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Abstract: Blending biodegradable polymers with plant materials is an effective method to improve
the biodegradability of solid carbon sources and save denitrification costs, but the recalcitrant lignin
in plant materials hinders the microbial decomposition of available carbon sources. In the present
study, corncob pretreated by different methods was used to prepare polybutylene succinate/corncob
(PBS/corncob) composites for biological denitrification. The PBS/corncob composite with alkaline
pretreatment achieved the optimal NO3

−-N removal rate (0.13 kg NO3
−-N m−3 day−1) with less

adverse effects. The pretreatment degree, temperature, and their interaction distinctly impacted
the nitrogen removal performance and dissolved organic carbon (DOC) release, while the N2O
emission was mainly affected by the temperature and the interaction of temperature and pretreatment
degree. Microbial community analysis showed that the bacterial community was responsible for both
denitrification and lignocellulose degradation, while the fungal community was primarily in charge
of lignocellulose degradation. The outcomes of this study provide an effective strategy for improving
the denitrification performance of composite carbon sources.

Keywords: biodegradable polymer; degradation; polymer and composites; solid-phase denitrification;
solid carbon source; pretreatment method; microbial community structure

1. Introduction

Nitrogen pollution, which is mainly caused by superfluous inputs of nitrogen into
receiving water, has seriously threatened ecological security. The threshold concentrations
of total nitrogen (TN) and total phosphorus (TP) triggering cyanobacterial blooms were
only 0.8 mg/L and 0.05 mg/L, respectively [1]. Hence, it is desirable to develop a facile and
efficient nitrogen removal technique. As the most popular and cost-saving approach for
nitrogen removal, biological denitrification has been widely used in wastewater treatment.
Heterotrophic denitrification and autotrophic denitrification are two distinct types of bio-
logical denitrification, and heterotrophic denitrification uses organic carbon compounds as
electron donors with a higher economy of scale and superior selectivity of end products [2].
Even so, incomplete denitrification due to a shortage of available carbon sources remains a
huge challenge. Recently, solid-phase denitrification (SPD) based on solid carbon sources
has been developed to be a promising alternative technique to solve the drawbacks of
traditional water-soluble carbon sources [3,4]. The solid carbon sources in SPD are first
hydrolyzed by extracellular enzymes excreted by microbes and then decomposed into
soluble molecular organic substrates, thus being a vital factor affecting the performance of
biological denitrification. Therefore, the biological degradability of solid carbon sources
plays a crucial role in nitrogen removal [5].

Natural plant-like materials and synthetic biodegradable polymers are two kinds of
solid carbon sources commonly used in SPD. Plant materials are low-cost and convenient
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with lower denitrification rates than synthetic biodegradable polymers, but the expensive
denitrification costs also restrict the application of biodegradable polymers [3]. Therefore,
the preparation of solid carbon sources with low cost, high bioavailability, and stable
denitrification performance has become an inevitable puzzle. Intensive studies have
demonstrated that blending biodegradable polymers with plant materials is an effective
method to improve the biodegradability of solid carbon sources and save denitrification
costs [6–9]. However, the recalcitrant lignin in plant materials is difficult to biodegrade and
hinders the microbial decomposition of biodegradable cellulose and hemicelluloses [10],
which might lead to the deterioration of denitrification performance and the wasting of
resources. Various pretreatment methods for plant materials have been developed to
intensify the biodegradability and accessibility of carbon sources [4,10–12]. The effects
of pretreatment on the physicochemical structure of plant materials vary with different
methods [13], which contributes to differences in the biological accessibility of available
carbon sources and affects their electron supply capacity. In addition, the denitrification
performance of solid carbon sources is prominently influenced by types of carbon sources,
temperature, dissolved oxygen (DO), and pH [3]. Thus, it is necessary to determine the
impacts of pretreatment and the interactions with these major factors on denitrification
performance. In addition, the potential risks, including the excessive release of DOC,
ammonium accumulation, and N2O emission, should also be noted.

Biological denitrification is conducted through a series of enzymatic reactions based
on microorganisms with abundant metabolic types, which are capable of hydrolysis and
denitrification. Hence, the analysis of the structure and function of the microbial community
is conducive to understanding the mechanics of nitrogen removal and regulation in practical
application. However, most studies have only focused on bacterial communities and
ignored fungal communities, which have the ability to degrade lignocellulose with an
efficient enzyme system [14]. The composite carbon sources rich in lignocellulosic and
biodegradable polymers might create favorable conditions for the coexistence of bacteria
and fungi. Therefore, how the bacterial and fungal communities interact with each other to
achieve nitrogen removal and carbon supply needs to be revealed.

In the present study, corncobs pretreated by different physicochemical methods were
blended with PBS to prepare composite carbon sources. Thus, the main objectives of this
study were (1) to evaluate the effects of pretreatment methods on denitrification performance
and potential risks; (2) to explore the effects of pretreatment degree, temperature, NO3

−-N
concentrations, and their interactions on nitrogen removal; and (3) to elucidate the interaction
of microbial communities in the process of nitrogen removal and lignocellulose degradation.

