absorbed. Using PAN as a matrix
and PVP as a porogen, Zhao et al. [144] prepared interconnected mesoporous porous
zeolite imidazole framework-8 (ZIF-8)/polyacrylonitrile (PAN) nanofiber membranes
utilizing an electrospinning method (Figure 8a). The SEM results showed that mesoporous
structures were formed on the fiber surface during PVP removal, and monodispersed ZIF-8
particles were found embedded in these structures (Figure 8b). A N2 adsorption–desorption
experiment also supported the mesoporous characteristics of the surface of ZIF-8/PAN
nanofibers (Figure 8c). The presence of these mesoporous formed MOF–polymer interfaces
inside the fibers not only accelerated the diffusion of pollutant molecules to the fibers,
but also exposed more ZIF-8 adsorption sites, greatly improving the adsorption rate and
capacity. The highest adsorption capacity of the composite membrane for TC reached
885.24 mg g–1. Therefore, it is of great significance to construct interconnected mesoporous
structures for the adsorption of macromolecular pollutants in wastewater. Dou et al. [145]
prepared a novel, ultra-porous polyimide hollow carbon nanofiber membrane (CNFM) as a
ciprofloxacin (CIP) adsorbent by a blending electrospinning technology. The composite
fibers were directly electrospun from a solution of polyamide acid (PAA) and methyl
methacrylate (PMMA), heated to 1000 ◦C in a tube furnace at 5 ◦C/min, and carbonized in
a N2 atmosphere for 3 h to obtain porous CNFM. The differing thermal stabilities of the
PAA and PMMA polymers were thought to be the reason for the microphase separation
of blends, resulting in the creation of hollow structures in the nanofibers, which could
significantly reduce the adsorption time and increase the adsorption efficiency. The specific
surface area of the adsorbent was 2327 m2/g, and the pore volume was 1.26 cm3/g. The
adsorbent had a significant adsorption effect on CIP. In the adsorption process, hydrophobic
interactions and pore filling both played important roles.
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nanofibers. Reprinted with permission from Ref. [144], Copyright 2021, American Chemical Society.
(d) Synthesis pathways of porous PAN nanofibers loaded with nano-MgO functional particles; (e)
SEM image of porous PAN nanofibers after post-treatment in deionized water (without nano-MgO);
(f) comparison of mechanical properties of membranes (F1 and F2 are pure PAN and PAN with 2%
MgO nanofibers, respectively, created by blended electrospinning; F3 and F4 are PAN@PAN with PEG
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F5 and F6 are porous nanofibers obtained by post-processing PEG removal on the basis of F3 and F4,
respectively). Reprinted with permission from Ref. [146], Copyright 2022, Elsevier.
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In order to improve the mechanical properties of porous fibers, Xu et al. [146] designed
porous core–shell nanofibers with PAN as the core and MgO supported by PAN/PEG as the
shell by coaxial electrospinning (Figure 8d). Through post-treatment, the PEG was eliminated,
and a porous structure was introduced on the surface of the fiber (Figure 8e), expanding
the exposure area of functional particles and improving the adsorption performance. The
maximum adsorption capacity of the porous membrane for Cu+ was 354 mg/g. In addition,
the mechanical properties of the membrane were tested, indicating that the core layer of
PAN could provide favorable support and significantly enhanced the fiber’s mechanical
properties (Figure 8f). As a result, adding a core–shell structure to porous nanofiber
membrane preparation could alleviate damage in porous structure to the mechanical
properties of nanofibers.

4.2.4. Photocatalysis

As promising catalysts, electrospun porous nanofibers also exhibit excellent applica-
tion potential in the photocatalytic treatment of pollutants in water. Porous structures can
not only increase the adhesion points of catalysts in the fibers and provide more active sites,
but can also enhance light penetration and reduce diffusion resistance, thus accelerating
mass transfer [147,148]. Eventually, the photocatalytic activity of the degradation of organic
contaminants in wastewater is improved.

