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Abstract: This review is devoted to understanding the role of elasticity in the main flow modes of
polymeric viscoelastic liquids—shearing and extension. The flow through short capillaries is the
central topic for discussing the input of elasticity to the effects, which are especially interesting for
shear. An analysis of the experimental data made it possible to show that the energy losses in such
flows are determined by the Deborah and Weissenberg numbers. These criteria are responsible for
abnormally high entrance effects, as well as for mechanical losses in short capillaries. In addition,
the Weissenberg number determines the threshold of the flow instability due to the liquid-to-solid
transition. In extension, this criterion shows whether deformation takes place as flow or as elastic
strain. However, the stability of a free jet in extension depends not only on the viscoelastic properties
of a polymeric substance but also on the driving forces: gravity, surface tension, etc. An analysis
of the influence of different force combinations on the shape of the stretched jet is presented. The
concept of the role of elasticity in the deformation of polymeric liquids is crucial for any kind of
polymer processing.
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1. Introduction

Elasticity is obviously an inherent property of polymers. This property determines
the huge usage of polymers in rubber industry. In this area, two approaches are naturally
combined: the mechanics of large reversible deformations and the physics of interactions
and deformations at the molecular level.

However, what is the level of our understanding of the role of elasticity in the flow
of polymer solutions and melts? It is intuitively clear that in shear and tension there is
a superposition of reversible and irreversible deformations, which is formulated in many
constitutive equations proposed for polymer melts and solutions. Nevertheless, the role of
elasticity is important not only for the flow, but for the emergence of new unexpected effects
associated with the elastic instability of elastic liquids. Therefore, in this review, we wanted to
collect and describe those phenomena that are directly caused by the elasticity of polymeric
liquids. At the same time, as in the case of rubbers, we wanted to collect both macroscopic
experimental facts and phenomena related to the orientation of individual macromolecules
under one roof, which is especially important for the expansion of polymeric liquids.

There are several basic concepts in rheology that form its foundation. These are non-
Newtonian flow, viscoelasticity, thixotropy, and viscoplasticity. All of these concepts have
been the subject of extensive research, summarized in a large number of monographs and
reviews. The elasticity of rheologically complex liquids that is inherent in solutions and melts
of polymers to the greatest extent was usually considered a special case of viscoelasticity.
However, consideration of the behavior of polymeric liquids demonstrates various effects
associated specifically with the elasticity of these media. Next, we will try to review the current
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state of research in this area, not limited to the effects associated with the elasticity of polymer
solutions and melts: the physics of macromolecular deformations responsible for the observed
phenomena would also be considered. The analysis of the elasticity of polymeric liquids should
be based on the existing fundamental concepts in polymer physics in order to have a common
approach to understanding any new experimental fact.

These are:

- The ratio of the scales of internal time and observation time called the Deborah number,
De, (Reiner, 1928 [1]), and the ratio of the scales of relaxation rate to deformation rate
called the Weissenberg number, Wi [2];

- The consequence of this fundamental approach—the concept of the time (frequency)—
temperature superposition approves that the same type of relaxation state (or rheolog-
ical behavior) can be reached by varying either the rate of deformation (frequency) or
temperature (Ferry [3]), Tobolsky [4]);

- The concept of the transition from linear to non-linear mechanical behavior in increas-
ing the deformation rate [5,6].

The following pictures (Figure 1) illustrate these concepts for the domains of linear
and non-linear viscoelasticity of polymers.

Polymers 2023, 15, x FOR PEER REVIEW 2 of 28 
 

 

cial case of viscoelasticity. However, consideration of the behavior of polymeric liquids 

demonstrates various effects associated specifically with the elasticity of these media. 

Next, we will try to review the current state of research in this area, not limited to the ef-

fects associated with the elasticity of polymer solutions and melts: the physics of mac-

romolecular deformations responsible for the observed phenomena would also be con-

sidered. The analysis of the elasticity of polymeric liquids should be based on the exist-

ing fundamental concepts in polymer physics in order to have a common approach to 

understanding any new experimental fact. 

These are: 

- The ratio of the scales of internal time and observation time called the Deborah 

number, De, (Reiner, 1928 [1]), and the ratio of the scales of relaxation rate to de-

formation rate called the Weissenberg number, Wi [2]; 

- The consequence of this fundamental approach—the concept of the time (frequen-

cy)—temperature superposition approves that the same type of relaxation state (or 

rheological behavior) can be reached by varying either the rate of deformation (fre-

quency) or temperature (Ferry [3]), Tobolsky [4]);  

- The concept of the transition from linear to non-linear mechanical behavior in in-

creasing the deformation rate [5,6]. 

The following pictures (Figure 1) illustrate these concepts for the domains of linear 

and non-linear viscoelasticity of polymers. 

2

3

4

5

6

7

G''

G'

log w [s
-1
]

log G   [Pa]

 

F

Wi = 1

R
a

 

0.5

0

1

Rate of deformation

Wi = 1

F

R

b

flow

flow elastic



 +

 

Figure 1. Typical behavior of polymer melts. a: relaxation states of polymers: frequency dependen-

cies of the storage G′ and loss moduli G″, F—flow (terminal) and R—rubbery states. b: ratio be-

tween flow and elastic deformations [7]. 
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Figure 1. Typical behavior of polymer melts. a: relaxation states of polymers: frequency dependencies
of the storage G′ and loss moduli G”, F—flow (terminal) and R—rubbery states. b: ratio between flow
and elastic deformations [7].

As for the transition to non-linearity in extension, Figure 2 shows a typical graph. The
solid black line in this Figure corresponds to the linear limit of viscoelastic behavior and
the colored lines show deviation of the linearity, higher rates correspond to lower deviation
times [5,8].
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Figure 2. The linear-to-non-linear behavior transition in increasing the deformation rate under extension.

Under no circumstance can the ratio be considered as some “apparent elongation
viscosity” since no point in this graph corresponds to a steady flow (which is an obligatory
condition in the definition of “viscosity”) and moreover, it may generally correspond to
a flow-to-elastic deformation transition. This mistakable approach sometimes appears in
discussions of experimental data.
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Some recent reviews on the rheology of extension were published [9–11]. However, this
line of research was outlined very quickly and the new experimental data and theoretical
arguments have already accumulated and require analysis. This was conducted in a review
based mainly on the publications of the last 5–7 years.

Peculiarities of extension of polymeric liquids have rather significant value when
we consider either melts or dilute (or semi-dilute) solutions. This is due to the different
technological applications of these two groups of liquids. In the first case, we meet with the
processing of polymers mainly by molding or extrusion. In the second case, we deal mainly
with fiber spinning. Blow molding of films occupies the intermediate position. Therefore, it
seems reasonable to separate this review into two parts devoted to melts and solutions.