2. Materials and Methods
2.1. Preparation of Composite Carbon Sources

The corncob powder of 100 mesh (0.12–0.15 mm, Jinan Hongrui Chemical Co. Ltd.,
Jinan, China) and biodegradable polymer PBS (cylindrical granules with diameter and
height of 3–4 mm and molecular weight of 50,000–80,000 g mol−1, Shenzhen Huixin Plastic
Chemical Co. Ltd., Shenzhen, China) were used to prepare composite carbon sources.
The physicochemical methods adopted to pretreat corncob were acid pretreatment, alkali
pretreatment, acid–heat pretreatment, and alkali–heat pretreatment. The corncob was
immersed in dilute sulfuric acid (0.01 M) or sodium hydroxide solution (0.01 M) for 1 h to
accomplish acidic or alkaline treatment. To achieve acid–heat treatment and alkali–heat
treatment, the corncob immersed in dilute sulfuric acid (0.01 M) or sodium hydroxide
solution (0.01 M) was heated at 120 ◦C for 1 h in an autoclave. All pretreated corncob was
rinsed with distilled water and dried in an oven until constant weight; the unpretreated
corncob was used as a control.

Thereafter, the biodegradable polymer PBS and pretreated or unpretreated corncob
were blended with the weight ratio of 1:1 in a high-temperature internal mixer under 130 ◦C
to prepare five kinds of composite carbon sources with a length, width, and height of about
1 cm, 1 cm, and 0.5 cm, respectively. According to the pretreatment methods, the composite
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carbon sources were named PC (PBS/corncob composite without pretreatment), PC-H
(PBS/corncob composite with acidic pretreatment), PC-H-A (PBS/corncob composite with
acid–heat pretreatment), PC-OH (PBS/corncob composite with alkaline pretreatment), and
PC-OH-A (PBS/corncob composite with alkali–heat pretreatment).

2.2. Batch Experiment

To evaluate the denitrification performance of composite carbon sources, the batch
experiment was conducted in a 250 mL conical flask including 10 g composite carbon source
and 150 mL synthetic wastewater. All experiments were carried out in triplicate. During the
inoculation period, 75 mL synthetic wastewater (30 mg L−1 NO3

−-N, 6 mg L−1 PO4
3−-P)

and 75 mL activated sludge were fed into each conical flask, which was sealed with parafilm
and cultured at 100 rpm min−1 and 25 ◦C in a constant temperature shaking incubator.
After 2 days, the remaining solution was replaced with 150 mL synthetic wastewater
(15 mg L−1 NO3

−-N, 3 mg L−1 PO4
3−-P), and updated every day. After the NO3

−-N
removal efficiency was stable, the composite carbon sources with superior denitrification
performance were selected for the multi-factor experiment. The effects of pretreatment
degree (0.0, 1.0, and 2.0), NO3

−-N concentrations (5.0, 10.0, and 15.0 mg L−1), temperature
(5.0, 15.0, and 25.0 ◦C), and their interactions on denitrification performance were estimated
through response surface methodology (RSM). The analysis of data and model fitting were
conducted to fit the relationship between responses and factors using Design-Expert 8.0
software, and the optimal values were obtained by reasonable value of the factors.

2.3. Sampling and Analytical Methods

The supernatant was sampled and filtered using 0.45 µm cellulose acetate membrane
for measurement of NO3

−-N, NO2
−-N, NH4

+-N, and TN [15]. DOC was determined using
a TOC analyzer (TOC-C VPN 200 V, Shimadzu, Kyoto, Japan). pH was measured with a pH
meter (PHB-4, INESA, Shanghai, China). Periodically, 10.0 mL of gas was extracted from
the conical flask for N2O measurement via a gas chromatograph (GC-2010 Plus, Shimadzu,
Kyoto, Japan). The Fourier-transform infrared spectroscopy (FTIR) spectra of fresh PC and
fresh and used PC-OH were determined using a Fourier-transform infrared spectroscope
(Nicolet is50, Thermo Fisher Scientific, Waltham, MA, USA).

2.4. DNA Extraction, Quantitative Real-Time PCR (qPCR), and Illumina MiSeq Sequencing Analysis

To investigate the effects of pretreatment methods on nitrogen functional genes and
the microbial community, biofilm samples of composite carbon sources were collected at the
end of the experiment. A microbial DNA extraction kit (Biocolors, Shanghai, China) was
used for DNA extraction. The absolute abundance of the 16S rRNA, ammonia-oxidizing
archaea (AOA) amoA, ammonia-oxidizing bacteria (AOB) amoA, amx 16S rRNA, nrfA, nirS,
nirK, nosZ I, nosZ II, narG, and napA genes was quantified using a BIOER real-time PCR sys-
tem (9600 Plus, BIOER, Hangzhou, China) (Supplementary Materials). The qPCR assay was
carried out in a volume of 20 µL, including 16.4 µL 2 × ChamQ SYBR Color qPCR Master
Mix, 0.8 µL 5 µM forward primer, 0.8 µL 5 µM reverse primer, and 2 µL template DNA. For
bacteria, the V3–V4 regions of the bacterial 16S rRNA gene were amplified with primers
338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGACTACHVGGGTWTCTAAT). For
fungi, the ITS1 region of fungi was amplified with primers ITS1F (CTTGGTCATTTA-
GAGGAAGTAA) and ITS2R (GCTGCGTTCTTCATCGATGC). To optimize the obtained
sequences, the ambiguous and short sequences were removed. The remaining bacterial
sequences were clustered into operational taxonomy units (OTUs) at a similarity threshold
of 97% [16]. The purified fungal sequences were assigned to taxonomy using UNITE
(https://unite.ut.ee/, accessed on 15 September 2022) databases.

