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Abstract: Monitoring the moisture content (MC) of wood and avoiding large MC variation is a crucial
task as a large moisture spread after drying significantly devalues the product, especially in species
with high green MC spread. Therefore, this research aims to optimize kiln-drying and provides
a predictive approach to estimate and classify target timber moisture, using a gradient-boosting
machine learning model. Inputs include three wood attributes (initial moisture, initial weight, and
basic density) and three drying parameters (schedule, conditioning, and post-storage). Results show
that initial weight has the highest correlation with the final moisture and possesses the highest relative
importance in both predictive and classifier models. This model demonstrated a drop in training
accuracy after removing schedule, conditioning, and post-storage from inputs, emphasizing that the
drying parameters are significant in the robustness of the model. However, the regression-based
model failed to satisfactorily predict the moisture after kiln-drying. In contrast, the classifying model
is capable of classifying dried wood into acceptable, over-, and under-dried groups, which could
apply to timber pre- and post-sorting. Overall, the gradient-boosting model successfully classified
the moisture in kiln-dried western hemlock timber.

Keywords: western hemlock; wood moisture; drying schedule; conditioning; TreeNet gradient-
boosting; machine learning; ensemble learning

1. Introduction

Timber drying impacts the final product quality and plays an essential role in the
dimensional stability, and mechanical properties of timber, as the physical [1], elastic and
viscoelastic properties of wood are moisture-dependent [2]. Additionally, timber drying
facilitates coating, cutting, and remanufacturing procedures, rendering dried wood less
susceptible to deformation, cracks, and decay [3,4]. Target moisture (Mt) in kiln-drying
should correspond to the indoor or outdoor environment where the final product will be
used. A well-managed drying operation dramatically improves timber drying quality [5,6].

Considerable variability in initial moisture (Mi) among timber pieces of the same
kiln batch is inevitable, especially in softwoods with substantial differences between the
properties of sapwood and heartwood [7]. Different timber pieces in the same load undergo
various drying levels due to inherent variations in Mi and other wood properties [8,9].
Consequently, final moisture (Mf) among timber fluctuates along a broad range. Large-scale
kilns aggravate this problem because of the non-uniform kiln-drying conditions in the
chamber’s width, depth, and height [10]. Non-uniformity of the final moisture between
kiln-dried timber pieces substantially impacts their monetary values. Over-dried wood is in
less demand in the market since over-drying increases shrinkage and shapes distortion [11].
Additionally, under-dried wood is hardly acceptable in the market due to its susceptibility
to fungal decay and low mechanical strength [11].

Almost every wood species requires a specific drying schedule, which could be time-
based, moisture-based, or combined [12]. Drying schedules involve predetermined heat,
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humidification, ventilation, and air circulation [13,14]. Combined (time- and moisture-
based) schedules typically apply to the kiln-drying coastal softwood species in British
Columbia, Canada. In a combined schedule, drying factors are time-based from the begin-
ning of the drying until around the fiber saturation point (Mfsp). However, upon reaching
that point, they become constant until reaching Mt. Drying schedules’ aggressiveness
influences the final moisture variation in a kiln batch [8,15]. Moreover, post-drying steps
such as conditioning in kilns and outdoor storage may apply to reduce moisture variation
within and between timber pieces [16,17]. Conditioning is a high-humidity step at the
end of some drying schedules (after reaching Mt) to minimize the moisture differences
between and within timber pieces (shell and core of timber) and relieve internal stresses
(casehardening) [9]. However, some Japanese sawmills use stickers and store kiln-dried
batches outdoors for a period of one to two weeks to reduce the moisture variation and
moisture profile in thickness, resulting in internal stress dissipation [16].

Pacific coast hemlock (also known as “hem-fir”) is an abundant source of fiber on the
British Columbia coast which is comprised of western hemlock (Tsuga heterophylla) and
amabilis fir (Abies amabilis) [18]. Thick solid hem-fir products, specifically timbers with
cross-sectional areas of 90 × 90 mm2, 105 × 105 mm2, and 115 × 115 mm2 (also known as
“baby-squares”) are commonly the preferred material in timber construction, especially
in Japan, which is one of BC’s largest overseas markets [19]. Hemlock is a difficult-to-dry
species due to its naturally high green moisture content, the presence of wet wood (or
wet pockets), and often compression wood. Past research focused on optimizing drying
schedules [15,20,21], pre-sorting [22–24], and post-sorting [25] strategies. Studies examining
the collapse and recovery during the drying process [26,27], cracking occurrence during the
drying process [28], and numerical simulations of coupled moisture and heat transfer in
wood during kiln drying [29] were also reported in the literature. Kiln-drying scheduling
is also covered in some studies [30,31] as an important factor impacting the final moisture
content and drying defects [32]. In addition, previous studies focused on characterizing and
modeling final moisture and its spread in air-dried [33], radio-frequency kiln-dried [34–36],
heat treated [37], and heat-and-vent kiln-dried batches [38–40]. Additionally, previous
studies investigated moisture prediction in kiln-dried lumber merely based on wood
properties; however, the combined effects of drying conditions and wood properties on the
moisture uniformity after kiln-drying still represent a knowledge gap [41]. Furthermore,
initial wood indices, especially Mi content and its variation, remarkably affect Mf variation.
Therefore, a holistic approach is required to characterize the combined effects of wood
indices and drying schedules on wood properties after kiln-drying [38]. For this reason, the
current study aims to investigate and predict the Mf of kiln baby-square western hemlock
under different schedules.