Qian et al. [149] fabricated graphite carbon nitride (g-C3N4)/polylactic acid (PLA)
nanofiber composite materials with layered mesoporous and macroporous structures by
centrifugal electrospinning and alkali treatment for the photocatalytic degradation of
carbazepine. A g-C3N4 photocatalyst was dissolved in a PLA (solvent: DCM/DMAC)
solution for electrospinning, and the obtained film was then submerged in a NaOH solution
for 15 min. The phase separation and the presence of g-C3N4 nanosheets led to a porous
structure on the fiber’s surface and inside. With the NaOH soaking treatment, hydrolyzed
ester bonding of PLA improved the porous structure and enhanced the pore size, which
avoided the wrapping of g-C3N4 and increased the exposure of the catalyst. Under the same
experimental conditions, porous g-C3N4/PLA nanofibers provided more active sites, not
only promoting contact between catalysts and pollutants, but also providing more electron
and hole utilization, and the photocatalytic property was superior to that of nonporous
g-C3N4/PLA nanofibers. Consequently, a porous structure is crucial in the development of
efficient photocatalytic nanofiber materials. It is beneficial to promoting the photocatalytic
performance of a fiber membrane by introducing porous structure into the fiber to construct
abundant porous channels.

In addition to porous structure, the hydrophilicity of nanofiber material facilitates
contact with a water medium, which is beneficial to its application in wastewater treat-
ment. Xu et al. [150] took polyether sulfone and polyvinyl pyrrolidone (PVP) blends as
raw materials and added boron-doped and nitrogen-lacking graphite carbon nitride for
electrospinning (Figure 9a). Then, PVP was removed by simple washing to obtain highly
porous and super-hydrophilic nanofiber membranes (PBCN). PVP, as a sacrificial pore-
forming agent, built interlinked mesoporous channels inside the fiber (Figure 9c,d) and
promoted the diffusion of pollutant molecules; it also exposed more photocatalytic sites and
accelerated photocatalytic degradation. On the other hand, the introduction of PVP made
the composite nanofiber membranes more hydrophilic (Figure 9b). The composite film
showed a high removal rate of MB and excellent performances of recycling, regeneration,
and repetition (Figure 9e). The hydrophilicity of porous nanofibers can be increased by
creating hydrophilic pores or channels in them. This can accelerate mass transfer and
further improve the photocatalytic performance of materials.
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4.3. Energy Storage

The development of effective electrode materials is one of the critical elements in
the advancement of clean, renewable energy technology. Electrospun fiber membranes
with porous structures are considered as strong electrodes with excellent capacity and
cycle stability due to their large surface area and abundant pores and are widely used in
the energy storage field. The high porosity can enlarge the surface contact between the
electrolyte and the electrode, offer rich charge transfer diffusion channels, and improve
electron and ion transport dynamics. In addition, it may appropriately cache the variation
in volume of an electrode material during the battery-charging and -discharging processes,
ensure the structural integrity of a material, and further enhance the performance of
electrochemical energy storage.

In the preparation of lithium ion battery electrodes, electrospun porous nanofibers
have been successfully applied. Huang et al. [151] successfully synthesized porous car-
bon nanofibers through an easy-to-use electrospinning technique combined with an in
situ pore formation process using a high-volatility solvent and a water bath collection
device. These porous carbon nanofibers were used to encase sulfur to form porous car-
bon nanofiber/sulfur nanocomposites. Porous carbon nanofibers with large surface areas
and highly porous structures are excellent substrates for sulfur limitation, according to
electrochemical studies. The porous carbon nanofiber/sulfur nanocomposite had capacity
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retention rates of 80.1% and 68% after 50 and 100 cycles, respectively. Wang et al. [152]
prepared three independent porous silicon@heteroatom-doped porous carbon fibers via
coaxial electrospinning. The porous structure not only greatly alleviated the volume in-
crease problem of silicon, but also provided abundant transmission and diffusion channels
for lithium ions. After 100 cycles, the membrane’s capacity was 1145 mAh g−1, demonstrat-
ing an outstanding cycling performance. Consequently, the addition of porous structure is
an approach that has promise for significantly enhancing the electrochemical properties of
electrode materials.

