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Abstract: Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and micro-
fabrication. PDMS exhibits some promising properties suitable for building microfluidic devices;
however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microflu-
idic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper
presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using
isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both
the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach
in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS
and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in
literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative
and open for future research.

Keywords: PDMS; microfluidics; oxygen plasma; bonding

1. Introduction

Microfluidic devices have found important applications in biology and medicine,
leading to the development of new technology such as lab-on-a-chip (LOC), organ-on-a-
chip (OOC) [1–6], and soft robotics [7]. These devices are called bio-microfluidic devices.
To build a bio-microfluidic device, the key requirement is to construct a closure channel or
chamber, which further requires the bonding operation of two pieces of materials.

Polydimethylsiloxane (PDMS) is a silicon-based organic polymer widely used for bio-
microfluidic devices because of its excellent biocompatibility, high permeability to gases,
and transparency [8–15]. PDMS is an inexpensive material compared to glass and silicon,
and further PDMS devices can usually be disposable [15–17]. Bonding is an essential
step in creating multilayer PDMS bio-microfluidic devices. PDMS can be bonded to
different substrates, including the PDMS material itself, using different bonding techniques
such as thermal bonding [18–23], solvent-assisted bonding [10,24–32], adhesive-based
bonding [24,31,33–35], and surface modification bonding [13,36–45].

Thermal bonding involves polymer melting, which may create significant distortions,
limiting its applications in bioMEMS [23]. Thermal bonding in a low-temperature en-
vironment may reduce distortion, but the process takes a long time (up to 1 or 2 days).
Adhesive-based bonding is low cost and easy to realize, but the distribution of the glue
in a selective area on the bonding surface is difficult, which restricts its use in certain
applications. UV-curable adhesives can help the selective distribution of the glue by using
a mask, but making a mask is costly and time consuming. Poor distribution of the glue may
cause the glue or glue residue to enter the channel, thus clogging the channel. Inadequate
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use of the glue can alter the original properties of the PDMS device and can even create
a toxic environment. The bonding of an uncured PDMS with the other can create a high
bonding strength between the PDMS and the other, up to about 671 kPa, as reported
in [46]. However, the uncured PDMS has difficulty controlling its shape, and this is not
suitable to bio-microfluidic devices. Finally, the adhesive-based bonding of the PDMS with
the glass shows a low bonding strength [47]. Solvent-assisted bonding is widely used in
medical applications that have strict protocols [48]. Solvents have different biocompatibility
properties [49], e.g., organic solvents break down polymer chains at the surface [50], and
their selection thus needs extreme care. Oxidizing the PDMS surface with the piranha
solution (concentrated sulfuric acid and hydrogen peroxide) can enhance solvent-assisted
bonding by producing irreversible covalent bonds. However, the presence of additional
solvents during bonding may produce swelling of PDMS, which may further alter the
original function of the PDMS device [51,52].

Finally, surface modification bonding is perhaps one of the most prevalent bonding
methods, in which plasma treatment, a kind of surface modification, predominates. In
plasma treatment, the surface of PDMS is modified from a hydrophobic to a hydrophilic
state. It is noted that the hydrophilic state of the surface of PDMS is an essential condition
for attaining high-quality bonding [53]. In plasma treatment, gas is ionized in a vacuum
chamber to form plasma. There are a variety of gases and their vapors, such as O2, N2,
NH3, H2O, and CO2, which are used in plasma treatment [54–56]. Among these various
gases, oxygen plasma has been shown to achieve the best bonding strength between PDMS
and other materials (including PDMS itself), as described in Table 1 [57–62]. It is further
remarked that oxygen plasma treatment (1) can change the surface of materials in a physical
manner to clean the surface [63], (2) can also change the surface plasticity [64], and (3) can
be conducted in a controlled manner [65].

Table 1. Comparison of the bonding strengths using various methods.

Method Substrate Maximum Bond Strength Ref.