Accordingly, a machine learning approach was adopted to study the relationship
between the wood properties and to quantify the roles of drying schedule, conditioning,
and post-storage. This study uses a gradient-boosting algorithm known as TreeNet for
moisture prediction and classification. The most widely used machine learning models
in the literature on wood science and technology are artificial neural networks (ANNs).
They have been used in a wide range of applications for wood identification [42,43], defect
detection [42,43], and wood properties prediction [44,45]. The most emphases were on
employing the multilayer perceptron (MLP) model [46–48]. However, compared to ANNs,
fewer studies investigated the performance of ensemble machine learning methods such as
gradient boosting for predicting wood properties. Ensemble learning improves prediction
accuracy by using multiple machine learning algorithms known as a weak learner and
fusing the results by applying a different voting mechanism [49]. This study uses the
TreeNet gradient boosting model, variable clustering, and correlation analysis to predict
the Mf in kiln-dried western hemlock and explain the role of initial wood properties, drying
schedules, and conditioning on the moisture distribution in dried timber.
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2. Materials and Methods
2.1. Materials

A local sawmill located on Vancouver Island, British Columbia provided 96 timber
pieces of second-growth western hemlock baby squares (116 mm × 116 mm; 3.96 m in
length) for this study. All timber pieces were in green condition with a grade of II (standard)
or better [50]. Each piece was cut into four kiln specimens and five cookies using a circular
saw. Figure 1 represents the cutting protocol. According to the cutting protocol, one section
of 100 mm in length was removed from each end of every timber piece to mitigate the risk
of end moisture loss. Subsequently, four kiln specimens and five cookies were cut from
each timber piece. The length of the kiln specimens and cookies were 900 mm and 25 mm,
respectively. Overall, 480 cookies and 384 kiln specimens were provided from the entire
timber population.
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Figure 1. Cutting pattern of the baby-square western hemlock.

2.2. Experiments

Cookies were used to measure Mi and basic density (ρb) according to Kollmann [51]
and Skaar [52]. In the next step, six out of 384 kiln specimens were arbitrarily discarded,
and the rest (378 kiln specimens) were randomly assigned to nine drying batches. Table 1
summarizes the nine drying runs used in this study. The control drying schedule was
applied to the first drying batch, followed by conditioning. The first modified drying
schedule had four modes as the combination of presence and absence of conditioning
and post-storage. Similarly, the second modified drying schedule had four modes as the
combination of existence and nonexistence of conditioning and post-storage.

Table 1. Nine drying batches of baby square western hemlock.

Run Number Schedule Conditioning Storage Name

1 Control (unmodified) Yes No UN
2 Modified I Yes No I_C_NS
3 Modified I No No I_NC_NS
4 Modified II No No II_NC_NS
5 Modified I Yes Yes I_C_S
6 Modified I No Yes I_NC_S
7 Modified II Yes Yes II_C_S
8 Modified II No Yes II_NC_S
9 Modified II Yes No II_C_NS
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Each drying batch contained 42 timber specimens. The Mi and ρb could influence
the Mf and needed to be neutralized to make the drying results comparable between all
drying batches. Therefore, the entire timber population was categorized into nine groups
so that Mi and ρb had the smallest standard deviation. The cross-sections of the specimens
were coated using polyvinyl acetate (PVA) before drying to prevent end moisture loss. A
conventional heat-and-vent kiln with a capacity of 0.73 m3 in FPInnovations, Vancouver,
British Columbia was used for this research. The same aluminum stickers, with a weight
and length of 8.94 kg and 19 mm, respectively, were used for each drying run, which
contained 42 kiln specimens (six rows and seven columns).

The drying schedule developed in the past [53,54] was used as the control (unmodified)
schedule. This time-based schedule consisted of eight steps, using a pre-determined number
of hours for each step. In step nine, the drying process was switched to a moisture content-
based schedule, drying the timber to the Mt without changing the settings. The Mt was set
to 12%, the average equilibrium moisture content Memc in Japan from October to May [16].
This Mt was chosen to avoid additional moisture loss from the specimens during post-
drying storage time. The last step (conditioning) was time-based. After completing a drying
run, the timber pieces cooled down for twelve hours inside the kiln with the doors closed. In
addition to the control schedule, two modified drying schedules were also used. In schedule
I, the same dry-bulb temperature was reached in the last step and the Memc decreased more
aggressively. Schedule II was considered an aggressive drying schedule because it reached
a higher dry-bulb temperature in the final drying step, having a steep reduction in Memc.
Furthermore, the Mf was kept under 93 ◦C to avoid developing a honeycomb. Tables 2–4
illustrate the control schedule, schedule I, and schedule II, respectively. All kiln specimens
were reweighed post-drying to evaluate their final moisture Mf.