As a commercial energy storage system, lithium ion batteries have achieved great
success, but limited lithium resources and high cost limit further applications. Due to
plentiful Na resources and extremely low cost, sodium ion batteries have recently replaced
lithium ion batteries, which has aroused wide interest in researchers. Shan et al. [153]
prepared N-doped graded carbon nanofibers (CZIF-8/PAN) using ZIF-8 particles as a tem-
plate by electrospinning technology. Due to the addition of ZIF-8, the fiber film possessed
a layered, porous structure after carbonization and acid treatment, which increased the
surface contact area between the electrolyte and the electrode and improved the transfer
speed of Na. Moreover, the doping of nitrogen atoms in the fibers also enhanced the active
sites and electrical conductivity. After 600 cycles, the fiber membrane showed a remarkable
cycling performance and a stable discharge capacity of 186.2 mAh g–1. Liao et al. [154]
fabricated porous carbon nanofibers (Co3O4@PCNF) via electrospinning, in situ growth,
and a two-step calcination process. Polyacrylonitrile (PAN)/poly(methyl methacrylate)
(PMMA)/Co(Ac)2 electrospun fibers were immersed in 2-methylimidazole in situ to grow
PAN/PMMA/ZIF-67 nanofibers. Then, using PMMA as a sacrificial template, mesoporous
Co/CoO@PCNF was obtained after the first carbonization (900 ◦C), and finally, hollow
Co3O4 was fixed in the carbon fiber matrix at the second oxidation pyrolysis (350 ◦C) to
obtain Co3O4@CNF (Figure 10a). The creation of interpore structures in nanofibers was
encouraged by the thermal degradation of PMMA, providing a multichannel route that
improved ion and electron transport. In addition to significantly reducing the Na ion
transport channel, the production of hollow Co3O4 nanoparticles could also effectively
reduce the volume change during the process of sodification and desilication and could
improve the structural stability. The composite membrane had an extremely high initial
Coulomb efficiency (ICE of 91.6%), showing excellent sodium storage ability and a large
reversible capacity after 1000 cycles (Figure 10b). The development of hollow-structured
electrode materials for various energy storage devices is given a new direction by the
successful production of porous nanofibers.

Polymers 2023, 15, x FOR PEER REVIEW 21 of 34 
 

 

ergy storage devices is given a new direction by the successful production of porous 
nanofibers. 

 
Figure 10. (a) Schematic illustration of the production of Co3O4@PCNF nanofibers; (b) cyclic per-
formance of Co3O4@PCNF, Co3O4@CNF, and Co3O4. Reprinted with permission from Ref. [154], 
Copyright 2021, Elsevier. 

A few high-performance electrospun porous nanofibers can store sodium ions and 
lithium ions simultaneously. Zhu et al. [155] proposed a porous carbon nanofiber gener-
ated from Sn-MOF for the anodes of lithium and sodium ion batteries. A Sn-MOF or-
ganic framework was introduced to a PAN precursor solution for electrospinning. The 
obtained fiber membrane was then subjected to a carbothermic reduction reaction to ob-
tain a layered porous fiber membrane (Sn@C@CNF). The porous structure accelerated 
the speed of the ion and electron transport rate and buffered the volume expansion of 
carbon inclusions of PAN fibers and the MOF skeleton, showing excellent cycling stabil-
ity and electrochemical performance. The porous structure helped to increase the mate-
rial’s capacity to store Li+ and Na+. 

4.4. Biomedicine 
Due to good biocompatibility, flexibility, biodegradability, and high porosity, elec-

trospun porous nanofibers can increase drug delivery, antibacterial properties, and cell 
adhesion [156,157], showing a broad variety of application prospects in the clinical and 
medical fields. They are often used in drug controlled release [158,159], antibacterial 
[160], wound-dressing [161], and tissue-engineering [162,163] applications. 