2.5. Microbial Network Analysis

A co-occurrence network was constructed based on correlation coefficients and p
values to show the interactions among the microbial community and environmental factors.

https://unite.ut.ee/
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To highlight the important interactions, only strong positive or negative relationships
(absolute value of r > 0.6) and statistically significant (p < 0.05) were retained. Gephi
software (https://gephi.org/, accessed on 28 September 2022) was used to visualize the
network of the nodes and edges.

2.6. Statistical Analysis

All statistical analyses were performed using SPSS (version 26.0, IBM Corp., Chicago,
IL, USA), and one-way analysis of variance (ANOVA) was used to identify the significance
of the results. The results were considered to be statistically significant when p < 0.05.

3. Results and Discussion
3.1. Denitrification Performance, DOC Release, and N2O Emission of Different Composite
Carbon Sources

The nitrogen removal performances of different composite carbon sources are depicted
in Figure 1. The denitrification performance of composite carbon sources with different
pretreatment methods presented remarkable differences. PC-H and PC-OH achieved better
nitrate removal performances than PC after day 9, while the denitrification performances
of PC-H-A and PC-OH-A were worse than those of PC throughout the experimental pe-
riod. In the initial stage, denitrifying microorganisms consumed the readily biodegradable
organic matter in composite carbon sources with high NO3

−-N removal rates [4]. With the
consumption of organic matter and biofilm formation, the NO3

−-N removal rates gradually
increased and finally stabilized, except for those of PC-H-A and PC-OH-A. After day 12,
the average NO3

−-N removal rate of PC-OH reached 0.13 kg NO3
−-N m−3 day−1, which

was significantly higher than that of PC-H (0.12 kg NO3
−-N m−3 day−1) (p < 0.01) and

PC (0.09 kg NO3
−-N m−3 day−1) (p < 0.01). Compared to PC, the pretreatments of plant

material obviously improved the NO3
−-N removal rates of PC-OH and PC-H, which were

similar to that of PBS/bamboo powder blends (0.13 kg NO3
−-N m−3 day−1) [17] and

higher than that of PBS/walnut shell blends (0.05 kg NO3
−-N m−3 day−1) [18]. Blending

biodegradable polymers with natural plant materials is an effective approach to improve
bioavailability and reduce denitrification costs [8]. The denitrification rates of different
composite carbon sources might be influenced by the intrinsic properties of carbon sources,
operation conditions [19], and application modes [20]. Moreover, PC-H-A and PC-OH-
A achieved optimal NO3

−-N removal rates of 0.09 kg NO3
−-N m−3 day−1 and 0.07 kg

NO3
−-N m−3 day−1, respectively (day 12), and then their NO3

−-N removal rates gradually
decreased. Hence, the pretreatment degrees of plant materials determined the denitrifica-
tion performance of composite carbon sources to some extent, and excessive pretreatments
might deteriorate denitrification performance.

NH4
+-N accumulations in early operation are depicted in Figure 1b. The maximum

NH4
+-N concentration of 2.50 ± 0.10 mg L−1 was observed in PC (day 3), which was overtly

higher than that of PC-H (1.62 ± 0.23 mg L−1, day 6) and PC-OH (1.16 ± 0.15 mg L−1,
day 1). Thereafter, the NH4

+-N concentrations gradually decreased and were maintained
at 0.37–0.53 mg L−1 during the stable phase. The observed NH4

+-N accumulations were
mainly attributed to dissimilatory nitrate reduction to ammonium (DNRA), which resulted
from the high C/N ratios in the initial period and were regulated by some strains from
Desulfovibrionale, Bacteroidetes, and Planctomycetales [5,21].

The TN removal performance of PC-OH (49.06%, day 1) was distinctly superior to
others, while PC-OH-A revealed the worst TN removal efficiency (6.51%) (Supplemen-
tary Materials). During the stable phase, the average TN concentration of PC-OH was
1.44 ± 0.53 mg L−1, which was remarkably lower than that of PC-H (2.73 ± 0.65 mg L−1)
and PC (5.75 ± 0.57 mg L−1) (p < 0.05). The improvements in TN removal performance
mainly resulted from the increased biodegradability of composite carbon sources [12].
However, the TN removal performances of PC-H-A and PC-OH-A significantly decreased
from 60% (day 12) to below 40% (day 21), which demonstrated their unsustainable supply
of available carbon sources.