Table 2. Control (unmodified) drying schedule used in industrial kilns in British Columbia sawmills.
This schedule comprises eight time-based steps, one moisture-based step, and one conditioning step.

Step Time
(h)

Dry-Bulb
Temperature

(◦C)

Wet-Bulb
Temperature

(◦C)

Relative
Humidity

(%)

Equilibrium
Moisture

Content (%)

1 12 48.9 48.9 100.0 25.5
2 24 51.7 50.6 94.2 20.8
3 24 55.0 52.8 89.0 17.6
4 24 57.8 55.0 86.5 16.2
5 24 61.7 56.7 77.7 12.7
6 24 65.6 58.9 71.9 10.8
7 24 70.0 60.6 63.7 8.8
8 24 73.9 62.8 59.4 7.8
9 Till Mf = 12% 77.8 65.0 55.7 7.0
10 12 71.7 66.7 79.4 12.3

Table 3. First modified schedule. This schedule comprises six time-based steps and one moisture-
based step, followed by optional conditioning (step 8) and optional post-storage (step 9).

Step Time
(h)

Dry-Bulb
Temperature

(◦C)

Wet-Bulb
Temperature

(◦C)

Relative
Humidity

(%)

Equilibrium
Moisture

Content (%)

1 12 48.9 48.9 100.0 25.5
2 24 57.8 54.4 83.8 15.1
3 24 54.4 46.1 62.7 9.7
4 24 60.0 46.1 46.1 6.8
5 24 62.2 46.1 41.0 6.0
6 24 71.1 51.7 37.0 5.1
7 Till Mf = 12% 78.8 54.4 30.1 4.1
8 12 (optional) 71.7 66.7 79.4 12.3
9 168 (optional) 20 16 65 12.3



Polymers 2023, 15, 792 5 of 17

Table 4. Second modified schedule. This schedule comprises five time-based steps and one moisture-
based step, followed by optional conditioning (step 7) and optional post-storage (step 8).

Step Time
(h)

Dry-Bulb
Temperature

(◦C)

Wet-Bulb
Temperature

(◦C)

Relative
Humidity

(%)

Equilibrium
Moisture

Content (%)

1 12 48.9 48.9 100.0 25.5
2 24 62.8 60.6 89.8 17.2
3 24 68.3 64.4 83.2 13.9
4 24 71.1 64.4 73.1 10.7
5 24 79.4 64.4 50.4 6.2
6 Till Mf = 12% 85.0 64.4 39.5 4.7
7 12 (optional) 71.7 66.7 79.4 12.3
8 168 (optional) 20 16 65 12.3

After kiln-drying, all timber pieces were reweighed. The kiln-dried weight or fi-
nal weight (wf) of each sample was used to calculate its Mf, according to the equations
documented in Perre [8] and Siau [55].

2.3. Machine Learning

The model inputs included Mi, wi, ρb, types of drying schedule (control, I, II), condi-
tioning (Yes/No), and post-drying storage (Yes/No). The objective was to predict the Mf
and classify the timber condition after drying. Accordingly, the boards with Mf < 10 and Mf
≥ 19 were labeled as over-dried and under-dried, respectively. Additionally, boards with
10 ≤ Mf < 19 were labeled as normal. TreeNet, a gradient-boosting algorithm, was used for
both the regression and classification tasks. It uses the decision tree-based CART model [56]
for ensemble learning. Decision tree models are easy to interpret, and the importance of
the predictor variables and their relationships can be identified through exploratory data
analysis. Details of the CART model can be found elsewhere [57,58]. The CART algorithm
was successfully used for check prediction in weathered thermally modified timber [59]
and for characterization and classification of artificially weathered wood [60–62]. Ensemble
learning based on bagging or boosting algorithms could be applied to reduce the variance
of a single prediction by a tree using multiple weak learners (decision tree). A benchmark
study on medium-sized data has shown that tree-based ensemble models such as XGBoost
(eXtreme Gradient Boosting) and random forest could outperform the ANNs despite the
presence of irregular patterns in the target function and uninformative features [63]. Ran-
dom forest uses the bagging method, in which each tree is trained using a subset of data,
and the model output is based on the voting scheme among weak learners [64]. Random
forest was used to predict the mechanical properties of wood fiber insulation boards [65]. It
is also utilized in wood machining for tool temperature prediction [66] and frozen lumber
classification [67].

Unlike bagging methods, in which weak learners are trained in a similar way, boosting
methods perform the training process sequentially, whereas subsequent models correct
the performance of prior models. In the gradient-boosting algorithm of TreeNet, a subset
of data is used to train a CART model with a maximum number of terminal nodes or
tree depth. Then, the CART model is updated depending on the loss function but shrinks
the update by the defined learning rate. The process is repeated, and CART models are
sequentially added for a specified number of iterations, equal to the number of trees to
build [68]. Boosting methods are used for wood species recognition [69], online color
classification systems of solid wood flooring [70], predicting the mechanical properties of
wood composite [71], and wood machining monitoring [72]. In this study, the number of
trees was set to 2000. Additionally, the maximum terminal node per tree and the minimum
number of cases allowed for a tree were set to 12 and 3, respectively. Additionally, the
learning rate and subsample fraction were equal to 0.01 and 0.3, respectively. Finally, the
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number of predictors for node splitting was equal to the square root of the total number of
predictors.