2. The Role of Elasticity in Polymer Processing

Any deformation in the polymer processing inevitably leads to molecular orientation
that can be treated in terms of elasticity (stored energy) wherein normal stresses (under the
extension flow) create a much higher effect than shear stresses (under the shear flow) that
is clearly demonstrated in the simplest model of the deformation of a liquid drop inside a
surrounding liquid under different modes of the flow [12–14]. Elastic (recoverable) force for
a liquid droplet is surface tension while for polymers and in particular for polymer blends,
the source of elasticity is molecular motion directed to the recovery of the equilibrium
conformation and having the statistic (entropic) nature. Therefore, the inherent link between
elasticity and elongation flow of viscoelastic polymeric liquids (solutions or melts) exists.

In this section, we will consider the effects due to the elasticity of polymeric liquids,
which are observed when flowing through capillaries (channels). In this regard, the original
study [15] complements the presented review.

The role of elasticity associated with the technological practice of spinning fibers and
blow molding is of independent interest. This is a separate topic that is beyond the scope of
this review. Some individual aspects of this problem are considered in [16,17]. Molecular
understanding of this issue will be considered in the next part of this paper.

The role of extension is the most pronounced and important in shear flows through
channels with variable cross-sections due to an obligatory change in the elongation velocity
(i.e., the emergence of the rate of deformation). An evident example of such a case is
extrusion. Figure 3 shows how velocity changes in the flow from a barrel with polymer
melt, through a forming die (perhaps simply through a capillary), and in post-extrusion
operations. There are two zones: the entrance into the die and the exit from it where
elongation flow takes place.
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As was said above, large deformations in the elongation flow of viscoelastic polymeric
liquids relate to their elasticity, which manifests itself in the transition flows taking place at
the entrance and exit zones. Figure 4 illustrates two characteristic effects related to the flow
of polymeric liquids in these zones: the emergence of secondary flow (Figure 4a) and die
swelling (Figure 4b) [18]. The quantitative manifestations of these effects depend on the
deformation conditions and the nature of the polymer (see, for example, [19,20]
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Figure 4. Typical effects associated with the elasticity of polymer melts: secondary flows at the
entrance to a die (a) [18] and die swell after exit from a die (b) (authors’ photo).

The role of these two zones becomes dominant for short dies, since it is in these cases
that the main part of losses (energy dissipation) happens due to transient (viscoelastic)
regimes of the flow associated with extension. This suggestion was confirmed by the possi-
bility of considering the dimensional pressure losses as a universal function of the Deborah
number, De [21], where De is defined as the ratio of characteristic time of the segmental
movement of macromolecules to the residence time in the channel. The generalized result
of this approach is shown in Figure 5. Here, the shear stress is reduced by the plateau
modulus G in the rubbery, R, zone and De is determined via the relaxation time in the flow,
F (terminal), zone (as in Figure 1a). The existence of a common dependence on the shear
stress on the characteristic relaxation time (built in the reduced coordinates) indicates the
decisive role of elasticity in the flow through short dies.

Secondary flows are a phenomenon first examined by L. Prandtl (1926) for Newtonian
liquids, which are characterized in terms of the cross-plane component of the mean kinetic
energy. Nowadays this effect is primarily considered by numerical methods [22,23]. This
problem has received the new content for viscoelastic fluids, in which the Reynolds number
is not the determining factor, and the elasticity of the liquid is expressed by the Weissenberg
number [24–26]. Secondary flows in elastic liquids appear at very low Reynolds numbers
and are associated with elastic turbulence. Their quantitative description depends on the
choice of the rheological model due to the different approaches for the characterization
of elastic non-linearity, and solutions of dynamic problems (such as in a simpler case of
Newtonian liquids) are reached using numerical analysis methods. In the limits of this
review, it is essential that secondary flows always increase the hydrodynamic resistance [27].
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In rheological measurements and in technological practice, the total entrance phe-
nomena (including secondary flows and extension) are usually characterized by an end
correction, n, as a measure of some conventional increase in the length of the die. Then, the
true shear stress, σ, at the wall of the capillary is expressed as

σ =
∆PR

2(L + nR)
=

∆P
2(L/R + n)

(1)

where ∆P is the difference in pressure at the entrance and exit of a capillary and R and L
are the radius and the length of a capillary, respectively.

Sometimes, the gradient of the elongation velocity is used for calculating a conditional
“elongation viscosity” η+ = σE/

.
ε, although (as explained above) this value cannot be

treated as “viscosity”. Based on experimental evidence, it was shown that this value does
not have any reasonable meaning for the capillary flows of viscoelastic polymer melts [28].

The end correction (summing all entrance additional energy losses) depends on the
viscoelastic properties, and its relative contribution to the total pressure loss is determined
by the ratio between L/R and n, i.e., the capillary length (as seen from Equation (1)). In this
sense, in addition to the experimental data presented in Figure 5, the n(Wi) dependence is
shown in Figure 6.
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The physics behind the increase in end correction alongside an increase in the Wi
number is most likely related to the increase in elastic deformations depending on shear
stress (or shear rate), but not with hydrodynamic reasons as in Cogsell’s model. This occurs
simultaneously with the development of the non-Newtonian effect. It is then reasonable
that elasticity correlates with the degree of non-Newtonian effect. Indeed, it was found
that the ratio of the apparent viscosity, η

( .
γ
)
, to the initial (maximal) Newtonian viscosity,

η0, can be considered as a function of the stored elastic energy, W, i.e., the elasticity of the
liquid [29] and expressed as

η
( .
γ
)

η0
= eβW/RT (2)

where R is the universal gas constant, T is absolute temperature, and β is an individual
constant of an elastic liquid. The stored elastic energy is calculated as

W
( .
γ
)
=

γel∫
0

σ
( .
γ
)
dγel (3)

Here, σ
( .
γ
)

is the dependence of the shear stress, σ, on the shear rate,
.
γ, in a stationary

flow (i.e., the flow curve) and γel = γel(
.
γ) is the elastic deformation at this shear rate.

Independent measurements of the values in the right and left sides of Equation (2) for many
different polymeric liquids confirmed the correction of this relationship.

Elastic deformations stored at the inlet due to the convergent flow relax after leaving
the capillary and lead to the die swelling (Figure 4b). This phenomenon depends on the
capillary length since the additional stresses at least partially relax when passing through
the capillary, and thus the jet diameter depends on the value of L/R. This is illustrated by
the photo (Figure 7) wherein two jets obtained at the same given volume output are shown
but with long (left) and short (right) dies [28].
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The physics behind the die swell is rather evident. This is because of the release
of stored elastic energy due to the recoverable conformation of the entangled polymeric
chains. As said above, the quantitative measure of this effect depends on the length of the
die (capillary). The die swell should be taken into account in the design of the processing
equipment [30], and this is especially important when designing spinnerets in fiber spinning
since the dies in these devices are always very short.

The mechanics of die swell was considered in many publications by numerical meth-
ods based primarily on the analysis of rather complex rheological equations [31,32]. This
means that the theoretical base for such calculations is ready. However, its practical applica-
tion requires knowledge of a large amount of information about the rheological properties
of the processed polymer. Then, it is reasonable to apply the theoretical models in large-
scale industrial production. Therefore, the problem of measuring die swell continues and
many authors try to carry out the direct measurement for certain applications in extrusion
polymer profiles [33,34]. A new aspect of this problem is associated with the extrusion of
filaments for 3D printing (additive technology) [35,36].