Oxygen Plasma PDMS–PDMS 0.510 MPa [57]

Nitrogen Plasma PDMS-SU8 0.428 MPa [58]

Corona Discharge PDMS–PDMS 0.290 MPa [59]

Partial Curing of PDMS PDMS–PDMS 0.651 MPa [59]

Vacuum Airbag Lamination (VAL) PDMS-Glass 0.739 MPa [60]

Plasma Enhanced PDMS-PARYLENE 1.4 MPa [61]

Argon Plasma PDMS–PDMS 1.9 MPa [62]

However, there are still several challenges in the bonding of PDMS to materi-
als such as SU-8 [9,31], Poly(methyl methacrylate) (PMMA) [10], parylene [12,61],
glass [13,37,62,63], silicon [64,65], metal [66], plastic [30,67–69], as well as PDMS it-
self [59]. This paper is focused on the bonding of PDMS to PDMS. The first challenge is
to further increase the bonding strength with reference to the highest bonding strength
for PDMS-to-PDMS, 1.9 MPa, currently achieved in literature [62] (see Table 1 as well),
given that PDMS has unfavorable surface properties such as low surface energy, chemi-
cally inertness, and a hydrophobic surface [70,71]. Surface modification can change the
surface wettability of PDMS from a hydrophobic to a hydrophilic surface; however, the
recovery of the hydrophobic surface can take between one and several minutes, which
creates the second challenge in PDMS bonding for building bio-microfluidic devices,
i.e., the difficulty of achieving a sufficient precise alignment for the two bonded parts
in a stringent time window. It should be mentioned that surface modification remains
to be a promising approach to address the two foregoing challenges, especially surface
modification with oxygen plasma [59]. For instance, in the literature [72], an approach
was proposed to coat the solvents such as methanol, ethanol, isopropanol (IPA), or
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deionized water to wet the layers after the plasma treatment to prevent hydrophobic
recovery. This approach may increase the time window for the hydrophobic recovery of
PDMS, thereby facilitating precise alignment. Unfortunately, these coating materials are
not found to increase bonding strength, the details of which will be discussed further in
Section 2.

In the study reported in this paper, we proposed a new process for PDMS–PDMS
bonding, which has three steps: (1) put a liquid (i.e., IPA) between two PDMS layers,
(2) assemble them, and (3) treat the assembly with the oxygen plasma in the chamber. It
is noted that our process significantly differs from many existing approaches in literature
in terms of the order of steps. Specifically, in our approach, the assembly operation
(including the alignment operation), i.e., Step (2), is prior to the surface modification
operation, i.e., Step (3), but in the existing approaches, the reverse order for these two
is taken. Therefore, the second challenge, as mentioned above, has been overcome. We
conducted the experiment for the bonding of PDMS to PDMS with and without the
presence of IPA. Results showed that the bonding strength was improved greatly in the
presence of IPA compared with the situation without IPA, thereby the first challenge,
as mentioned above, has been overcome. We also speculated a mechanism behind this
result, while leaving a comprehensive study of this mechanism to the future. It is worth
mentioning that another important benefit of our approach is that it is free of distortion,
presented after the plasma treatment with the existing approaches.

2. Related Work

In [73], the bonding of PDMS to glass was studied. Oxygen plasma activation (a kind
of surface modification) was taken on PDMS inside a plasma-treatment chamber. After
that, the bonded PDMS and glass were placed in a hydraulic press hot plate at 65 ◦C for
90 min to complete the bonding [73]. In [74], methanol was added to the surface of PDMS
during surface activation. Two pieces of surface-activated PDMS were put together in the
plasma chamber, specifically over a hot plate at 85 ◦C to evaporate the methanol and to
complete the entire bonding process. It was found that surface activation with methanol
had no effect on bonding strength [74].

Tan et al. [75] studied the effect of an extended oxygen plasma treatment on a
bonded PDMS structure, which aims to make the bonded surface more hydrophilic. The
whole process has two stages. In the first stage, the surface activation of the PDMS was
performed with oxygen plasma, and the bonded PDMS assembly was baked in an oven
for 2 h at 150 ◦C. In the second stage, the bonded PDMS assembly was once again ex-
posed to the oxygen plasma treatment (with 70 W constant power from 100 s–500 s) and
subsequently immersed into deionized (DI) water, which was expected to pass through
the access holes. Finally, the treated PDMS assembly was placed in a vacuum chamber
for 7 days to remove air bubbles. However, they did not study the bonding strength, but
instead studied the duration of hydrophobic properties [75]. Some fundamental studies
were also conducted in [75], which showed that the vacuum plasma environment can
prolong the hydrophilicity of the surface of the PDMS, which may be the cause of the
improvement of bonding strength. However, the challenge remains in aligning the top
PDMS and bottom PDMS (completed in the first stage).