Porous nanofibers are helpful for drug delivery and improved drug release, thus 
enhancing drug efficacy. Ramos et al. [164] prepared porous drug-loaded PCL nano-
fibers using high-humidity electrostatic spinning technology. The impacts of electro-
spinning processes (humidity and voltage), different solvent systems, and the presence 
of a model drug (chloramphenicol (CAM)) on the fiber porosity and drug release be-
havior were investigated. Porous PCL nanofibers with large pore size were produced in 
high-RH (65%) tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO) solvent systems. 
Poreless drug-loaded PCL nanofibers had a large surface area because of macropores 
between the fibers. Although they had a fast drug release effect in the early stage, most 
drugs were wrapped in the fiber membrane, and only a small part of the drugs (about 
20%) located on the fiber surface were released. Compared with nonporous fibers, po-
rous nanofibers could release twice the amount of drug because of the pores on the sur-
face of the fiber, exhibiting a better drug release performance. Therefore, the porous 
structure of porous electrospinning nanofibers can promote drug solubility and regulate 
the release rate of drugs. Coaxial electrospinning technology combined with NIPS was 
used by Chen et al. [165] to fabricate drug-loaded porous PCL/PLA nanofibers (Figure 
11a). The impacts of various core–sheath solvent combinations on the microstructures of 
coaxial porous fibers were studied. The interaction of NIPS and BFs during electrospin-
ning was primarily responsible for the creation of porous structures. Coaxial porous fi-
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A few high-performance electrospun porous nanofibers can store sodium ions and
lithium ions simultaneously. Zhu et al. [155] proposed a porous carbon nanofiber generated
from Sn-MOF for the anodes of lithium and sodium ion batteries. A Sn-MOF organic
framework was introduced to a PAN precursor solution for electrospinning. The obtained
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fiber membrane was then subjected to a carbothermic reduction reaction to obtain a layered
porous fiber membrane (Sn@C@CNF). The porous structure accelerated the speed of the
ion and electron transport rate and buffered the volume expansion of carbon inclusions of
PAN fibers and the MOF skeleton, showing excellent cycling stability and electrochemical
performance. The porous structure helped to increase the material’s capacity to store Li+

and Na+.

4.4. Biomedicine

Due to good biocompatibility, flexibility, biodegradability, and high porosity, elec-
trospun porous nanofibers can increase drug delivery, antibacterial properties, and cell
adhesion [156,157], showing a broad variety of application prospects in the clinical and
medical fields. They are often used in drug controlled release [158,159], antibacterial [160],
wound-dressing [161], and tissue-engineering [162,163] applications.

Porous nanofibers are helpful for drug delivery and improved drug release, thus
enhancing drug efficacy. Ramos et al. [164] prepared porous drug-loaded PCL nanofibers
using high-humidity electrostatic spinning technology. The impacts of electrospinning
processes (humidity and voltage), different solvent systems, and the presence of a model
drug (chloramphenicol (CAM)) on the fiber porosity and drug release behavior were
investigated. Porous PCL nanofibers with large pore size were produced in high-RH
(65%) tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO) solvent systems. Poreless
drug-loaded PCL nanofibers had a large surface area because of macropores between
the fibers. Although they had a fast drug release effect in the early stage, most drugs
were wrapped in the fiber membrane, and only a small part of the drugs (about 20%)
located on the fiber surface were released. Compared with nonporous fibers, porous
nanofibers could release twice the amount of drug because of the pores on the surface of
the fiber, exhibiting a better drug release performance. Therefore, the porous structure of
porous electrospinning nanofibers can promote drug solubility and regulate the release
rate of drugs. Coaxial electrospinning technology combined with NIPS was used by Chen
et al. [165] to fabricate drug-loaded porous PCL/PLA nanofibers (Figure 11a). The impacts
of various core–sheath solvent combinations on the microstructures of coaxial porous
fibers were studied. The interaction of NIPS and BFs during electrospinning was primarily
responsible for the creation of porous structures. Coaxial porous fibers, as opposed to
nonporous fibers, encouraged the sustained release of medicines, preventing their explosive
release (Figure 11b). They also increased the dissolution of hydrophobic drugs, thus having
greater application potential for the continuous release of medications.