3. Results and Discussion

The results will analyze and characterize the selected initial and final wood indices and
their correlation with drying parameters, drying schedule aggressiveness, drying condition,
and post-drying storage. Then, a predictive approach will be provided to estimate the Mf
of each timber piece based on its corresponding wood properties and drying conditions.
Finally, a classification approach will be delivered to categorize dried wood into three
groups: Acceptable (normal), over-dried, and under-dried.

3.1. Wood Indices and Drying Parameters Analysis

Figures 2 and 3 are interval plots representing the impact of conditioning and post-
storage on the Mf variation, respectively.These results are based on the 95% of confidence
interval for the Mf mean. Both figures indicate that modified drying schedules considerably
increased the average Mf, and this effect is more noticeable than the conditioning or post-
storage. The control drying schedule had eight time-based steps that took 180 h, which
was longer than the modified drying schedules. This long drying time gives grounds to the
lower Mf mean at the end of the control drying run, as it allocated sufficient time for under-
dried wood to decrease in moisture. Applying conditioning and post-storage reduced
the variation in Mf for both modified schedules because, while conditioning and post-
storage allow under-dried wood to lose moisture, they let over-dried wood regain moisture.
Additionally, while for each drying schedule the role of conditioning and post-storage is
insignificant, there was a remarkable difference between the Mf in the two modified drying
schedules when the timber pieces underwent conditioning or post-storage.
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Figures 4–6 are three histograms depicting the distribution of Mf. Figure 4 shows
that schedule I accounts for the highest Mf mean (15.59%) and variation (5.16%), while
the lowest Mf mean (10.87) and variation (2.19) values belong to the 42 timber pieces that
underwent the control schedule. The Mf mean is very close to the Mt, which could be
attributed to the long drying time compared to the modified ones. Figure 5 demonstrates
that timber pieces with conditioning had a slightly smaller standard deviation (4.31%)
than those without conditioning (StDev = 5.47%). Likewise, Figure 6 exhibits that timber
pieces with post-storage had an insubstantial smaller standard deviation (4.54%) than those
without conditioning (StDev = 5.07%). In conditioning and post-storage, the Memc (12.3%)
is very close to Mt (12%), letting the Mf reach Mt and increasing moisture uniformity.
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The dependency between the wi and Mi, Mf, and ρb could be studied through a
hierarchical clustering analysis, as explained by Fathi et al. [73]. The dendrogram (Figure 7)
demonstrates three clusters and shows the similarity level between the studied variables.
This dendrogram indicates that ρb had the smallest similarity value (45.42%) with the Mf,
which accords with the findings of the previous research on 2” × 4” hem-fir [38]. In the
present study, Mi and wi showed the most similarity, while Rahimi and Avramidis [38]
observed the most similarity between Mf and Mi in the previous research. The initial
weight of the timber can be measured accurately and non-destructively. It is challenging to
measure the moisture above the fiber saturation by moisture meters, and cutting cookies is
a time-consuming and destructive method that cannot be performed at sawmills.
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It was interesting to see that the drying schedule, conditioning, and post-storage
protocols noticeably impacted the correlation between the Mf and the input variables.
Table 5 documents the correlation between Mf and initial wood indices in nine drying
runs. Accordingly, the highest correlation between Mi and Mf (0.62%) was in I_C_NS
(abbreviated names defined in Table 1), while the lowest correlation between Mi and Mf
(0.15%) was in UN. Furthermore, the highest correlation between ρb and Mf (0.60%) was
in II_NC_NS, while the lowest correlation between ρb and Mf (0.12%) was in II_NC_S.
Moreover, the highest correlation between wi and Mf (0.75%) was in I_NC_S, whereas the
lowest correlation between wi and Mf (0.38%) was in II_NC_S. Overall, wi showed the
highest correlation values with Mf in all drying runs, excluding II_NC_NS. Overall, ρb has
the lowest correlation with Mf because ρb is naturally based on oven-dried weight and
is independent of moisture level. Moreover, the volume change is negligible compared
to weight change after kiln-drying, which further justifies the insubstantial correlation
between ρb and Mf.
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Table 5. The correlation between Mf and initial wood indices in nine drying runs (abbreviated names
of the drying schedules are defined in Table 1).