The effect of extension (longitudinal deformations) at the capillary entrance becomes
rather evident when we observe the flow of two liquids forming emulsions. This takes
place in the flow of blends of immiscible polymer melts. The results of a model experiment
are shown in Figure 8, where the deformation of a liquid droplet during the transition from
a wide to narrow channel is illustrated [37].
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The effect of self-oscillation during the high-speed extrusion of polymer melts (Figure 9)
is a well-known and well-documented phenomenon [38]. Its physics, associated with the
elastic rupture at the point of singularity on the exit section of a capillary, was qualitatively
described by the old Cogswell model [39]. Self-oscillations represent the initial stage
of instability in the flow of viscoelastic fluids. A detailed consideration of this issue is
presented in the review [40].

This effect can be understood as an analog of the spurt effect. At high shear stresses,
melt becomes elastic, and the edge of the capillary exit plays a role of a scrapper sliding
along the rubbery surface (Figure 10). This is a reverse picture of the movement of a
rubbery-like melt at the edge of the capillary. Although the appearance of periodic surface
self-oscillating defects on the surface of extrudates (also known as the shark skin) associated
with elastic ruptures at a singular point was described in many publications, its quantitative
theory is still absent.

The next case of the influence of elasticity on the shear flow is associated with the
interaction of a polymer fluid with the wall. This is a well-known effect of spurt associated
with wall slip. This is also the case with using a rather mild measuring system in rotary
rheometers [41]. A rigorous solution of this problem would be also interesting.
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We can also observe the consequences of elastic deformations of polymer melts pre-
serving frozen residual stresses and shape memory in articles obtained by molding or
extrusion. It is quite evident that residual stresses and memory effects are associated with
orientation depending on the stress in shear flow (see, e.g., Figure 25 in [42]) and related
to its elasticity. One can find a description of frozen stresses, their direct observations,
and the influence of this phenomenon on the performance of final products in numerous
publications (e.g., [43–45]) and there is no doubt in its practical importance [46]. However,
the general theoretical model of this phenomenon is absent although some attempts for
stimulating calculations for frozen stresses are known [47]. One of the earlier attempts to
solve this problem, by constructing a rigorous system of equations, clearly demonstrated
the correct way to do this as well as numerous difficulties encountered [48]. Indeed, the
practical application of thermoviscoelastic problems requires a large amount of experi-
mental information about the temperature dependences of rather complicated rheological
properties of the material, as well as overcoming computational difficulties in solving a
system of non-linear or integral equations. Nevertheless, we can be sure that this problem
will attract the attention of professionals due to its practical importance in the processing
and application of engineering plastics.

Although the elasticity of polymer liquids is their inherent property and is important at
all stages of the traditional processing, it is extension that is the mode of deformation, where
elasticity plays a decisive role due to direct correlation with the orientation of macromolecules
and the influence of this factor on the technical properties of spun fibers. In fact, the exten-
sion of fibers in different stages of the technological process occurs due to the uncoiling of
macromolecules associated with elastic deformations. Then, the increase in ultimate strain (at
break) λ*, as well as the strength of a matter, correlates with the draw rate. This should be an
elastic drawing and a further increase in the draw rate can lead to the deformation-induced
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glass transition with a decrease in λ*. This is shown in Figure 11, and the shape of the curve is
obviously similar to the right part of the envelope curve in Figure 2.
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The universal modeling of extension presented in Figure 2 is in accordance with the
generalized model [6] and is valid for homogeneous stretching. The extension of polymeric
liquids in the elastic domain of deformations can occur with neck formation similarly to
necking in solid polymers and further stretching entails theelastic yielding with the transi-
tion of homogeneous filament to the neck. This yielding effect happens at critical strain and
finally results in the elastic breakup at non-uniform extension [49]. The concept of necking
under extension was analyzed by stability analysis of the stretching process, which made
it possible to obtain criteria of this effect corresponding to the existing phenomenological
models of a non-linear viscoelastic liquid [50]. In some publications, the appearance of a
plateau in the stress vs. deformation curve near the breakup point was described. This
plateau takes place for linear polymers [51] as well as for ring macromolecules with an
unusual sharp increase in the apparent viscosity [52]. The nature of this effect is not evident.
The authors of original publications treat it as flow, although possibly this yielding happens
due to the necking phenomenon.

Modeling the polymeric liquid bridges leading to failure during extension was dis-
cussed in [53]. However, it is necessary to keep in mind that the mechanism of fracture of
polymeric liquids under tension depends on the draw rate, since the latter is determined by
the relaxation state of the polymer and in particular the liquid flow-to-elastic state transition.

At rather low draw ratios, the classical Rayleigh–Plateau breakup of liquid jets due to
surface tension disturbances is observed [54]. In the rubber-like state (in the medium range
of draw rate), the breakup occurs quite in the same mode as for usual rubbers. However,
at high deformation rates, the breakup is initiated by the appearance of the simultaneous
propagation of multiple cracks while their position is random, similarly to how it happens
in the rupture of different solids [55,56].

A rather different understanding of the mechanism of rupture in extension was pro-
posed in [57,58]. The authors assume that there are only two different states associated with
the regimes of deformations: the liquid and elastic solid. They proposed the cohesive failure
model based on the entropic fracture hypothesis. According to this model, the rupture of
the bond in the main macromolecular chain was assumed as the basic mechanism of the
brittle breakup of a filament. This approach was criticized in [59], where contrary to the
hypothesis that chains are fully uncoiled and scission in melt rupture is due to an “entropic
fracture” mechanism, it was declared that sufficient enthalpic changes associated with
conformational distortions at the bond level take place.

3. Elasticity in the Dynamics of Extension of Polymer Solutions
3.1. General Equations

In the previous part, we considered the features of the elastic behavior of polymeric
liquids during technological processing, including both shear and extension. In recent
years, significant progress has also been made in studying polymer solution behavior
under extension. In this part, we mainly focus on elucidating the role of elasticity using
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the theoretical methods. We will consider two cases: a thread (bridge) connecting two
droplets and self-thinning under the action of capillary forces (Figure 12), and a stationary
jet stretched under the action of an external force after the solution leaves the orifice with
a fixed flow rate. The external force can be mechanical and applied to the free end of
the jet, as in the case of fiber drawing (Figure 13), as well as gravitational or electrical
(electrospinning). In the latter case, the force is applied to the entire jet.
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First, let us formulate the basic equation for the balance of forces in the volume of
liquid in the general case, including the inertial, viscoelastic, gravitational, and electrostatic
forces. Denoting the density of the solution as ρ and assuming that the electric field
inside the fluid is Ei(x, t) and the velocity is v(x, t), the momentum equation is written
as [54,60–62]

ρ
∂v
∂t

+ ρv · ∇v−∇ · (Σ− pI)− ρg− qEi = 0 (4)

where the velocity v(x, t) obeys the incompressibility condition∇ ·v = 0. Here x = (x1, x2, x3)
is the coordinate, t is the time, p is the pressure, ∇ is the gradient operator, Σ is the stress
tensor, ρg is the gravity force density, qEi is the electric force density, and (q = e(n+ − n−)
is the free charge density, where n+ and n− are concentrations of positively and negatively
charged monovalent ions having the charge e respectively) and I is the unit tensor. The
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differential Equation (4) should be supplemented by the boundary condition on the free
surface. This condition implies the balance of the viscoelastic, capillary, and electric forces.

psn− Σ · n− γCn + F = 0 (5)

Here, ps is the pressure at the surface, n is a normal vector to the surface, C = divn is
the total surface curvature, and γ is the surface tension. The electric force F acting per unit
area is given by:

F = ε0(Eo,nEo − εEi,nEi)−
ε0

2

(
E2

o − εE2
i

)
n (6)

where Eo is the electric fields outside the liquid. The electric fields Ei and Eo are found from
the electrostatic equations [60–63].