https://gephi.org/
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The DOC release performances of different composite carbon sources are shown in
Figure 1c. Compared with the original composite carbon source (PC, 15.31 ± 0.39 mg L−1),
the DOC released from the pretreated composite carbon sources was significantly reduced
(p < 0.01). Moreover, the amounts of organic matter released from PC-H and PC-OH
were apparently higher than those of PC-H-A and PC-OH-A, respectively (p < 0.05), which
confirmed that the pretreatments of plant materials distinctly decreased the DOC release of
pretreated composite carbon sources. Although the DOC released from pretreated compos-
ite carbon sources largely decreased, the denitrification performances of PC-OH and PC-H
were not largely affected. The main reason was that the stable supply of available carbon
sources has been successfully achieved by denitrifying bacteria and fermentative anaerobic
bacteria [22]. Moreover, the decrease in DOC release reduced the C/N ratios, which was
unfavorable for DNRA organisms and conducive to alleviating the NH4

+-N accumula-
tion [23] (Figure 1b). Given a certain amount of carbon source, excessive pretreatment
of plant material accelerated the consumption rates of carbon sources, which shortened
the service life of the composite carbon sources and led to unsustainable denitrification
performances. Therefore, the acid–heat pretreatment and alkali–heat pretreatment were
not suitable to improve the denitrification performance of composite carbon sources.

Considering the potent greenhouse effect of N2O, the time profile of N2O net accu-
mulation rates was measured (Figure 1d). The rates of N2O net accumulation in PC-H-A
and PC-OH-A were notably higher than those of PC-H and PC-OH, respectively (p < 0.05),
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which indicated the occurrence of incomplete denitrification owing to insufficient supply of
carbon sources. As the product of incomplete heterotrophic denitrification, the emission of
N2O is affected by the amount and availability of carbon sources, C/N ratio, initial NO3

−-N
concentration, temperature, and pH [24–26]. In this study, the rates of N2O net accumu-
lation might be mainly affected by the amount and availability of carbon sources caused
by different pretreatment methods. The N2O emissions in PC-OH (day 21) accounted for
0.22% of the NO3

−-N denitrified, which was higher than the results of Greenan et al. [27]
(0.003–0.028%) but lower than that of Moorman et al. [28] (0.62%). Therefore, most of the
NO3

−-N denitrified in PC-OH was converted to N2 without significant N2O accumulation.
Considering the denitrification performance, DOC release, and N2O emission, it is feasible
to use PC-OH for the advanced nitrogen removal of wastewater with a low C/N ratio, and
the mechanisms of nitrogen removal should be further explored for PC-OH.

3.2. Nitrogen Removal Performance, DOC Release, and N2O Accumulation Response to Variations
of Different Factors

Models were constructed to explore the effects of pretreatment degree, initial NO3
−-N

concentrations, temperature, and their interactions on nitrogen removal performance using
RSM. The models represented with coded factors and actual factors are as follows:

Rcod = 45.89 − 10.50A + 0.61B + 34.90C − 5.16AB − 9.36AC − 14.82A2 + 4.51C2 − 11.87A2C (1)

Ract = −8.409 + 7.900A + 1.155B + 1.885C − 1.032AB + 1.438AC + 2.977A2 + 0.045C2 − 1.187A2C (2)

where Rcod represents coded TN removal efficiency (%), Ract represents actual TN removal
efficiency (%), A represents pretreatment degree, B represents initial NO3

−-N concen-
trations (mg L−1), and C represents temperature (◦C). The model was significant with a
p-value lower than 0.0001, and the lack of fit was not significant (p = 0.4763) (Supplementary
Materials). The effects of the pretreatment degree and the interaction of pretreatment de-
gree and initial NO3

−-N concentrations on nitrogen removal performance were significant
(p < 0.05) (Figure 2a). The TN removal efficiency increased with incremental NO3

−-N
concentration, while it first increased and then decreased with the increase in pretreatment
degree. The TN removal performance was dramatically affected by the pretreatment degree,
temperature, and their interaction (p < 0.01) (Figure 2b). The response of temperature to
nitrogen removal performance was higher than that of the pretreatment degree, and the
increase in temperature facilitated the improvement of the TN removal performance, which
corresponds with the results of Shen et al. [29] and Hu et al. [30]. A total of 63 optimized
TN removal efficiencies were obtained using RSM (Supplementary Materials); the highest
predicted TN removal efficiency is 91.78% with the pretreatment degree of 0.53, the tem-
perature of 25.00 ◦C, and the initial NO3

−-N concentration of 15.00 mg L−1. Taking the
practical operation into account, the composite carbon source would achieve the optimal
TN removal performance (85.92%) with the pretreatment degree of 1.00, the temperature of
25 ◦C, and the initial NO3

−-N concentration of 15 mg L−1, and this optimal TN removal
performance is slightly lower than actual value (89.73%).

Likewise, the DOC release performance was distinctly influenced by the pretreatment
degree, temperature, and their interaction (p < 0.05) (Figure 2c). The DOC concentrations
increased with the increase in temperature but decreased with the increase in pretreatment
degree. The rising temperature stimulates the activity of hydrolytic microorganisms, which
contributes to the release of DOC. Pretreatment of plant material effectively improves the
bioavailability of organic matter but also leads to a partial loss of organic matter, such as
the cellulose and lignin dissolved in an alkali solution [31].