Drying Schedule
Correlation between Wood Indices

Mi and Mf wi and Mf ρb and Mf

UN 0.15 0.40 0.18
I_C_NS 0.62 0.74 0.28

I_NC_NS 0.54 0.61 0.29
II_NC_NS 0.22 0.59 0.60

I_C_S 0.45 0.61 0.29
I_NC_S 0.47 0.75 0.50
II_C_S 0.53 0.61 0.15

II_NC_S 0.25 0.38 0.12
II_C_NS 0.37 0.55 0.28

However, the correlation values in this study were considerably smaller than the
findings of the former study [38]. In the former study, six drying batches underwent
an identical drying schedule, while conditioning and post-storage were nonexistent. In
contrast, this study included three drying schedules (with different Memc at the final step)
followed by conditioning and post-storage. These two post-drying treatments level out Mf
variation and give grounds to the lower correlation between Mi and Mf.

3.2. Moisture Prediction by TreeNet

Figure 8 shows the relative importance (RI) of the inputs in the predictive model,
indicating that wi is the most remarkable parameter in this model (RI = 100), followed by
the Mi (92.6%) and ρb (84.4%). The RI of drying schedule, post-storage, and conditioning
were 63.3%, 45.0%, and 41.0%, respectively. This outcome shows that all the listed parame-
ters considerably impact the model’s performance, though they have different RI values.
It is worth mentioning that these results are moderately different from the findings by
Rahimi et al. [40], in which Mi was the most important input. This difference may stem from
different drying schedules, applying post-drying treatments, or different timber dimensions
(2” × 4” vs. 4” × 4”).
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Table 6 lists the selected statistical parameters for the training and test datasets in
the Mf predictive model. These results were based on the six predictors, including three
wood attributes (Mi, wi, and ρb) and three drying parameters (schedule, conditioning, and
post-storage). The optimal performance (Figure 9) was achieved by having 550 trees in
the model. The predictive model had an R2 of 73.86% and 44.81% for the training and test,
respectively.

Table 6. Model summary for predicting the Mf using TreeNet including six inputs.

Statistics Training (%) Test (%)

R-squared (R2) 73.86 44.81
Root mean squared error (RMSE) 2.48 3.61

Mean squared error (MSE) 6.15 13.05
Mean absolute deviation (MAD) 1.68 2.43

Mean absolute percent error (MAPE) 0.12 0.17
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Figure 9 shows that the R2 depends on the number of trees in the TreeNet model.
This model had an unsatisfactory performance, with a low number of trees (N < 250).
Comparing the training test results in Figure 9 discloses overfitting issues with the model.
The actual (experimental) Mf versus the fitted (predicted) Mf is also shown in Figure 10.
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Figure 10. The actual Mf against the predicted Mf.

An additional study was performed to assess the role of the categorical parameters,
including the drying schedule, conditioning, and post-storage, on the performance of the
predictive model. Thus, another regression model was trained, using only three parameters
(Mi, wi, and ρb). Table 7 shows the model summary for this analysis. This model included
2000 grown trees with 214 optimal numbers of trees. The predictive model had an R2

of 56.80% and 32.10% for the training and test, respectively. A comparison between the
results of the two models (Tables 6 and 7) reveals that including the drying parameters
improved the accuracy of the predictive model. Overall, the developed model failed to
predict the Mf accurately. This failure is justified by the small sample size per drying run
(42 boards) compared to the previous research (384 boards) [38]. Furthermore, applying
post-drying treatments leveled off the moisture variation and slightly diluted the role of Mi
in predicting Mf.

Table 7. Model summary for predicting the Mf using TreeNet including three inputs.

Statistics Training (%) Test (%)

R-squared (R2) 56.80 32.10
Root mean squared error (RMSE) 3.19 4.00

Mean squared error (MSE) 10.17 16.04
Mean absolute deviation (MAD) 2.33 2.92

Mean absolute percent error (MAPE) 0.17 0.21

3.3. Moisture Classification

Since the regression approach failed to predict the Mf with acceptable accuracy, it
was attempted to classify the Mf as having the input parameters and predict the chance of
having over- or under-dried timber. This would be a crucial quality control task for drying
processes. Accordingly, the classification was performed using TreeNet with the same
assumption defined for the regression approach. Figure 11 illustrates the RI of the inputs in
the predictive model for moisture classification. In this model, wi is the most important
parameter (RI = 100), followed by Mi (90.0%) and ρb (71.8%). The RI values of schedule,
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post-storage, and conditioning were, in turn, 53.7%, 43.7%, and 32.7%, respectively. It
is observed that the inputs have the same order in terms of relative importance for the
moisture prediction (Figure 8) and moisture classification (Figure 11) models.
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Table 8 lists the confusion matrix and the classification summary. The highest accuracy
for the training and test data belonged to the over-dried (89.66%) and acceptable class
(71.64%). Additionally, the lowest accuracy for the training and test data belonged to the
acceptable (71.64%) and over-dried (58.62%) classes. Overall, the model could classify
the wood with an accuracy of 76.19% during the training and 69.05% for the test data.
Considering the small sample size, this is a promising performance that could be further
enhanced by expanding the dataset.

Table 8. Confusion matrix and the summary of the classification with a random forest model.