To study the dynamics of the rectilinear jet (thread), a cylindrical system of coordinates
will be used. Assuming that the jet surface is described by an axisymmetric function
a = a(z, t), the normal (n) and tangential (τ) vectors to the surface are given by:

n = − a′z√
1 + a′2z

ez +
1√

1 + a′2z
er, τ =

1√
1 + a′2z

ez +
a′z√

1 + a′2z
er (7)

Here, ez and er are the unit vectors directed along and perpendicular to the jet axis,
respectively.

Analysis of the three-dimensional momentum, Equation (4), with the boundary condi-
tions (5) is a very difficult mathematical problem. In the case of axisymmetric rectilinear jet,
the problem can be simplified using a slender body approximation since the profile of the jet
slowly changes along the extension axis z, |a′z| � 1 (a′z = ∂a

∂z ). To derive the corresponding
one-dimensional momentum equation, let us consider the jet section [z, z + dz] [64]. After
multiplying the Equation (1) by the vector ez and integration over this section, we obtain
the equation for the velocity component vz:

a(z,t)∫
0

rdr
(

ρ
∂vz
∂t
− ρg− qEz

)
+

∂

∂z

 a(z,t)∫
0

rdr
(

ρv2
z + p− Σzz

)+ a
√

1 + a′2z(ρvv + psI− Σ) · nez = 0 (8)

where the gravity acts along the z-axis. The incompressibility condition ∇ · v = 0 after
integration over the section [z, z + dz] and subsequent use of the kinematic equation ∂a

∂t +
vza′z − vr = 0 reduces to the mass conservation equation:

∂a2

∂t
+

∂

∂z

(
a2vz

)
= 0 (9)

Elimination of the pressure from Equation (8) (note, within the framework of the
slender body approximation p ' ps) by taking into account the boundary condition (5) we
arrive at the well-known form of the momentum equation:

∂

∂t

(
ρa2vz

)
+ a2 ∂

∂z
(γC− Fn) +

∂

∂z

[
a2
(

ρv2
z + Σnn − Σzz

)]
' 2aFτ + qa2Ez + ρga2 (10)

where Fτ = F · τ, Fn = F · n and Ez = E · ez. Furthermore, depending on the system
under consideration, it is necessary to determine the stress tensor, and in the case of
electrospinning, to add electrostatic and charge balance equations.

For the Newtonian liquid the stress tensor is Σ = η
(
∇v + (∇v)T

)
where η is the

viscosity and

(∇v)ij =
∂vj

∂xi
, (∇v)T

ij =
∂vi
∂xj

, i, j = 1, 2, 3 (11)
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are the velocity gradients. When considering polymer solutions exhibiting viscoelastic
behavior, additional equations are required to determine the stress tensor [64–66]. Two
approaches are possible here: phenomenological and molecular. In the phenomenological
approach, the stress tensor is determined by the constitutional equation. The Maxwell,
Oldroyd B, and FENE-P equations are often used to describe extension of polymer solutions
without entanglements. The polymer chains in these rheological models are described
by elastic dumbbells with constant friction. The most general is the FENE-P model. It
captures the viscoelastic effects, as well as those in strong elongational flows when the finite
extensibility of the polymer chains is important [64,65]. The polymer chain is modeled
by a non-Hookean dumbbell with the extension force f = 3kBT

R2
0

R
1−R2/L2 which is related to

the elastic energy Fel = − 3kBTL2

2R2
0

ln
(

1− R2

L2

)
. Here, kB is the Boltzmann constant, T is the

temperature, R is the distance between the beads, L is the maximum spring length, and
R2

0 ∝ L is the mean-square equilibrium distance between the beads.
The FENE-P model equations are formulated in terms of a conformation tensor

A = 〈RR〉 where the angular brackets denote averaging over the distribution of the vector
R. The stress tensor Σ is a sum of the solvent stress Σs = ηs

(
∇v + (∇v)T

)
where ηs is the

solvent viscosity and the polymer stress Σp:

Σ = Σs + Σp, Σp = G
A/R2

0 − I
1− trA/L2 (12)

with A obeying

τ

[
∂A
∂t

+ (v · ∇)A− (∇v)T ·A−A · ∇v
]
+

A− R2
0I

1− trA/L2 = 0 (13)

Here, the elastic modulus is G = 3nkBT where is the concentration of polymer chains
(springs) and τ is the relaxation time. The linear viscosity of the polymer component is
expressed by means of the scaling relation ηp ' Gτ. The Oldroyd B model assumes infinite
extensible polymer chains ( L→ ∞ ) and the Maxwell model also does not take into account
the solvent (Σs = 0).

3.2. Capillary Thinning of a Polymer Solution Thread

One of the important and most studied systems is the liquid bridge connecting two
droplets, Figure 12. The bridge can form, for example, after the separation of two planes
containing liquid in the gap. Then, it becomes thinner due to the action of capillary forces.
The breakup dynamics of a Newtonian liquid bridge (the normal stress difference in this
case is Σzz − Σrr = 3η ∂vz

∂z ) is related to its Ohnesorge number Oh = η/
√

ργa. If the bridge
is thick enough (Oh � 1), the inertial and capillary forces dominate, and the inertia–
capillary regime or IC regime is realized. In this case, the minimum thread radius (the
radius of the neck) obeys the scaling law amin(t) = A(γ/ρ)1/3(tb − t)2/3 [66,67], where
tb is the putative breakup time. Different values for the prefactor A were proposed and
used: A ≈ 0.4 [68], A ≈ 0.64 [69], and A ≈ 0.717 [70]. The characteristic breakup time of
the thread is τI ' 2.9

√
ρa3/γ [71,72] and the local Reynolds number is large in this regime:

Re ∼ 1/Oh� 1. At high Ohnesorge numbers, Oh� 1, another visco-capillary regime, or
VC regime, arises. It occurs in highly viscous liquids or in relatively thin threads. Inertial
effects are negligible in this regime: Re� 1, and the breakup time is τV = 6ηa/γ [67,73].
The neck radius decreases linearly in time, a(t) = 0.07(γ/η)(tb − t) [74,75]. The Ohnesorge
number reflects the ratio of two timescales, τV and τI : Oh ∼ τV/τI . Both regimes fail close
to the breakup point, and a new visco-inertial regime emerges wherein both the inertia and
the viscosity are equally important while the local Reynolds number is close to one [73].