The N2O net accumulation rates were evidently influenced by the temperature and
the interaction of temperature and pretreatment degree (p < 0.01) (Figure 2d). The N2O net
accumulation rates increased with the increase in temperature, which was consistent with
the results of Poh et al. [32] and Lee et al. [26]. In view of this, the nitrogen removal perfor-
mance and DOC release were distinctly impacted by pretreatment degree, temperature,
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and their interaction, while N2O emission was mainly affected by the temperature and the
interaction of temperature and pretreatment degree.
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3.3. Characterization of PC-OH before and after Use

Functional group changes of fresh PC and fresh and used PC-OH were observed by
FT-IR spectroscopy (Figure 3). The fresh PBS had strong absorption peaks at 2948, 1716,
and 1157 cm−1, which were assigned to -CH3 and -CH2 stretching and C=O (carbonyl) and
C-O bonds of ester [33,34]. The absorption bands at 1222 and 1046 cm−1 were attributed to
C–C plus C–O plus C=O stretch and C–O deformation in secondary alcohols, which were
generally found in lignin. The evident decrease in the intensity of these peaks in PC-OH
compared to those in PC suggested the effective removal of lignin in corncob [35]. Strong
absorption peaks appeared at 1046, 1157, 1324, 1420, and 1716 cm−1, which corresponded
to C-O-C asymmetric vibration of cellulose and hemicellulose, O-H blending of alcohol
groups of carbohydrate, and aromatic skeletal vibrations with C-H in-plane deformation
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and -CH2 scissoring of lignin [36]. The attenuated peak intensity in used PC-OH verified
the biodegradation of lignocellulose and PBS.
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3.4. Nitrogen Functional Gene Analysis in Different SPD Systems

To further explore the involved nitrogen removal pathways, the absolute abundance
of nitrogen functional genes was detected and is shown in Figure 4. The absolute abun-
dance of the 16S rRNA gene in PC (5.85 × 107 copies/g) was higher than that in PC-OH
(5.10 × 107 copies/g) and PC-OH-A (3.37 × 107 copies/g) with no significant difference,
representing that the abundance of microorganisms in each SPD system had reached sat-
uration. Most of the soluble small molecule organic substrates released from composite
carbon sources are utilized by denitrifying microbes to supply denitrification, which is
the most likely and favorite pathway [3]. The narG and napA genes encoding nitrate re-
ductases are generally used as the markers of nitrate reduction. The abundance of narG
genes was 3.07–7.86 times higher than that of napA genes, suggesting that nitrate reduc-
tases encoded by the narG gene dominated in NO3

−-N reduction. Previous studies have
demonstrated that the microorganisms containing the narG gene are more likely to live in
anaerobic conditions, while the microorganisms harboring the napA gene prefer aerobic
conditions [37,38]. Moreover, the notably higher amounts of narG genes in PC-OH (p < 0.05)
indicated that the alkaline pretreatment of plant materials promoted the enrichment of
denitrifying microorganisms and consequently improved denitrification performance.

Owing to the ubiquitous ammonia accumulation in the early stage of operation, the
absolute abundance of the nrfA gene (the marker of DNRA) was determined (Figure 4c).
DNRA occurring in SPD competes with denitrification and reduces NO3

−-N to NH4
+-N.

PC acquired the obviously higher copy numbers of nrfA gene than others, which might
be the main reason resulting in the maximum NH4

+-N accumulation in PC (Figure 1b).
The excessive soluble organic matter released from PC brought about a higher C/N ratio
and created favorable reproduction conditions for microorganisms containing the nrfA
gene [23]. Furthermore, the abundance of the nrfA gene was 1–2 orders of magnitude
lower than that of the narG gene, manifesting that denitrification was superior to DNRA in
nitrogen removal. Anammox bacteria play a major role in the nitrogen cycle by facilitating
the conversion of NH4

+-N and NO2
−-N to N2 with the marker of the amx 16S rRNA gene.

The quantity of amx 16S rRNA in PC-OH-A (2.31 × 103 copies/g) was significantly higher
than that in PC-OH (9.42 × 102 copies/g) and PC (8.22 × 102 copies/g), which revealed
the more active anammox bacteria in PC-OH-A. During nitrification, ammonia-oxidizing
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archaea (AOA) and ammonia-oxidizing bacteria (AOB) engage in the oxidization of NH3 to
NO2

− using ammonia monooxygenase enzymes [39]. The AOB amoA genes, ranging from
1.26 × 103 copies/g to 2.78 × 103 copies/g, were more abundant than AOA amoA genes
(8.58 × 10 copies/g to 2.34 × 102 copies/g) (Figure 4d), suggesting that AOB performed a
dominant role in nitrification instead of AOA. The distribution and amount of AOA and
AOB in different wastewater treatment systems may be affected by the characteristics of
wastewater (NH4