Actual Class Count
Predicted Training Class Predicted Test Class

Over-
Dried Acceptable Under-

Dried
Correct

(%)
Over-
Dried Acceptable Under-

Dried
Correct

(%)

Over-dried 58 52 5 1 89.66 34 23 1 58.62
Acceptable 268 44 192 32 71.64 38 192 38 71.64

Under-dried 52 0 8 44 84.62 2 15 35 67.31
ALL 378 96 205 77 76.19 74 230 74 69.05

Table 9 documents the summary of the misclassification and error. This result indicates
that, collectively, the error increased from the training data (23.81%) to the test data (30.95%)
for all classes. Classifying over-dried timber had the best training result, with a 10.34%
error, while acceptable class had the best test result with a 28.36% error.

Table 9. Summary of misclassification and error for random forest model.

Actual Class Count
Predicted Training Class Predicted Test Class

Misclassed Error (%) Misclassed Error (%)

Over-dried 58 6 10.34 24 41.38
Acceptable 268 76 28.36 76 28.36

Under-dried 52 8 15.38 17 32.69
ALL 378 90 23.81 117 30.95
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Overall, classification could categorize timber pieces into three classes based on their
Mf with acceptable accuracy. This could be beneficial to wood manufacturing companies,
as sawmills can apply this model to improve pre-and post-sorting strategies. The opti-
mum breakpoints for the dry-sort-re-dry method could be accurately determined using the
outcome of this classification approach. It is noteworthy that this research included some
limitations, including relatively small sample size (42 boards per run) and single setpoint
(Mt = 12%). Therefore, future research should focus on a bigger sample size to improve the
training and test performance of the model. Moreover, future studies should broaden the
range of Mf moisture prediction by selecting multiple Mt for different drying runs. This
study utilized the TreeNet gradient boosting model. Despite the proven effectiveness of
tree-based ensemble models, future research can perform comparative studies to better
reveal the performance of the selected model against other techniques, such as ANNs or
support vector machines. While this research focused on Mf between timber pieces, future
studies may have to characterize and model Mf within every single piece of timber (core
and shells) [74] and casehardening [75]. Moreover, future studies may have to provide
predictive and classifying models for drying defects, such as surface checks [76], internal
checks (honeycombing) [77], and shape distortions [78]. Finally, future research should
investigate the effectiveness of different NDE methods for the fast and reliable assessment
of timber MC. Acoustic and ultrasound signals were shown to be sensitive to wood charac-
teristics such as MC [79]. Additionally, the suitability of near-infrared (NIR) spectroscopy,
as a widely used NDE method for wood characterization and monitoring [80–83], could be
assessed for MC monitoring in kiln-dried timber at sawmills.

4. Conclusions

This research provided a holistic approach that considers selected wood indices and
drying parameters in modeling moisture after kiln drying. Including the drying parameters
in the model significantly improved the accuracy of the TreeNet, despite showing lower
relative importance compared to the wood attributes. This finding emphasizes that a robust
and accurate model should include not only wood attributes but also drying parameters.
From a practical standpoint, wi had the highest correlation with Mf among the input
variables. This result was outstanding from a practical viewpoint, as weighing timber in
sawmills is a fast and non-destructive test. The outcome of this research is an advanced step
in optimizing drying schedules concerning final moisture variation. Classifying models are
highly applicable to optimizing post-sorting strategies such as dry-sort-re-dry.

Author Contributions: Conceptualization: S.R., V.N. and S.A.; Methodology: S.R., V.N. and S.A.;
Software and Analysis: F.S. and V.N.; Writing: S.R. and V.N.; Editing: S.R., V.N., S.A. and F.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Katrin Rohrbach and FPInnovations for their
collaborations and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Glass, S.V.; Zelinka, S.L. Chapter 4: Moisture Relations and Physical Properties of Wood. In Wood Handbook Wood as an Engineering

Material. General Technical Report FPL-GTR-282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory:
Madison, WI, USA, 2021; 22p.

2. Fathi, H.; Kazemirad, S.; Nasir, V. Anondestructive guided wave propagation method for the characterization of moisture-
dependentviscoelastic properties of wood materials. Mater. Struct. 2020, 53, 147. [CrossRef]

http://doi.org/10.1617/s11527-020-01578-6


Polymers 2023, 15, 792 15 of 17

3. Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R.A.
Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine. Dry. Technol. 2018, 36,
537–544. [CrossRef]

4. Lamrani, B.; Bekkioui, N.; Simo-Tagne, M.; Ndukwu, M.C. Recent progress in solar wood drying: An updated review. Dry.
Technol. 2022, 1–23. [CrossRef]

5. Haygreen, J.G.; Bowyer, J.L. Forest Products and Wood Science, an Introduction, 3rd ed.; Iowa State University Press: Ames, IA, USA,
1996; 484p.

6. Reeb, J.E. Drying Wood. FOR-55; University of Kentucky: Lexington, KY, USA; Cooperative Extension Service: Fairbanks, AK,
USA, 1997; 8p.