The break-up of a polymer solution proceeds in a much more complicated way due
to viscoelasticity. Early experimental [76–78] and theoretical [79,80] studies have revealed
an important role of elasticity associated with the transition of polymer chains to an elon-
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gated state. The addition of high-molecular weight polymers in a low-viscosity solvent
leads to the formation of long-lived bridges between the droplets even at very low poly-
mer concentrations [81,82]. The dynamics of the bridges are described by two additional
modes associated with the elasticity and finite extensibility of polymer chains [83–85].
The elasto-capillary (EC) regime is associated with the unfolding of polymer coils and
the predominance of viscoelastic and capillary forces. The terminal quasi-Newtonian
visco-capillary (TVC) regime is characterized by the almost complete orientation of macro-
molecules along the stretching axis [68,83,84]. Unfolding of polymer coils can already
start in the IC regime. Both in the IC and VC regimes, the rate of stretching of the thread
increases according to the law

.
ε(t) = − 2

.
a

a ∝ (tb − t)−1. This leads to an increase in the
Weissenberg number Wi =

.
ετ where τ is the characteristic relaxation time of the quiescent

polymer solution. The transition to the EC regime occurs at Wi ∼ 1. The EC regime was
widely studied theoretically using the force balance equations, and the viscoelasticity of the
polymer solutions was taken into account mainly on the basis of the classical constitutive
equations of the Oldroyd-B and FENE-P models [79,80,85–90]. According to these theories,
the radius of the thread a in the EC regime decreases as a(t) ∝ e−t/3τ . The exponential law
was observed in many experiments with dilute, semi-dilute, and concentrated polymer
solutions using CaBER, DoS, and ROJER rheometry including visualization of the thinning
dynamics [67,69,91–96].

The dynamics of the bridge in the EC regime can be described by Equation (7) after
elimination the gravity and electrostatic forces. Assuming that the curvature C ' 1/a,
Formula (6) obtains

ρ
∂vz
∂t

+ ρvz
∂vz
∂z

=
1

πa2
∂

∂z

(
πγa + πa2(Σzz − Σrr)

)
(14)

This equation should be supplemented with appropriate boundary conditions in
the transition region from the thread to the droplet. These conditions are determined
through the thread tensile force, which is the sum of the surface and body forces: T =
2πγa + πa2(Σzz − p) [88]. This force generally differs from the net capillary force 2πγa
and can be written as [M2] T = 2πγaX where X depends on the ratio Σzz/p [96,97]. The
pressure is found from the boundary condition p = γ/a + Σrr, hence

γ/a + Σzz − Σrr = T /(πa2) (15)

In the EC regime, the radius of the thread is nearly constant along the axis, i.e., a ' a(t)
and the axial stress obey inequalities GN � Σp

zz � G and Σp
zz � Σp

rr, at that contribution
from the solvent, can be omitted: Σzz − Σrr ' Σp

zz ' G
(

R2
z/R2

0
)
. Therefore, Equations (9)

and (10) are simplified in the EC regime:

τ
d
dt

Σp
zz − 2

.
ετΣp

zz + Σp
zz = 0 (16)

In Equation (16) dΣp
zz

dt = ∂Σp
zz

∂t +vz
dΣp

zz
dz and

.
ε = − 2

a
∂a
∂t . Based on the use of various

theoretical methods, it is shown that the thread tension force in the EC mode is equal to
T = 3πγa, and the force balance equation in EC regime is written as Σzz − Σrr ' Σp

zz '
2γ/a [88,97,98]. The evolution of the thread radius is found from Equation (16). It changes

over time as a(t) = a0

(
Σ0a0
2γ

)1/3
e−t/3τ where a0 = a(0) is the initial radius and Σ0 is the

initial stress, Σ0 ≥ G [88]. The experimental measurements of the stresses acting in the
capillary bridge connecting the droplets were performed by Bazilevskii et al. [99–101].

The Weissenberg number in the EC regime is constant, WiEC =
.
ετ = 2/3, whereas in

the IC regime it increases in time as WiIC = 4τ
3(tb−t) , and in VC regime as WiVC = τ

(tb−t) .
The transition from the VC to EC regime is associated with the beginning of coil unfolding,
whereas the transition from IC to EC is determined by the change in the balance of forces.
The unfolding of chains in the latter case begins already in the IC mode. The value of



Polymers 2023, 15, 1051 14 of 26

the Weissenberg number at the transition point is estimated from the condition that the
viscoelastic force becomes the order of the capillary force, i.e., Σzz ' 2γ/a where the stress

component Σzz is found from Equation (13) with
.
ε = 4

3(tb−t) : Σzz ' G
(

8τ
3(tb−t)

)8/3
where

tb − t = A−3/2(ρa3/γ
)1/2. The Weissenberg number at the transition point follows from

the force balance equation: Wi∗ ∼
(

γ2ρτ

η3
p

)1/6
. After the IC to EC transition point, the

Weissenberg number must decrease to the value WiEC = 2/3, i.e., Wi first increases in the
inertial regime as Wi ∝ (tb − t)−1, and after passing through the maximum it decreases.
The non-monotonic behavior of

.
ε with time was observed in ref [69].

When the macromolecules become almost fully elongated (Azz ' L2), the EC regime
transformed to the TVC regime with Σp ' Σp

zz ' 2ηp(L2/R2
0)

.
ε and the radius of the thread

decreases linearly in time, a(t) ∼ (γ/ηe f f )(tb − t) [68]. The effective viscosity ηe f f in the
TVC regime is ηe f f ∼ ηpN.

Experiments show that the apparent relaxation time τ coming from fitting a(t) in
the EC regime significantly increases with a concentration in the dilute solution regime
(c � c∗ or φ � φ∗ where φ is the volume fraction of polymer) [102]. These results are
at odds with the Rouse–Zimm theory for dilute solutions, in which the relaxation time
depends on the molecular weight, and the concentration dependence due to hydrodynamic
interactions between the chains is weak [103]. This contradiction triggered questions on
how to define a dilute solution and how interchain interactions affect the rheology of
solutions in extensional flow [104–106].

The effect of hydrodynamic interactions on the thread dynamics can be taken into
account using the molecular approach. One such approach in the case of a semi-flexible
chain solution was formulated in the ref. [107]. The relaxation of the semi-flexible chain
of contour length L, diameter d, and the Kuhn segment length l (d � l � L) in dilute
solutions in the presence of a flow can be described by the equation on the orientational
(stretching) parameter s = Rz/L where Rz is the end-to-end distance of the chain [107],
taking into account the hydrodynamic interactions:

τR

(
1− s2

)2
(

ds
dt
− .

εs
)
= −1− 1

3

(
s4 − 2s2

)
(17)

where τR = π
18

ηs lL2

kH T is the Rouse relaxation time. At equilibrium, the orientational parameter
is s0 ' R0/L =

√
l/L � 1. According to Equation (17), polymer coils begin to unfold if

the condition τZ
.
ε > 1 is satisfied where τZ = τRs0 ∼ π

18
ηs
T R3

0 is the Zimm relaxation time.
Notably, the elasticity of a semi-flexible chain is approximately described by a non-Hookean

dumbbell with elastic energy Fel ' 3kBTR2

2R2
0

(1−R2/3L2)
1−R2/L2 .