IPA is a commonly used solvent for cleaning and rinsing in the microfabrication
process. In [76], super hydrophilicity can be achieved by soaking PDMS in isopropanol
(IPA) (6, 12, and 24 h, respectively), followed by the plasma treatment with and without
additives. IPA was also used as an additional solvent to produce a fine-pored PDMS,
according to [72]. This is achieved at the PDMS preparation phase, specifically by mixing
PDMS with IPA and water. Figure 1 summarizes the current procedure for the bonding
of PDMS to PDMS (or other materials), in which IPA is taken as an example (some other
solvents such as DI water [61] can replace IPA). The most important feature of this procedure
is that the chemicals are coated on the plasma-treated surface (or activated surface) of PDMS,
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followed by the assembly of the two treated PDMS pieces and the heating of the assembly
to evaporate the chemicals.
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Figure 1. The existing approach of oxygen plasma bonding. (a) Surface activation process inside a
vacuum chamber, (b) wetting of layers using solvents (e.g., IPA, DI water) to inhibit hydrophobic
recovery to facilitate the alignment of two pieces or layers of materials, (c) bonding by pressing the
two layers, (d) post heating to remove volatile components.

3. Our Approach

In our study, a new procedure for the bonding of PDMS to PDMS was developed,
as shown in Figure 2. In this procedure, the IPA is coated on the surface of PDMS
prior to the plasma treatment of the surface of PDMS (Figure 2a). After that, the two
IPA-coated PDMS pieces are assembled (Figure 2b) to satisfy a particular alignment re-
quirement (e.g., several microns). Alignment pins (specifically, Staples Round Push Pins
Model#10559) were carefully inserted into four corners of the mold, and this process was
performed under the microscope. A simple hand pressing was the only pressure applied
during this process. The alignment pins were expected to produce an accurate alignment,
to hold the layers together after pressing (avoiding slipping due to the presence of the
solvent), and to reduce the shift between layers in the vacuum inside the plasma chamber.
It is noted that an extreme level of shift can happen due to the presence of the solvent
in vacuum in plasma treatment without alignment pins. Plasma treatment was then
performed on the assembly (Figure 2c) at 50 W, 45 milli Torr oxygen for 30 s (Reactive
Ion Etcher System, Torr International Inc). Subsequently, a glass slide with calibration
weights (100–250 gm) was placed on top of the layers to provide sufficient pressure,
giving a post-exposure bake (Figure 2d) of 30 min at 85 ◦C (Binder FED 115 large heat-
ing/drying oven). The bonded structure was placed at room temperature for 24 h before
testing. This way of plasma-treating the contact surface of PDMS in the assembly works
because PDMS is highly gas permissible [77–81] and IPA is a permeable liquid as well.
In addition, PDMS also absorbs molecules from the sample liquids [82–84].

PDMS (Dow Corning Sylgard 184 Silicone Elastomer) was prepared by mixing both
the hardener and elastomers in a 1:10 ratio using an electric stirrer (J-KEM Scientific,
Inc, St. Louis, MO, USA) for 15 min and placed inside the vacuum chamber (Binder
VD23 vacuum drying oven) for 1 h to remove all the air bubbles. The liquid PDMS was
then poured into a glass plate and cured. It is noted that the double salinization process
(the regular salinization protocol [85] was repeated twice in an interval of 2 h) was done
inside the glass dish prior to the PDMS molding. We conducted these experiments
numerous times, varying different parameters with each. Few samples were prepared
for the final testing, and only 4 samples underwent testing from each group. A set of
samples were cured (in this paper, cured or curing refers to the solidification process
of a liquid or melt) with two methods in order to understand their effects on bonding
strength: (1) at room temperature and atmospheric pressure for a minimum of 3 days
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called “Natural”, and (2) using the conventional oven bake (Binder FED 115 large
heating/drying oven) at 85 ◦C for 6 h called “Oven”. After curing, PDMS samples
(1000 mm thickness) were cut into 5 mm × 5 mm pieces for subsequent steps of bonding
and assembly.
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Both groups of samples from Natural and oven were then treated with IPA (70%) for
bonding, as illustrated in Figure 2. Both groups of samples were also examined for the
situation without IPA (i.e., with the bonding process of Figure 1) and with IPA (i.e., with
the bonding process of Figure 2). To all the samples, a post-exposure bake at 85 ◦C
was performed for 30 min, and after that, the samples were gradually cooled down to
room temperature.