7. Pang, S. Moisture content gradient in a softwood board during drying: Simulation from a 2-D model and measurement. Wood Sci.
Technol. 1996, 30, 165–178. [CrossRef]

8. Perre, P. Fundamental Wood Drying; European COST: Nancy, France, 2007; 366p.
9. Simpson, W.T. Dry Kiln Operator’s Manual; United States Department of Agriculture, Forest Service Forest Products Laboratory:

Madison, WI, USA, 1991; 256p.
10. Esping, B. Energy Saving in Wood Drying; Wood Technology Report No. 12; Svenska Traforsknings Institute: Stockholm, Sweden,

1982. (In Swedish)
11. Bond, B.H.; Espinoza, O. A decade of improved lumber drying technology. Curr. For. Rep. 2016, 2, 106–118. [CrossRef]
12. Simpson, W.T. Drying wood: A review-part I. Dry. Technol. 1983, 2, 235–264. [CrossRef]
13. Keey, R.B.; Langrish, T.A.; Walker, J.C. Kiln-Drying of Lumber; Springer Science & Business Media: Berlin, Germany, 2000; 326p.
14. Rosen, H.N. Drying of Wood and Wood Products. In Handbook of Industrial Drying, 2nd ed.; Marcel Dekker: New York, NY, USA,

1995; pp. 899–921.
15. Shahverdi, M.; Oliveira, L.; Avramidis, S. Kiln-drying optimization for quality pacific coast hemlock lumber. Dry. Technol. 2017,

35, 1867–1873. [CrossRef]
16. Rohrbach, K.; Oliveira, L.; Avramidis, S. Drying schedule structure and subsequent post-drying equalisation effect on hemlock

timber quality. Int. Wood Prod. J. 2014, 5, 55–64. [CrossRef]
17. Nogi, M.; Yamamoto, H.; Okuyama, T. Relaxation mechanism of residual stress inside logs by heat treatment: Choosing the

heating time and temperature. J. Wood Sci. 2003, 49, 22–28. [CrossRef]
18. Coast Forest Products Association Coastal Products. Available online: http://www.coast-forest.org/products/product-directory/

species/ (accessed on 24 November 2018).
19. Wada, N.; Avramidis, S.; Oliveira, L.C. Internal moisture evolution in timbers exposed to ambient conditions following kiln

drying. Eur. J. Wood Prod. 2014, 72, 377–384. [CrossRef]
20. Sackey, E.K.; Avramidis, S.; Oliveira, L.C. Exploratory Evaluation of Oscillation Drying for Thick Hemlock Timbers. Holzforschung

2004, 58, 428–433. [CrossRef]
21. Bradic, S.; Avramidis, S. Impact of Juvenile Wood on Hemlock Timber Drying Characteristics. For. Prod. J. 2007, 57, 53–59.
22. Berberovic, A.; Milota, M.R. Impact of wood variability on the drying rate at different moisture content levels. For. Prod. J. 2011,

61, 435–442. [CrossRef]
23. Elustondo, D.; Oliveira, L.; Ananias, R.A. Visual method to assess lumber sorting before drying. Dry. Technol. 2013, 31, 32–39.

[CrossRef]
24. Watanabe, K.; Mansfield, S.D.; Avramidis, S. Application of near-infrared spectroscopy for moisture-based sorting of green

hem-fir timber. J. Wood Sci. 2011, 57, 288–294. [CrossRef]
25. Aune, J.E. Kiln Tests with Species and Moisture Content Sorted, 116 mm Square, Hem-Fir Merch Lumber; Final Report Prepared for the

Stability Work Group; ZAIRAI Lumber Partnership Ltd.: Vancouver, BC, Canada, 2000.
26. Yang, L.; Liu, H. Study of the collapse and recovery of Eucalyptus urophydis during conventional kiln drying. Eur. J. Wood Prod.

2021, 79, 129–137. [CrossRef]
27. Dawson, B.S.; Pearson, H.; Kimberley, M.O.; Davy, B.; Dickson, A.R. Effect of supercritical CO2 treatment and kiln drying on

collapse in Eucalyptus nitens wood. Eur. J. Wood Prod. 2020, 78, 209–217. [CrossRef]
28. Botter-Kuisch, H.P.; Van den Bulcke, J.; Baetens, J.M.; Van Acker, J. Cracking the code: Real-time monitoring of wood drying and

the occurrence of cracks. Wood Sci. Technol. 2020, 54, 1029–1049. [CrossRef]
29. Suchomelová, P.; Trcala, M.; Tippner, J. Numerical simulations of coupled moisture and heat transfer in wood during kiln drying:

Influence of material nonlinearity. BioResources 2019, 14, 9786–9805.
30. Kumar, S.; Kelkar, B.U.; Mishra, A.K.; Jena, S.K. Variability in physical properties of plantation-grown progenies of Melia

composita and determination of a kiln-drying schedule. J. For. Res. 2018, 29, 1435–1442. [CrossRef]
31. Marier, P.; Gaudreault, J.; Noguer, T. Kiln drying operations scheduling with dynamic composition of loading patterns. For. Prod.