In the EC regime, the polymer part of the axial stress Σp
zz exceeds the radial component

Σp
rr, Σp

rr � Σp
zz, and 1− s� 1, therefore, the normal stress difference is Σp ≡ Σp

zz − Σp
rr '

3ckBT
N

R2
z

R2
0
. Notably, this expression is similar to that in the Oldroyd B model with Azz = R2

z

since Rz � R0. The radius of the thread a(t) and the axial end-to-end distance Rz(t) in the
EC regime are found in Equation (17) after taking into account the force balance equation
Σp ∼ 2γ/a:

Rz ∼
L
3
(t/τR), a ∼ a1(τR/t)2,

.
ε ' 4/t (18)

Here, t ≤ τR and a1 = 3π
4

γld2

φT [107]. The power law a ∝ t−2 arises due to a linear
dependence of the friction force on the longitudinal size of the chain that is a consequence
of hydrodynamic interactions. It should prevail for dilute polymer solutions with concen-
tration c� c∗. The rate of extension,

.
ε(t), in the thinning process shows a non-monotonic

time-dependence: it first increases as
.
ε = (4/3)/(tb − t) in the inertial regime but then

decreases as
.
ε ' 4/t in the viscoelastic regime.
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To explain the discrepancy between the above theory and experiments with dilute
solutions in the EC mode, which show an exponential thinning of the thread, the forma-
tion of transition bonds between monomers of different chains upon their contact was
proposed [107]. Such bonds can exist, for example, in aqueous solutions of PAM [83,84]
or PEO [108–110]. If the lifetime τb of a bond is long, τb � ηsd3/T, the polymer chain
dynamics become Rouse-like with a high effective friction per chain which is proportional
to the bond lifetime and the number of bonds nb ∼ φN, i.e., it is proportional to the number
of monomers. Therefore, the chain relaxation time is τ∗R ∼ τbφ2N2 � τR and the chain
dynamics should be the Rouse type [107,111]. The increase in the relaxation time τ∗R with
the polymer concentration is in qualitative agreement with the experiment. However,
experimentally, a weaker dependence is observed [68,69,85,91,102,104].

3.3. Blistering Instability

One of the interesting phenomena observed in polymer threads is the appearance of
pearling or blistering structures at the end of the exponential thinning regime when the
polymer chains are highly stretched [78,112–120], Figure 14.
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These hierarchical droplets sequences strung on a polymer string have been identified
in PEO, PAN, and PEM solutions. This type of instability differs from classical Rayleigh–
Plateau pinching [67,71]. The formation of satellite droplets upon thinning of the thread
formed by Oldroyd B liquid was studied in ref. [86,89]. Nevertheless, the proposed recur-
sive relationship between filament diameters for successive generations in [86] does not
fit correctly with the experimental data [112,113]. Numerical simulation of Bhat et al. [95]
revealed the decisive role of inertia in the formation of satellite droplets. In the above
theoretical works, the liquid was considered as a homogeneous medium, which does not
allow a sufficient description of blister instabilities in polymer filaments. It is important
that polymer solutions are characterized by concentration inhomogeneities, which under
certain conditions, can grow and lead to separation into a solvent and a polymer-rich phase.
Several mechanisms have been proposed to account for this effect.

One of the mechanisms is based on the flow-induced phase separation of the polymer
solution into a polymer-rich phase and a solvent-rich phase [121–123]. This is due to
the dependence of the interaction energy of macromolecules on their conformation, in
particular, on their orientation parameters. The interaction energy of semiflexible chains
in solution at the third virial approximation is given by fint = 1

2 B2c2 + 1
3 B3c3, where

c is the concentration of the polymer segments and B2 and B3 are the second and the
third virial coefficients, respectively. Within standard approximation, the second virial
coefficient includes the contribution from the steric repulsion and van der Waals attraction
(i.e., B2 ' π

2 l2
1dk, where k = I(s)− Θ

T and Θ is Θ-temperature). The function I(s) takes
the steric repulsion between the segments into account and strongly depends on their
orientation parameters. The third virial coefficient is B3 ' 3π2

32 l3d3 I(s) [121–123]. The steric
repulsion between the extended chains in the EC regime decreases with an increase in their
orientation, therefore the balance between repulsive and attractive interactions is shifted
toward attractions as the Weissenberg number Wi =

.
ετ increases. The polymer/solvent

phase separation occurs when the second virial coefficient B2 < 0 or k = I(s)− Θ
T < 0.

The volume fraction of the polymer in the polymer-rich phase φc is obtained from the
equality of osmotic pressure to zero: φc ' |k|/I(s) ' T|k|/Θ, φc � φ when |k| � 1. The
kinetics of phase separation was analyzed in ref. [115,116]. On the first stage of spinodal

decomposition, the oriented domains with characteristic size ξ ∼
(

ld
φ|k|

)1/2
in the cross-
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section of the thread are formed which then collapse laterally with the formation of a
network of highly-oriented and stiff fibrils having diameter d f ∼ (ld)1/2/|k|, d f << ξ,
and the longitudinal size ξz ∼ d

φ|k| . On the final stage, the network of fibrils then tends
to compress by squeezing out the solvent to the surface. The characteristic time of the

first two stages tc ∼ τR

(
d

φL|k|

)2
is much shorter than τR, therefore the phase separation

could fully develop during the stretching regime. The formed annular solvent layer is
unstable with respect to undulations [124], which should lead to the appearance of droplets.
Methods of molecular dynamics modeling also confirm the formation of fibrillar structures
by elongated PEO oligomers in an aqueous solution due to a decrease in the number of
hydrogen bonds between PEO and water [125,126].

As mentioned above, the pearling structures are often observed after the elasto-
capillary regime for PEO solutions [78,112–116]. Deblais, et al. [116] showed that tem-
perature significantly affects the dynamics of thread thinning and the onset of pearling
instability, which confirms the idea of phase separation. The period of the pearling structure
is close to the period of the droplet structure that occurs when a filament of an inviscid
liquid breaks: λ ' 2π

√
2a0 [115]. A close value was also obtained in the analysis of the

instability of a thin annular solvent layer on a wire [124].
Another mechanism leading to the instability of polymer solution thread is related

to chain migration into thinner regions with a higher concentration due to the (SCC)
stress–concentration coupling effect [127]. However, the SCC theory [128–130] does not
predict flow-induced phase separations in unentangled polymer solutions. In the case
of an extensional flow, the SCC effect is always much weaker than the flow-induced
thermodynamic interaction effect [131].