+-N and organic matter) and operation parameters (temperature, DO, and
pH) [40]. The biofilm characteristics of the outer aerobic layer and the inner anoxic layer
created the low-DO microenvironment in favor of AOB attachment [41].
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Nitrite is reduced by nitrite reductase encoded by Cu-containing (nirK) and cy-
tochrome cd1 (nirS). The distinct quantitative superiority gained by the nirK gene over
the nirS gene (Figure 4e) suggested that the dominant nitrite reductase was cytochrome
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cd1- containing nitrite reductase expressed by the nirS gene, which was in accordance
with previous studies [41,42]. The reduction of N2O is driven by nitrous oxide reductase,
which is encoded by nosZ clade I or nosZ clade II. The evident enrichment of the nosZ
gene in PC-OH was revealed with the maximum ratio of ∑nos/16S rRNA. Previous studies
have shown that the quantitative balance between the N2O-producing microorganisms
(nirS and nirK) and N2O-reducing microorganisms (nosZ I and nosZ II) regulated the net
N2O emission to some extent [43], and the lower ratios of ∑nir/∑nos suggested the more
complete denitrification with less N2O emissions [44]. In this study, the minimum ratios
of ∑nir/∑nos in PC-OH (5.27) positively correlated with N2O net accumulation rates and
corresponded to the results of Kong et al. [45] and Saarenheimo et al. [46]. Overall, the
alkaline pretreatment of plant materials promoted the NO3

−-N reduction and reduced
N2O emissions by regulating the ratio of ∑nir/∑nos.

3.5. Microbial Community Structure
3.5.1. Bacterial and Fungal Community Structure

The structures of bacterial communities based on different composite carbon sources
at phylum and genus levels (relative abundance > 1.00%) are shown in Figure 5. The
Proteobacteria dominated in all biofilm samples, with relative abundances ranging from
64.98% to 73.45%, followed by Bacteroidetes (7.49–19.17%), Actinobateriota (2.27–12.04%),
Firmicutes (2.72–11.07%), and Myxococcota (0.07–2.03%) (Figure 5a). Previous studies
have demonstrated that most denitrifiers involved in SPD belong to the phylum Pro-
teobacteria [3,6]. Bacteroidetes and Firmicutes could break down macromolecule sub-
stances, which accelerates the hydrolysis and utilization of biodegradable solid organic
matter [47,48]. Myxococcota contain the functional genes for denitrification and were
reported as the dominant organisms associated with partial denitrification [49]. At the
genus level (Figure 5b), the relative abundance of Prevotella in PC was 10.50%, while it
dropped to 2.06% and 0.64% in PC-OH and PC-OH-A, respectively. Curvibacter, the domi-
nant genus in PC-OH (12.06%) and PC-OH-A (18.98%), accounted for only 2.60% in PC. It
was reported that some abundant denitrifying organisms in activated sludge were affiliated
with the genus Curvibacter [50]. Prevotella was one of the biomarkers used to infer the
presence of potentially pathogenic microorganisms in aquatic environments [51], which
might derive from inoculated sludge. Interestingly, the relative abundance of Prevotella
decreased with the rising pretreatment degree. The genera Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium, Kaistia, Enterobacter, Sphingomonas, Chryseobacterium, Selenomonas,
Ralstonia, Bosea, Haliangium, Cupriavidus, Burkholderia-Caballeronia-Paraburkholderia, Variovo-
rax, Herbaspirillum, Diaphorobacter, Xanthobacter, and Paludibacter were the main denitrifying
bacteria attached on the surface of composite carbon sources (Supplementary Materials).
Members of Dysgonomonas, Reyranella, Cellulomonas, Propionispira, Pleomorphomonas, and
Novosphingobium have the ability to decompose recalcitrant organic compounds such as
lignocellulose and polysaccharides, which could provide carbon sources for denitrifiers
(Supplementary Materials). Some species of Xanthobacter and Caulobacter could metabolize
organic materials and participate in the carbon cycle [52,53].

The dominant phylum was Ascomycota, with huge quantitative superiority (91.43–93.40%),
followed by Basidiomycota (0.77–3.36%) (Figure 5c). Most of the denitrifying fungi that
have been identified are affiliated with Ascomycota [54]. In addition, Basidiomycetes have
the physiological capacity to degrade lignocellulose and xenobiotic compounds due to their
oxidative enzymatic arsenal [55], which contributed to the biodegradation of lignocellulose
in composite carbon sources. At the genus level (Figure 5d), Chaetomium played a leading
role in biofilms, with a relative abundance of 55.36–70.32%. However, the second dominant
genera were distinct and were Fusarium (16.26%), Trichocladium (16.78%), and Westerdykella
(12.71%) for PC, PC-OH, and PC-OH-A, respectively. Some species of Chaetomium are
known as cellulolytic fungi with the potential ability to degrade cellulosic waste [56].
Fusarium can produce diverse lignocellulose-degrading enzymes, which could be utilized
for biotechnological applications [57]. Trichoderma can generate abundant lignocellulolytic



Polymers 2023, 15, 801 11 of 17

enzymes and have been deemed as efficient compost microbes [58]. A previous study
showed that Westerdykella exhibit the ability to degrade refractory organic compounds such
as poly-ethylene terephthalate and polycyclic aromatic hydrocarbons [59]. Considering
the lowest DOC level in PC-OH-A (Figure 1c), the excessive pretreatment degree of plant
materials led to a large loss of organic matter and a lack of carbon sources, which eventually
resulted in the enrichment of Westerdykella that could degrade refractory organic matter.
In addition, most of the other classified genera (relative abundance > 1.00%) were able to
degrade lignocellulose, such as Paracremonium, Humicola, Apiotrichum, Staphylotrichum, and
Ascobolus (Supplementary Materials).
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Based on the analysis of bacterial and fungal community structures, the bacterial
community was responsible for both denitrification and lignocellulose degradation, while
the fungal community was primarily in charge of lignocellulose degradation.