Electrospun porous nanofibers also have potential applications in antibacterial and
wound-healing applications. Chen et al. [160] fabricated a graded, porous cellulose acetate
(CA) nanofiber membrane covering thymol (THY) and β-cyclodextrin (β-CD) by electro-
spinning. The antibacterial activity of the porous fiber membrane against Staphylococcus
aureus in vitro was studied. The composite membrane showed the highest porosity (86.0%)
and high drug loading efficiency. The porous structure also increased the drug release time
and showed more potent and long-lasting antibacterial properties against Staphylococcus
aureus. The bacterial survival rate was 0.09% after 48 h. The porous nanofiber also had
good cellular compatibility due to its high porosity and hierarchical porous structure, which
provided a permeable network structure for cell proliferation and regulated the diffusion
of metabolites and oxygen transport. The porous structure could also improve protein
adhesion and promote cell adhesion, diffusion, and proliferation. This intriguing study
expanded the potential use of porous nanofiber membranes as a novel material for wound
healing. Yin et al. [73] added chitosan (CS) and aloin into a polylactic acid (PLA) solution
and successfully prepared batch of porous PLA/CS/aloin nanofibers (PCA) for wound
dressing using a self-made electrospinning device (Figure 11c). The introduction of CS and
aloin improved the hydrophobic property of PCL (Figure 11d), which might lessen the
dressing’s adherence to the wound and avoid harm from dressing removal. Meanwhile,
the porous structure of PCA with high porosity could also facilitate water transport, and
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the porous fiber membrane had good hydrophobicity and a high swelling rate (Figure 11e).
The combination of PLA and CS made the fiber membrane have good tensile strength.
The positive CS also accelerated the aggregation of negatively charged platelets, and the
porous membrane showed good in vitro coagulation ability (Figure 11f). The addition of
aloin significantly increased the antimicrobial properties against Staphylococcus aureus
and Escherichia coli, and the antibacterial rate reached 99.9%. Additionally, the porous
structure gave the cells more anchorage points and strengthened their attachment to the
matrix, thus further accelerating wound healing.
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In addition, electrospun porous nanofibers have also attracted great attention in
tissue engineering. Liu et al. [166] prepared a porous poly (3-hydroxybutyrate co-4-
hydroxybutyrate) (P34HB) scaffold covered with lecithin that self-assembled on the surface
of a scaffold by electrospinning technology. Porous scaffolds provided mesenchymal
stem cells from bone marrow protection and sufficient three-dimensional space for cell
proliferation. Combined with lecithin, they synergically promoted osteogenesis and re-
generation. The obtained scaffold had good hydrophilicity and biocompatibility, and the
interlinked pores were able to transport oxygen and nutrients to the cells, promoting cell
attachment and growth. One of the best techniques for creating the macropores necessary
for cell migration and tissue regeneration in tissue engineering is freeze-drying. Ahmed
et al. [167] produced PCL imitation cotton fiber (PCLCLF) by electrospinning and blowing
technology, which was then mechanically compressed into scaffolds, permeated with a
collagen (COL) solution of water gel, and lyophilized to obtain high-volume and extremely
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porous PCL/COL scaffolds. The scaffolds showed a high porous structure, as well as high
water absorption capacity and cutting ability, which could be used for the regeneration of
large-volume tissue defects that were not load-bearing.

4.5. Other Applications

In addition to the above fields, electrospun nanofibers’ porous structures give them
special structural and functional merits in food packaging, sensors, sound and wave
absorption, heat insulation, flame retardant applications, and so on.