Recently, a capillary mechanism for the formation of annular droplets in the TVC
regime was proposed [107,131–133]. It occurs when the radius of the thread is smaller than
the macromolecular contour length L. Such a mechanism was considered both in threads of
solutions of rodlike macromolecules [131,132], where the droplet formation was found to
be an activated process, and in threads of dilute solutions of semi-flexible polymers, where
the droplet formation proceeds without any energy barrier [107,133]. In the last system,
the solvent droplets are formed spontaneously as a hierarchical process when new solvent
beads are constantly emerging on the polymer strings connecting the existing droplets
during capillary-induced thinning of the polymer core and the string radius decreases
linearly with time. The resulting highly polydisperse system of droplets is characterized by
a self-similar (fractal) size distribution. This picture agrees with experimental observations
concerning pearling instabilities and blistering patterns. The capillary mechanism of
the pearling instability may be important for PAM solutions whose thinning does not
depend on temperature, in contrast to PEO solutions [116]. The contour length of the
PAM chains used in the experiment is L ~ 80 µm (the monomer length is l1 ≈ 0.4 nm and
Mw ~ 15 × 106 g/mol), so the critical radius should be on the order of or less than 8 µm,
which is consistent with experimental data [116].

3.4. Stretching a Polymer Solution Jet by an External Load

Fiber formation usually occurs by pulling a stream of polymer solution flowing out of
the nozzle, Figure 13. Let us assume that the force Fext stretching the jet is localized at the
take-up device. If the polymer solution flowing out of the nozzle of radius a0 with the flow
rate Q, then Equation (6) in the stationary regime of flow can be written as

d
dz

[
−γa + a2

(
ρv2

z − Σzz + Σrr

)]
= 0, Σzz − Σrr = 3ηs

dvz

dz
+ Σp (19)

where the flow velocity inside the jet is vz = Q
πa2 . The boundary condition at the end

of the jet (z = H, a(H) = aH) implies the balance between the applied force and the jet
tensile force:

πa2
H(γ/aH + Σzz − Σrr) = Fext (20)
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Integration of Equation (19) using (20) yields

6Qηs

πa
da
dz
− a2Σp = γa +

ρQ2

π2

(
1

a2
H
− 1

a2

)
− Fext

π
(21)

Omitting the inertia and assuming Fext � 2πa0γ in the case of Newtonian liquid

(Σp = 3ηp
dvz
dz ) we obtain an exponentially decaying jet profile: a(z) = a0exp

(
− zFext

6πQ(ηs+ηp)

)
.

If the stretching of the jet occurs in the elastic regime when the polymer axial stress is
dominant, Σp > G, then Equation (21) is reduced to Σp = Fext/(πa2). Since the axial

stress is Σp
zz ' Σp, the jet profile is found from Equations (16) where dΣp

zz
dt = vz

dΣp
zz

dz and
.
ε = dvz

dz = − 2Q
πa3

da
dz : a(z) = a0

(
1 + πa2

0z
Qτ

)−1/2
[120]. Thus, the thinning of the jet oc-

curs according to a power law. In this case, the Weissenberg number is constant along
the jet, Wi = 1

( .
ε = τ−1), and the orientational parameter of the chains increases as

s = Rz/L ∼ s0

(
Fextz
Qηp

)1/2
(s . 0.5). This means that the steric repulsion between the chains

decreases and spinodal decomposition of the solution with the release of the solvent is
possible. Such an effect was observed with PAN solutions [120].

3.5. Effect of Gravity

The shape of a falling jet and the critical length before its disintegration into drops
were the subjects of long-term interest. The length of a falling get can be very long [134]
and greatly exceed the limit predicted by the Rayleigh–Plateau values [135]. The general
explanation connects this effect to the transition from the capillary dominating regime of
flow to the viscous regime. Clarke presented the complete formulation of the dynamic
equation for the shape of a falling jet formed by a Newtonian liquid [136,137]. The validity
of the general solution obtained by Clarke was examined rather carefully in [138] for the
micro-flow device where a jet is formed between a feeding capillary and a suction cell. The
results of studying the gravitational flow in a wide Reynolds number range confirmed the
validity of the universal solution to the dynamic problem. The formation of a stable jet
happens after the transition from periodic dripping to jetting along with increasing the
velocity of a fluid [139]. Theoretical analysis of the behavior of the free-falling viscoelastic
liquid jet allowed for establishing the instability boundary connected with the influence
of surface effects [140,141]. The shape of free-falling stable jets created by viscoelastic
concentrated polyacrylonitrile solutions were studied in [142], where the superposition
of viscoelastic, capillary, and inertial forces for fluids with different rheological properties
were analyzed. At a low polymer concentration, the jet profile is determined by the balance
of capillary, inertial, and gravitational forces, while at higher velocities and highly viscous
solutions, the balance of viscous, inertial, and gravitational forces becomes dominant. At
very high concentrations, the role of elasticity increases, but the Weissenberg number
remains below the critical value corresponding to the unfolding of polymer chains [142].

3.6. Electrospinning

The driving force of the jet flow in this case is of an electrostatic nature. Experiments
show that if a voltage exceeding a critical value is applied to the meniscus of a liquid,
it assumes a conical shape, also known as a Taylor cone, the top of which emits a thin
jet [143–145], Figure 15.

Taylor was the first to show that perfectly conducting liquid forms a conical shape
with the apex semi-angle θT = 49.3◦ due to a balance between the electrostatic and capillary
forces [143]. The conical surfaces were also predicted for the ideal dielectric liquids whose
dielectric constant ε exceeds some critical value ε > εc ≈ 17.6 [146]. The cone half-angle
θ in this case depends on ε and varies in the range 0 < θ < 49.3◦. The surface of the
dielectric cone carries only the polarization charge and the emanation of the jet from the
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cone apex is impossible similary to the case of the perfectly conducting liquid forming
the Taylor cone. Recently, self-similar conical structures different from the hydrostatic
Taylor cone and capable of emitting charges were described [62,147–151]. There are two
families of micro-cones carrying surface charges [62]. The first family constitutes needle-like
micro-cones having a small apex angle, 0 < θc(ε) < 27◦, ε > 1, and θc(ε)→ 0 at ε→ ∞ .
The micro-cones from the second family appear at ε > 12.6 and have the apex angles
36◦ < θc(ε) < 49.3◦ where the upper boundary corresponds to the Taylor value 2θc = 98.6◦

(at ε→ ∞ ). Based on the Onsager principle, it was shown that needle-like micro-cones are
more stable [62,148].
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The behavior and the shape of the electrospinning jets were widely studied experimen-
tally [152–156]. For the theoretical analysis of the shape of rectilinear jets, the slender body
approximation is often used. The force balance Equation (7) for a stationary jet carrying
only surface charge is written as

d
dz

[
a2
(

ρv2
z + Σrr − Σzz

)
− γa

]
' 2aFτ + a2 dFn

dz
(22)

The electrostatic field inside the jet is determined from equation [146]

Ez ' E0 − ln
1∣∣a′z∣∣
 1

ε0

d
(

aσf

)
dz

− (ε− 1)
2

d2(Eza2)
dz2

 (23)

Here, E0 is the external field generated by the electrode, ε0 is the dielectric permittivity
of the vacuum, and σf is the density of the free charges on the jet surface. The polarization

charge is σp ' − (ε−1)ε0
2a

d(Eza2)
dz , so the normal component of the electric field is En =

σp
(ε−1)ε0

.