3.5.2. Co-Occurrence Network Analysis for Microbial Communities and
Environmental Factors

Co-occurrence network analysis is a valid method to simplify complex interactions
among functional microbes, identify the keystone taxa, and infer potential relationships
among microorganisms. To highlight the important and potential interactions, only strongly
and statistically significant relationships were retained, which is beneficial for identifying
key organisms in complex microbial communities. To explore the interactions between
microbial genera and environmental factors, a co-occurrence network was constructed
(Figure 6). A total of 18 genera and 4 environmental factors were involved in the network.
The genus nodes belonged to four bacterial phyla (Proteobacteria, Bacteroidota, Firmicutes,
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and Myxococcota) and two fungal phyla (Ascomycota and Basidiomycota), and more
than half of them came from Proteobacteria and Bacteroidota. Novosphingobium, which
belongs to Proteobacteria, achieved distinctly higher association than other bacterial genera,
demonstrating its indispensable role in bridging microbial communities and environmental
factors. The same was true for Fusarium, affiliated with Ascomycota. It is noteworthy that
four environmental factors (DOC, NH4

+-N, NO3
−-N, and TN) exhibited evidently strong

correlations with microbial species. Westerdykella, Novosphingobium, and Caulobacter with
the ability to degrade refractory organic compounds showed strongly negative associations
with DOC, suggesting their crucial role in the degradation of refractory organics with
the increased pretreatment degree. As the main identified denitrifying bacteria, Kaistia
and Chryseobacterium revealed distinctly positive associations with DOC, which might be
attributed to their feature of denitrification using carbon sources. Selenomonas and Prevotella
were positively related to NH4

+-N, which was largely due to their potential to participate
in DNRA [60,61]. The strong negative association between Xanthobacter and NO3

−-N
or TN demonstrated the central role of this genus in NO3

−-N reduction. These genera
with relatively low abundance but high associations implied that it might be their roles in
microbial networks or unique metabolic pathways rather than their abundance dominance
that contributed to microbial denitrification and carbon source degradation [62].

Polymers 2023, 15, 801 12 of 17 
 

 

3.5.2. Co-Occurrence Network Analysis for Microbial Communities and Environmental 
Factors 

Co-occurrence network analysis is a valid method to simplify complex interactions 
among functional microbes, identify the keystone taxa, and infer potential relationships 
among microorganisms. To highlight the important and potential interactions, only 
strongly and statistically significant relationships were retained, which is beneficial for 
identifying key organisms in complex microbial communities. To explore the interactions 
between microbial genera and environmental factors, a co-occurrence network was con-
structed (Figure 6). A total of 18 genera and 4 environmental factors were involved in the 
network. The genus nodes belonged to four bacterial phyla (Proteobacteria, Bacteroidota, 
Firmicutes, and Myxococcota) and two fungal phyla (Ascomycota and Basidiomycota), 
and more than half of them came from Proteobacteria and Bacteroidota. Novosphingobium, 
which belongs to Proteobacteria, achieved distinctly higher association than other bacte-
rial genera, demonstrating its indispensable role in bridging microbial communities and 
environmental factors. The same was true for Fusarium, affiliated with Ascomycota. It is 
noteworthy that four environmental factors (DOC, NH4+-N, NO3−-N, and TN) exhibited 
evidently strong correlations with microbial species. Westerdykella, Novosphingobium, and 
Caulobacter with the ability to degrade refractory organic compounds showed strongly 
negative associations with DOC, suggesting their crucial role in the degradation of refrac-
tory organics with the increased pretreatment degree. As the main identified denitrifying 
bacteria, Kaistia and Chryseobacterium revealed distinctly positive associations with DOC, 
which might be attributed to their feature of denitrification using carbon sources. Seleno-
monas and Prevotella were positively related to NH4+-N, which was largely due to their 
potential to participate in DNRA [60,61]. The strong negative association between Xantho-
bacter and NO3−-N or TN demonstrated the central role of this genus in NO3−-N reduction. 
These genera with relatively low abundance but high associations implied that it might 
be their roles in microbial networks or unique metabolic pathways rather than their abun-
dance dominance that contributed to microbial denitrification and carbon source degra-
dation [62]. 

 
Figure 6. The co-occurrence network analysis between microbial genera and environmental factors. 
The nodes of unique genera are colored by phylum, and their sizes are proportional to the number 

Figure 6. The co-occurrence network analysis between microbial genera and environmental factors.
The nodes of unique genera are colored by phylum, and their sizes are proportional to the number of
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negative and positive correlations are represented by red and green connections, respectively.