Bioactive substances can be transported using electrospun porous nanofibers, which
are useful for food packaging. Using electrospun porous polylactic acid (PLA) nanofibers
as a carrier, Min et al. [168] fabricated a new antibacterial-packaged PLA/ thyme essen-
tial oil (TEO)/PVA/PEG composite film that was loaded with thyme essential oil (TEO)
and hydrophilic polyvinyl alcohol(PVA)/polyethylene glycol (PEG) by a soaking method
(Figure 12a,b). The addition of PVA/PEG improved the fiber membrane’s hydrophilicity
(Figure 12c,d). The porous structure of the PLA fiber provided more space for TEO, which
enabled TEO to be wrapped into the pores and improved the loading ability of TEO. By
adjusting the ambient humidity (20–80% relative humidity), the release rate of TEO in
the composite membrane gradually increased (Figure 12e), showing excellent antibac-
terial activity, which offered a novel approach to the design and development of food
active-packaging materials.
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Figure 12. (a) Preparation process of PLA/TEO/PVA/PEG composite membrane under high-
humidity conditions; (b) SEM photo of porous nanofiber membrane; (c,d) water contact angles
of pure PLA and hydrophilic PLA/TEO/PVA/PEG nanofibers; (e) release behaviors of thyme essen-
tial oil (TEO) (at 20%, 50%, and 80% relative humidity). Reprinted with permission from Ref. [168],
Copyright 2021, Elsevier.

Research on the preparation of sensors with huge specific surface areas, high porosity,
high sensitivity, and high selectivity by electrospinning technology has been widely re-
ported [169,170]. The addition to porous structure, the electrostatic spinning of nanofibers’
surfaces can enhance molecule diffusion and improve the sensing performance. Further-
more, by regulating pore size, selectivity can be attained. Cai et al. [171] developed porous
TiO2 nanofibers doped with Co3O4 using electrospinning and hydrothermal processes
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to enhance the gas-sensitive properties of acetone. The fiber’s specific surface area was
significantly increased by the porous structure, which also increased the number of porous
channels available for acetone gas absorption. In addition, porous TiO2 nanofibers mod-
ified with Co3O4 showed superior acetone gas selectivity and long-term stability. The
porous structure and p–n junction formed at the interface of TiO2 and Co3O4 significantly
enhance the sensing performance of nanofibers. Chen et al. [172] prepared Au-decorated
porous SnO2-doped nanotubes (Au@In2O3-SnO2) by electrospinning and calcination at
600 ◦C (Figure 13a). The porous structure (Figure 13b,c) and high surface area offered
additional reaction sites, which was conducive to the adsorption and desorption of the
target gas. It also sped up the sensing reaction that occurred between oxygen and ethanol.
The 3% Au@In2O3-SnO2 sensor showed a high Ra/Rg value of 179.62 for 50 ppm ethanol
(Figure 13d). The large amount of pores, more active sites, Au catalyst modification, and
In3+-equivalent doping were thought to be the causes of the superior sensing properties.
This work opened up more possibilities for creating different kinds of gas sensors.
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Figure 13. (a) Schematic diagram of the designed gas sensor of the porous Au@In2O3-SnO2 nanotubes;
(b–c) SEM and TEM images of 3% Au@In2O3-SnO2; (d) response variation to ethanol of different
sensors at different temperatures. Reprinted with permission from Ref. [172], Copyright 2023,
Elsevier.

Both people and animals in the natural world are permanently affected by noise [173].
Electrospun porous fiber was proved to be a good sound-absorbing material because of
its low weight, high porosity, low cost, wide range of sound absorption frequency, and
strong sound absorption ability. Chao et al. [174] obtained macroporous silica nanofibers
by electrospinning and high-temperature calcination. PVP, PS, and ethyl orthosilicate
(TEOS) were used as a spinning solution for electrostatic spinning, and then the PVP
and PS were removed by calcination at 500 ◦C. The great majority of the pores in the
porous fiber were beneficial to attenuate sound energy and greatly enhanced the silica
fiber’s ability to absorb sound. In the frequency range of 4.0–5.1 kHz, the porous silica
nanofibers had a greater sound absorption coefficient than commercial sponges. In addition,
electrospun porous nanofibers have great potential in absorbing electromagnetic waves.
Sun et al. [175] prepared hollow porous carbon nanofibers (Fe-HPCNFs) by electrospinning
a PAN precursor solution with additional Fe-ZIF, and then calcined it at a high temperature
(Figure 14a–c). Compared with ordinary nanofibers, Fe-HPCNFs could absorb more EMWs
and showed excellent electromagnetic wave absorption performance (Figure 14d). This
was due to the fact that the existence of Fe-ZIF and the creation of hollow porous structures
are crucial in controlling the impedance matching of fiber. The hollow porous structure
had good impedance-matching characteristics, which further enhanced the attenuation of
wave energy.