The bonding strength of PDMS to PDMS was measured by using a custom-made
simple setup for tensile testing (Figure 3). The bonded PDMS-to-PDMS slabs were
glued (J-B Weld 50139 Adhesive) to the top test and bottom test molds, respectively,
as illustrated in Figure 3. The mold is made of acrylic, which was chosen due to its
availability. Each contact area between PDMS and the mold was 25 mm2. Bolts were
inserted inside the mold, as illustrated in Figure 3. The whole test system was cured
in a vacuum chamber for 24 h. After that, the bonding strength was evaluated in the
following way. The container connected to the sample was slowly filled with water until
the release of the bond. The tensile force on the bond was the weight of the container’s
water at the bond’s breakage point. The tensile force on the bond was the weight of the
water in the container at the breakage point of the string. The tensile strength of the
bond was then calculated by dividing the force by the contact area (i.e., 25 mm2). The
foregoing measurement was performed at Canadian Light Source (CLS) facilities located
in Saskatoon, SK, Canada.
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4. Results and Discussions

Table 2 provides a summary of the experiment results, including the specific bond
strengths of the samples. It can be seen in Table 2 that the (1) bond with the IPA treatment
along with the curing in the oven is the strongest, (2) the bond with the IPA treatment is
stronger than the bond without IPA regardless of the oven curing or natural curing, and
(3) the oven curing nor the natural curing do not significantly affect the bonding strength
without the IPA treatment. It can be seen in Table 2 that the highest bonding strength is
about 3 MPa. Glue failure occurred (2 times), which may have been due to the compatibility
issue. There may be a significant difference in adhesion between the glue and the PDMS.
Another cause is perhaps related to the difference in elasticity between the PDMS and the
glue, which further leads to their different stretching ratios.

Table 2. Bonding strengths of the samples in the experiment.

Type of Treatment Type of Curing Load
(MPa) Failure Mode

Sample 1

With IPA
Natural 2.821 PDMS–PDMS

Oven 1.373 PDMS–PDMS

Without IPA
Natural 0.392 PDMS–PDMS

Oven 0.235 PDMS–PDMS

Sample 2

With IPA
Natural 2.668 Glue Failure

Oven 0.686 PDMS–PDMS

Without IPA
Natural 0.372 PDMS–PDMS

Oven 0.247 PDMS–PDMS

Sample 3

With IPA
Natural 2.786 Glue Failure

Oven 0.941 PDMS–PDMS

Without IPA
Natural 0.239 PDMS–PDMS

Oven 0.215 PDMS–PDMS

Sample 4

With IPA
Natural 3.060 PDMS–PDMS

Oven 1.020 PDMS–PDMS

Without IPA
Natural 0.353 PDMS–PDMS

Oven 0.400 PDMS–PDMS
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Elsewhere [86], we built a prototype of the so-called membrane switch valve made
from PDMS, to which the bonding process includes IPA treatment. The PDMS membrane
with microchannels was first bonded to a microscopic glass slide. A leakage test was
performed using a standard syringe pump and deionized water, and no leakage was found.
To further evaluate the plasma treatment (i.e., the presence of plasma), we experimented
with a similar protocol as illustrated in Figure 2, only with a vacuum and IPA but no
presence of plasma. The result obtained has not produced any bond characteristics (bonding
strength and leakage) comparable with the bond characteristics in the bonding process
involving the IPA treatment and plasma. This suggests that the presence of plasma is a
necessary condition to increase the bonding strength. Another experiment was conducted
by replacing IPA with ethanol and by following the procedure in Figure 2, the results of
which show no meaningful improvement in the bonding strength.