4. Conclusions

The proper pretreatment of plant materials helps to improve denitrification perfor-
mances and reduce the adverse effects of a PBS/corncob composite carbon source. The
PBS/corncob composite with alkaline pretreatment promoted the enrichment of denitri-
fying microorganisms and reduced N2O emissions by regulating the ratios of ∑nir/∑nos.
Microbial community analysis showed the bacterial community was responsible for den-
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itrification and lignocellulose degradation, while the fungal community was mainly re-
sponsible for lignocellulose degradation. Some genera with low relative abundance might
play important bonding roles in microbial networks. Overall, the polybutylene succi-
nate/corncob composite with alkaline pretreatment could be a promising and eco-friendly
carbon source for biological denitrification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15040801/s1, Figure S1: The variations in TN removal
efficiency (%) in different SPD systems; Table S1: Primers of target genes used in qPCR analysis;
Table S2: The results of ANOVA for the model (response: TN removal efficiency); Table S3: The
optimized TN removal efficiency based on RSM; Table S4: The actual TN removal efficiency under
optimized conditions; Table S5: Functional classification of major genera in bacterial and fungal
communities. [63–97] of the references in the main text are from the supplementary material.

Author Contributions: Conceptualization, Z.Y. and Y.L.; methodology, H.W.; software, H.P.; vali-
dation, Z.Y. and Y.Z.; formal analysis, Z.Y.; investigation, Q.Y.; resources, Z.Y.; data curation, Z.Y.;
writing—original draft preparation, Z.Y.; writing—review and editing, Z.Y.; visualization, H.P.; super-
vision, J.H.; project administration, Y.Z.; funding acquisition, Z.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Shandong Province Postdoctoral Innovative Talent
Support Program (SDBX2020013) and the National Natural Science Foundation of China (52100192).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are available upon request due to privacy and ethical restrictions.

Acknowledgments: The authors would like to thank National Engineering Research Center for Effi-
cient Utilization of Soil and Fertilizer Resources and Shandong Agricultural University for providing
the technical support and materials used for experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Hall, N.S.; Wu, Y. Determining critical nutrient thresholds needed to control harmful

cyanobacterial blooms in eutrophic Lake Taihu, China. Environ. Sci. Technol. 2015, 49, 1051–1059. [CrossRef] [PubMed]
2. Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors-An approach for reducing nitrate

loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [CrossRef]
3. Wang, J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv.

2016, 34, 1103–1112. [CrossRef]
4. Ashok, V.; Hait, S. Remediation of nitrate-contaminated water by solid-phase denitrification process—A review. Environ. Sci.

Pollut. Res. 2015, 22, 8075–8093. [CrossRef]
5. Feng, L.; Chen, K.; Han, D.; Zhao, J.; Lu, Y.; Yang, G.; Mu, J.; Zhao, X. Comparison of nitrogen removal and microbial properties

in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers. Bioresour. Technol.
2017, 224, 236–245. [CrossRef]

6. Chu, L.; Wang, J. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity.
Chemosphere 2016, 155, 463–470. [CrossRef] [PubMed]

7. Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [CrossRef]
8. Yang, Z.; Sun, H.; Zhou, Q.; Zhao, L.; Wu, W. Nitrogen removal performance in pilot-scale solid-phase denitrification systems

using novel biodegradable blends for treatment of waste water treatment plants effluent. Bioresour. Technol. 2020, 305, 122994.
[CrossRef] [PubMed]

9. Chen, Q.H.; Li, X.F.; Lin, J.H. Preparation and properties of biodegradable bamboo powder/polycaprolactone composites. J. For.
Res. 2009, 20, 271–274. [CrossRef]

10. Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour.
Technol. 2016, 199, 42–48. [CrossRef]

11. Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their
effects. Bioresour. Technol. 2016, 199, 103–112. [CrossRef] [PubMed]

12. Hu, R.; Zheng, X.; Xin, J.; Sun, Z.; Zheng, T. Selective enhancement and verification of woody biomass digestibility as a
denitrification carbon source. Bioresour. Technol. 2017, 244, 313–319. [CrossRef] [PubMed]

13. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for
pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/polym15040801/s1
https://www.mdpi.com/article/10.3390/polym15040801/s1
http://doi.org/10.1021/es503744q
http://www.ncbi.nlm.nih.gov/pubmed/25495555
http://doi.org/10.1016/j.ecoleng.2010.04.008
http://doi.org/10.1016/j.biotechadv.2016.07.001
http://doi.org/10.1007/s11356-015-4334-9
http://doi.org/10.1016/j.biortech.2016.11.002
http://doi.org/10.1016/j.chemosphere.2016.04.090
http://www.ncbi.nlm.nih.gov/pubmed/27145420
http://doi.org/10.3390/ijms10093722
http://doi.org/10.1016/j.biortech.2020.122994
http://www.ncbi.nlm.nih.gov/pubmed/32105842
http://doi.org/10.1007/s11676-009-0047-6
http://doi.org/10.1016/j.biortech.2015.08.085
http://doi.org/10.1016/j.biortech.2015.10.009
http://www.ncbi.nlm.nih.gov/pubmed/26482946
http://doi.org/10.1016/j.biortech.2017.07.162
http://www.ncbi.nlm.nih.gov/pubmed/28780265
http://doi.org/10.1016/j.biortech.2004.06.025
http://www.ncbi.nlm.nih.gov/pubmed/15588770


Polymers 2023, 15, 801 14 of 17
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