The various reflection effects of thermal radiation can be significantly improved by
electrospun nanofibers because they have hierarchical porous structures and numerous
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solid–gas interfaces [176]. Convective heat transfer is further lessened by the air in pores,
which aids in lowering a material’s thermal conductivity. As a result, it is possible to
attain better heat insulation and flame-retardant properties. Wang et al. [177] used PVP,
tetraethyl orthosilicate (TEOS), and titanium butoxide (TBT) as a precursor solution for
electrospinning and calcined the obtained fiber film to obtain a SiO2-TiO2 sponge with
a micro-meso-macroporous layered porous structure. The pores in the sponge were dis-
tributed in a gradient from the center of the fiber to the wall of the fiber and were connected
with each other, showing high porosity, low packing density, and good compressibility. The
sponge still maintained a low temperature after being treated above the flame of a 500 ◦C
alcohol lamp for 30 min. A porous structure could be included into the fiber to increase
the material’s flame retardancy. Zhang et al. [178] prepared nickel oxide (NiO) porous
nanofibers using electrospinning and pyrolysis techniques (Figure 14e,f). The mesoporous
structure promoted the interaction between NiOf and a polylactic acid matrix (Figure 14g),
and the mechanical test showed excellent dispersion and better load transfer capability.
Compared with commercially available NiO particles, the prepared multiresistant NiO
fibers had better flame-retardant properties. In the future, combinations of this porous struc-
ture with electrospun multichamber structures (such as three-layer parallel and chimeric
Janus structures [179–181]) could result in more functional nanoproducts.
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5. Conclusions and Perspectives

The usage of electrospinning technology, one of the most popular techniques for
preparing nanofibers, is widespread in various fields due to its advantages, such as ease
of use, controllable process and fiber size, and repeatability. The specific surface area of
a fiber is increased even more by the addition of a porous structure, which also consider-
ably enhances a material’s performance. The preparation methods of porous nanofiber
membranes by electrospinning, including the template method and the phase separation
method, were reviewed in this paper. In the template method, a certain template is selected,
and the template is removed by a post-processing method to obtain porous nanofibers. In
the phase separation technique, porous nanofibers can be produced directly by controlling
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the parameters of electrospinning (such as humidity, temperature, etc.) and selecting
suitable polymers and solvents. A porous structure not only greatly increases the surface
areas of fibers and provides a large adsorption capacity but also can serve as a diffusion
channel to provide a large number of reaction sites and speed up the diffusion and transfer
of substances. By designing porous structures at different scales or loading functional
particles on porous nanofibers, the performances of materials can be further improved, and
materials with different functions can be prepared, showing great application prospects in
air purification, water treatment, biomedicine, energy storage, food packaging, and so on.

However, there are still some challenges: (1) Because interior structure greatly affects
the properties of materials, it is important to optimize the design of electrospun porous
nanofiber structures and to innovate more suitable methods for building highly ordered
porous structures inside them. (2) The mechanical properties of electrospun nanofibers are
unavoidably impacted by their porous structures. The interactions between mechanical
properties and porous structures must be balanced. Therefore, higher requirements should
be put forward for the properties and structural stability of porous nanofibers. (3) Due
to their high cost and low production efficiency, electrospun nanofibers are still only
prepared and used in academic research fields. More attention should be paid to the
formation mechanisms of porous nanofibers to develop production methods and equipment
suitable for industrial applications. Electrospun porous nanofibers have become a research
hotspot, so with the progress and development of electrospinning technology and the
unremitting efforts of scientists and researchers, more excellent performances of electrospun
porous nanofibers can be developed. The expansion of their applications can be further
strengthened along with the fast developments in modern science and technology, such
as encapsulating new functional ingredients [182–184] and additives [185,186], exploring
new types of filament-forming polymeric matrices [187,188], being introduced to popular
life-improving applications [189–194], taking advantage of new strategies of synthesizing
materials [195,196], and drawing support from traditional techniques for production on a
large scale [197,198].
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