J. 2021, 71, 101–110. [CrossRef]
32. Yin, Q.; Liu, H.H. Drying stress and strain of wood: A Review. Appl. Sci. 2021, 11, 5023. [CrossRef]
33. Watanabe, K.; Matsushita, Y.; Kobayashi, I.; Kuroda, N. Artificial neural network modeling for predicting final moisture content

of individual Sugi (Cryptomeria japonica) samples during air-drying. J. Wood Sci. 2013, 59, 112–118. [CrossRef]
34. Chai, H.; Chen, X.; Cai, Y.; Zhao, J. Artificial neural network modeling for predicting wood moisture content in high frequency

vacuum drying process. Forests 2018, 10, 16. [CrossRef]

http://doi.org/10.1080/07373937.2017.1342094
http://doi.org/10.1080/07373937.2022.2112048
http://doi.org/10.1007/BF00231631
http://doi.org/10.1007/s40725-016-0034-z
http://doi.org/10.1080/07373938308959827
http://doi.org/10.1080/07373937.2017.1283324
http://doi.org/10.1179/2042645313Y.0000000052
http://doi.org/10.1007/s100860300004
http://www.coast-forest.org/products/product-directory/species/
http://www.coast-forest.org/products/product-directory/species/
http://doi.org/10.1007/s00107-014-0792-x
http://doi.org/10.1515/HF.2004.065
http://doi.org/10.13073/0015-7473-61.6.435
http://doi.org/10.1080/07373937.2012.713421
http://doi.org/10.1007/s10086-011-1181-2
http://doi.org/10.1007/s00107-020-01614-w
http://doi.org/10.1007/s00107-020-01500-5
http://doi.org/10.1007/s00226-020-01200-6
http://doi.org/10.1007/s11676-017-0527-z
http://doi.org/10.13073/FPJ-D-20-00050
http://doi.org/10.3390/app11115023
http://doi.org/10.1007/s10086-012-1314-2
http://doi.org/10.3390/f10010016


Polymers 2023, 15, 792 16 of 17

35. Rabidin, Z.A.; Seng, G.K.; Wahab, M.J.A. Characteristics of timbers dried using kiln drying and radio frequency-vacuum drying
systems. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 108, p. 10001. [CrossRef]

36. Liu, H.; Zhang, J.; Jiang, W.; Cai, Y. Characteristics of commercial-scale Radio-frequency/vacuum (RF/V) drying for hardwood
lumber. BioResources 2019, 14, 6923–6935. [CrossRef]

37. Ozsahin, S.; Murat, M. Prediction of equilibrium moisture content and specific gravity of heat-treated wood by artificial neural
networks. Eur. J. Wood Prod. 2018, 76, 563–572. [CrossRef]

38. Rahimi, S.; Avramidis, S. Predicting moisture content in kiln dried timbers using machine learning. Eur. J. Wood. Prod. 2022, 80,
681–692. [CrossRef]

39. Rahimi, S.; Nasir, V.; Avramidis, S.; Sassani, F. Wood moisture monitoring and classification in kiln-dried timber. Struct. Control
Health Monit. 2022, 29, e2911. [CrossRef]

40. Rahimi, S.; Nasir, V.; Avramidis, S.; Sassani, F. Benchmarking moisture prediction in kiln-dried Pacific Coast hemlock wood. Int.
Wood Prod. J. 2022, 13, 219–226. [CrossRef]

41. Rahimi, S.; Avramidis, S.; Lazarescu, C. Estimating moisture content variation in kiln dried Pacific coast hemlock. Holzforschung
2021, 76, 26–36. [CrossRef]

42. Nisgoski, S.; de Oliveira, A.A.; de Muñiz, G.I.B. Artificial neural network and SIMCA classification in some wood discrimination
based on near-infrared. Wood Sci. Technol. 2017, 51, 929–942. [CrossRef]

43. Cui, X.; Wang, Q.; Zhao, Y.; Qiao, X.; Teng, G. Laser-induced breakdown spectroscopy (LIBS) for classification of wood species
integrated with artificial neural network (ANN). Appl. Phys. B 2019, 125, 56. [CrossRef]

44. Bardak, S.; Tiryaki, S.; Nemli, G.; Aydın, A. Investigation and neural network prediction of wood bonding quality based on
pressing conditions. Int. J. Adhes. Adhes. 2016, 68, 115–123. [CrossRef]

45. Bardak, S.; Tiryaki, S.; Bardak, T.; Aydin, A.Y.T.A.Ç. Predictive performance of artificial neural network and multiple linear
regression models in predicting adhesive bonding strength of wood. Strength Mater. 2016, 48, 811–824. [CrossRef]

46. Ayanleye, S.; Nasir, V.; Avramidis, S.; Cool, J. Effect of wood surface roughness on prediction of structural timber properties by
infrared spectroscopy using ANFIS, ANN and PLS regression. Eur. J. Wood Prod. 2021, 79, 101–115. [CrossRef]

47. Tiryaki, S.; Aydın, A. An artificial neural network model for predicting compression strength of heat-treated woods and
comparison with a multiple linear regression model. Constr. Build. Mater. 2014, 62, 102–108. [CrossRef]
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