The flow inside the jet is characterized by the average velocity Q/(πa2), where Q is the
volume of liquid which is issued from the nozzle per unit of time. The electric current
inside the jet is a sum of the bulk current Ib, convective current IQ, and surface current Is:

I = Ib + IQ + Is where Ib ' πa2KEz (K is the bulk conductivity of the liquid), IQ '
2Qσf

a2 ,
and Is ' 2πaσf µEz (µ is the mobility of the surface ions) [62]. At high flow rates, the surface
current Is can be neglected. Different electrospinning regimes of the Newtonian liquid were
studied numerically [157–160]. The asymptotic shape of the jet is determined by the balance
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of inertial and electrical forces: a(z) =
(

ρQ3

2π2 IE0z

)1/4
[161]. The effect of polymer elasticity

on the jet profile with using Oldroyd-B and FINE-P models was considered by Carroll and
Joo [162]. However, only low Weissenberg numbers were considered. Experiments show
that the extension rate in the cone/jet transition region exceeds the inverse chain relaxation
time (Wi > 1) which results in unfolding of the polymer chains, such that they are stretched
inside the jet [155,163,164].

At relatively low flow rates, QτE � D3, where D is the characteristic size of the meniscus
and τE = εε0

K is the charge relaxation time, the meniscus takes a conical shape and its stability is

mainly determined by the balance of electrostatic and capillary forces, Fn = εε0E2
τ

2 +
(σf +σp)

2

2ε0
∼

γ
a , and the surface charge density is estimated as σf ∼ (γε0/a)1/2 [165]. The electric field
inside the cone/jet transition zone of radius a0 is mainly generated by the surface charges

of the cone, Ez ∼
(

γ
ε0a0

)1/2
, whereas on a distance z � D, Ez w E0. If E0 �

(
γ

ε0a0

)1/2
,

the electric field in the entire region z > 0 can be approximately represented as the sum

Ez w E0 + κ
(

γ
ε0(a0+z)

)1/2
, where κ is a numerical factor which depends on the geometry

of the cone. The bulk current dominates inside the meniscus, whereas in the jet it is
determined by the convective current IQ. In the transition zone Ib w IQ w I/2. From
here we find the radius of the transition zone a0 ∼ (Qε0/K)1/3 and the electric current
I ∼ (γKQ)1/2.

Next, let us focus on the regime when the Weissenberg number Wi & 1 in the cone/jet
transition zone. In this case, the polymer chains are stretched inside the jet and the stress

difference can be written as ∑zz − ∑rr w ∑0
a4

0
a4 [166] where ∑0 &G is the stress in the

cone/jet transition zone. Substitution of this formula in Equation (22) and integration
yields (z� a0)(

ρQ2

2π2 −
∑0 a4

0
2

)(
1
a4 −

1
a4

0

)
+ γ

(
1
a
− 1

a0

)
w

I
Q

(
E0z + 2κ

√
γz
ε0

)
(24)

This equation facilitates recovery of the main asymptotes of the jet profile which were
found experimentally [154,156]: a(z) ∝ z−1/2 when a0 � z � D and a(z) ∝ (z + z0)

−1

where z0 ∼ D
√

γ

ε0E2
0 D

when z � D; a(z) ∝ (z)−1/4 at z→ ∞ and ρQ2

2π2 > ∑0 a4
0

2 . It is

interesting to note that for low flow rates when ρQ2

2π2 < ∑0 a4
0

2 , the straight jet has a finite

length ∼ Qγ
IE0a∗ , where a∗ ∼

(
π2 ∑0 a4

0 − ρQ2)1/3
γ−1/3. A similar result was obtained in

numerical calculations [166,167]. In this case, the orientation parameter increases along the
jet axis as s w s0a2

0/a2, and reaches its maximum value at the end of the straight section
of the jet. For z > H, the behavior of the chain should be unstable. The length of the
rectilinear section of the jet increases with an increase in the flow rate and decreases with
an increase in the field strength, which agrees with the experiment [168,169]. For large

flow rates, ρQ2

2π2 > ∑0 a4
0

2 , the jet is rectilinear. In this mode, the order parameter changes
non-monotonically along the jet: first, it increases up to a certain maximum value (at which
the Weissenberg number reduces to Wi ∼ 1) and then decreases [166,167]. The decrease is
associated with the relaxation of the polymer chains.

The formation of fibers from the jet occurs as a result of the chain orientation, aggre-
gation, and evaporation of the solvent. Numerical calculations have shown that during
electrospinning, polymer chains can be strongly elongated along the flow in the recti-
linear section of the jet, so that their orientational order parameter reaches the value
s & 0.5 [166,167]. The high orientation of polymer chains can lead to a phase separation of
the polymer solution [166] with the emergence of string-like structures. These structures
were identified experimentally [170,171].
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With a further decreasing flow rate, the convective current decreases and therefore,
another regime with Q < µ+Eb2 is realized. The cone/jet transition is determined by the
equality of the bulk and surface currents, Ib ' Is. The radius of the transition zone here
is b = b3 ∼ (µ+/K)2/3(γε0)

1/3. The surface current is dominated at b � b3 as well as
the meniscus issued needle-like micro-cones in this case [148]. These micro-cones were
identified in near-field electrospinning and can be used to create a nanoscale fiber [172].

4. Conclusions

Elasticity is the immanent property of polymers due to the flexibility and anisotropy
of macromolecular chains. We discussed the role of elasticity in different flow modes of
polymeric liquids (solutions and melts) considering both sides of the story: macroscopic
effects and the input of elasticity into the formulation and solution of basic dynamic
equations of a continuum medium. In all cases, the Weissenberg number (Wi) is a crucial
factor in determining the liquid-to-solid-like type of polymer behavior (at Wi ~ 1).

We have considered the general picture of the flow of elastic liquids associated with
their elasticity through short capillaries. The effects of the inlet vortex and the die swelling
are well known. The relaxation phenomenon determines apparent high values of end
correction in the capillary flow. Then, the role of the length of a capillary is related to the
duration of relaxation. The hydrodynamic resistance of short capillaries is the universal
function of the Deborah number. The die swelling also depends on the capillary length
due to the partial relaxation and swelling decrease for long capillaries in comparison with
short ones. In addition to the initiation of secondary flows, the Weissenberg number is also
responsible for the transition to the elastic instability of the stream inside the capillary and
the periodic oscillation of the jet at the capillary exit. Indeed, both effects are observed at
Wi & 1.

Elasticity also affects the shape of the jet leaving the capillary. However, examination
of the behavior of jets should be based on the analysis of fundamental dynamic equations
which requires taking into account the other factors such as the gravity force, surface
tension, and finally the electric forces in the case of electrospinning. The theoretical analysis
correlated with the experimental fact showed that the polymer elasticity becomes dominat-
ing at high extension rates (Wi & 1) when the polymer coils unfold. In this case, the nature
of the extension force plays an important role. The Weissenberg number correlates with the
transition from the viscous flow of the jet to its solid-like behavior.
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