The mechanism for the IPA treatment along with the proposed bonding procedure in
Figure 2 is speculated. The surface of PDMS is dissolved by IPA, leading to the liberation
of small PDMS molecules, these small molecules are then able to diffuse and cross-link
with one another, as shown in Figure 4. According to the literature [87], Poly(vinyl alcohol)
(PVA) can effectively adsorb on the surface of PDMS, subsequently producing γ-OH after
plasma treatment. Due to the similar structure of PVA and IPA, it is possible that IPA
will also produce γ-OH, Si-C(CH3)2-OH and C-C(CH3)2-OH. Further, due to the increase
in the hydroxyl group (OH), the hydrogen bond is increased, resulting in an increase
in the binding force. The post-heating process in the vacuum chamber further aids the
diffusion and cross-linking processes, as well as evaporating the IPA and solidifying
the bonds between PDMS molecules. PDMS with a smaller molecular weight is more
soluble and therefore promotes successful bonding with functional groups, particularly
hydroxyl groups. Conversely, PDMS with a larger molecular weight has a larger molecular
size, resulting in fewer docking ports available for other molecules to be grafted, which
can weaken the bond formed after IPA wetting. However, it is worth noting that such
strengthening is presumed to be limited to the PDMS-to-PDMS interface, so the preference
is given to PDMS with a lower molecular weight. On the other hand, a larger molecular
weight has been shown to contribute to stronger bonding between PDMS and silicon glass
plates, due to a greater abundance of interfacial interactions and longer free chains, as
demonstrated in the studies and reported in [86,88].
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5. Conclusions

In this paper, we proposed a novel bonding approach for PDMS–PDMS using surface
modification with IPA solution. It is noted in the literature that the IPA solution has been
used for cleaning purposes but not for PDMS bonding. In our approach, the treated samples
were first aligned and pressed together into an assembly; then, the assembly underwent
plasma treatment, which took place in a vacuum chamber; finally, the plasma-treated
assembly is heat treated. The experiment has shown the effectiveness of the proposed
approach in terms of improving both bonding strength and sealing. Specifically, the
bonding strength can achieve 3 MPa between two naturally cured PDMS pieces. The
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sealing strength, though not quantitatively measured, is acceptable to our work to build
the so-called integrated microfluidic circuit (IMC) [89], and it is perhaps acceptable to most
of the microfluidic applications according to Table 1, where a comparison of the bonding
strengths using different methods in literature is given.

To the best of our knowledge, our process is also unique in terms of the order of
steps. First, two surface-treated PDMS pieces are assembled, followed by the plasma
treatment of the assembly. The generic process (Figure 1) with many other approaches is
in reverse order. In fact, this order is significant to the bonding of PDMS–PDMS. In our
observation, there is an inherent problem with the generic process; that is, during the
alignment process, the modified surface property may be recovered to its original status
as well as geometrically distorted. Furthermore, the bonding characteristics highly
depend on (1) the preparation of the PDMS (how it is cured), (2) pre-wetting with IPA or
other solvents, (3) plasma treatment, and (4) post-heat treatment. The main advantages
of our approach are the efficient alignment of multi-layered micro-fabricated structures,
highly irreversible bonding strength, and less lead time in the micro-fabrication process.
However, there are still some issues with our approach that need to be addressed in
the future. One issue is that the top layer tends to deform during the plasma-treatment
process, which makes it difficult to bond for high aspect ratio structures, and which may
contribute to glue failure. Another issue is that there are some difficulties (e.g., a longer
time) when creating a vacuum inside the plasma chamber because IPA is a liquid.

There are several future studies related to our approach. First, there is a need
to understand how plasma activation can affect the (internal) contact surface of two
PDMS pieces from their assembly. It may be helpful to improve this understanding
by using the effect of plasma treatment on liquids (especially IPA). Plasma treatment
under atmospheric conditions (non-vacuum) needs to be carried out to investigate the
role of vacuums towards IPA to create effective bonding characteristics. This could also
provide a clear understanding of the quantity of IPA that affects the bonding strength.
Additionally, PDMS permeability under vacuum and plasma with respect to IPA needs
further evaluation. Second, the measurement of temperature change inside the vacuum
chamber during plasma treatment may provide further information to improve our
approach. Third, the effect of the internal contact surface area and layer thickness of the
PDMS on bonding strength needs to be studied, which helps to improve our approach
further. Fourth, a comprehensive leakage test needs to be carried out with quantitative
analysis to understand the scope of applications of the PDMS microfluidic devices.
Fifth, the bonding strength using different types of epoxy glues [90,91] and UV-curable
adhesives (NOA74) [92] needs to be evaluated. Sixth, a relationship in terms of bonding
strength with solvents other than IPA (ethanol, methanol, acetone, chloroform etc.)
needs further analysis to achieve numerical data. Detailed structure analysis of the
w.r.t swelling ratio before and after plasma treatment need to be imaged and evaluated.
Finally, shear strength and peel tests need to be taken for a more complete evaluation of
the overall bond quality of the surface in contact.
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