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Abstract: Due to the wide application of wearable electronic devices in daily life, research into flexible
electronics has become very attractive. Recently, various polymer-based sensors have emerged with
great sensing performance and excellent extensibility. It is well known that different structural
designs each confer their own unique, great impacts on the properties of materials. For polymer-
based pressure/strain sensors, different structural designs determine different response-sensing
mechanisms, thus showing their unique advantages and characteristics. This paper mainly focuses
on polymer-based pressure-sensing materials applied in different microstructures and reviews their
respective advantages. At the same time, polymer-based pressure sensors with different microstruc-
tures, including with respect to their working mechanisms, key parameters, and relevant operating
ranges, are discussed in detail. According to the summary of its performance and mechanisms,
different morphologies of microstructures can be designed for a sensor according to its performance
characteristics and application scenario requirements, and the optimal structure can be adjusted
by weighing and comparing sensor performances for the future. Finally, a conclusion and future
perspectives are described.

Keywords: polymer-based sensors; pressure/strain sensors; topography optimization; structural
performance optimization; wearable electronics

1. Introduction

With the rapid development of modern medicine, technology, and equipment, various
innovative flexible electronic products have appeared in fields such as health detection,
sports data statistics, body state detection, and other applications [1,2]. As an indispensable
component of flexible electronic products, pressure sensors play an important role in con-
verting external pressure into electrical signals [3]. Recently, with the rapid development of
flexible stretchable substrates, stretchable transparent electrodes, flexible sensing materials,
and new processing technologies [4], it has become possible to fabricate ultra-soft pressure
sensors with high sensitivity, incredible flexibility, a large stretching range, biocompati-
bility, and low cost, and they are now capable of being mass produced. Compared with
conductive bulk materials such as traditional metals and metal oxides, which show poor
mechanical flexibility and limited elasticity, polymers—as flexible sensor substrates—are
considered to be the most promising materials in this field because of their outstanding
usability, flexibility, high transparency, low weight, and non-toxic characteristics. Moreover,
polymers can be easily prepared and patterned by one-step solution methods (such as spin
coating, shear coating, drop coating, or dip coating) and patterning technologies (such as
ink-jet printing, screen printing, and three-dimensional printing) [5]. In addition, there are
various preparation methods whereby polymer films with high conductivity and mechani-
cal flexibility can be obtained, which can be used as stretchable electrode or flexible sensing
materials. They present broad application prospects with respect to wearable devices for
health monitoring, such as pressure sensing, heartbeat detection, motion detection, plantar
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pressure, etc. On the basis of traditional medical and health care devices that provide
snapshots of human physiological conditions, polymer-based pressure sensors can realize
real-time dynamic biological signal monitoring and more comfortable wearing experiences,
offering better advantages in terms of accuracy, safety, functionality, and comfort [6,7].

Many functional polymer-based materials have been comprehensively investigated in
order to assemble flexible tension sensors, such as polydimethylsiloxane (PDMS) [7–10],
polyvinylidene fluoride (PVDF) [11], polyethylene terephthalate (PET) [12], polyurethane
(PU) [13], polyimide (PI) [14,15], and Ecoflex [16]. Due to their superior flexibility, trans-
parency, conductivity, and biocompatibility, these materials have been used to assemble
flexible pressure sensors as flexible abstract/dielectric layers, sensing components, and
conductive electrodes. However, with the development of society, people are demanding
increasingly higher requirements for the performance of flexible pressure sensors. To obtain
excellent properties and diverse functions, researchers have used microstructural design,
that is, introducing small-scale microstructures on the surface or inside materials for their
optimization. The microstructural design of materials not only significantly improves
the sensitivity, detection limit, response time, and duality of flexible pressure sensors,
but also allows for different structural designs corresponding to different performance
characteristics and advantages. For example, a pyramid-structured pressure sensor can
highly enhance the contact area of the sensor in response to low pressure because of the
large stress concentration on the top of the sensor, thus enabling ultra-high response sen-
sitivity. In contrast, a micro dome-structured sensor exhibits a wide sensing range due
to the increasing number of new contact points and the increasing contact area under
pressure, thus demonstrating the important role of structural design in the fabrication of
high-performance and multifunctional flexible polymer-based mechanical sensors. There-
fore, different microstructures dominate the sensing mechanism in each polymer-based
pressure sensor and affect its performance indicators in different aspects.

In this review, we summarized the latest progress regarding the influence of different
surface microstructures on the disconnection–reconnection mechanisms and performance
of polymer-based pressure sensors, provided a reference for the design of ideal sensors
in the future, and proposed the developmental direction of high-performance flexible
pressure sensors. Firstly, a brief introduction to the commonly used polymers is provided
in Section 2. In Section 3, the effects of different microstructures on the conduction mech-
anisms and properties of polymer-based piezoelectric materials are reviewed, and their
respective advantages are discussed. Section 4 compares polymer-based pressure sensors
with different microstructures, including their working mechanisms, key parameters, and
relevant operating ranges. Finally, the conclusions and future perspectives are described.

2. Polymers

Various highly elastic polymeric materials have been selected as flexible substrates/dielectric
layers as well as sensing materials and electrodes to assemble flexible pressure sensors due to their
excellent deformability and simple manufacturing processes, including polydimethylsiloxane
(PDMS) [17], poly(vinylidene fluoride) (PVDF) [17], polyvinyl alcohol (PVA) [18], polyethylene
(PEN) [19], polyethylene terephthalate (PET) [20], polymethyl methacrylate (PMMA) [21], poly-
imide (PI) [12], polyurethane (PU) [22], polycarbonate (PC) [23], Ecoflex [24], epoxy [25], etc.
Other conductive polymers such as polypyrrole (PPy) [26], polyaniline (PANI) [27], and hybrid
poly(3,4-ethylenedioxythiophene) (PEDOT) [28,29] have shown higher electrical conductivity and
excellent mechanical flexibility as wearable pressure sensors [30].

2.1. PDMS

Plenty of commercialized polymers are used as stretchable substrates in next-generation
wearable strain/pressure sensors. Another important consideration of flexible polymers
is their appropriate activity, which can be used in sensing elements. As a functional el-
ement, a sensing element can convert an external mechanical stimulus into an electrical
signal. Among them, PDMS is the most widely used material because of its excellent
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comprehensive performance, not only as a flexible substrate, but also as a pressure-sensing
layer. So far, PDMS-based composite pressure/strain sensors have been manufactured
by combining various elements, such as metal nanomaterials (e.g., metal particles [31]
and metal nanowires/networks [32–35]), carbon materials (e.g., carbon nanotubes (CNT),
graphene/graphene oxide (GO), and carbon black (CB)), and other hybrid micro/nano-
composites [36–43].

Polydimethylsiloxane (PDMS), as a kind of silicone elastomer that has proven to be a
promising substrate due to its great stretchability, high thermal stability, chemical stability,
simple processing, low price, etc. [44–46]. Due to its thinness, breathability, and excellent
biocompatibility, it can be directly attached to human skin without causing allergic reac-
tions or used as a flexible tissue-engineering material implanted in the body [47–49]. The
high transparency of PDMS makes it an ideal substrate material for invisible electronic
devices [50], which can be used as flexible electronic screens [50,51], glass and glasses
sensors [52], contact lens sensors [53,54], wearable military sensing devices [55,56], etc.
In addition, UV irradiation can be used to pattern such materials to make them locally
adhesive, thereby providing a method for fabricating PDMS-based composite materials
and integrated circuit systems [57]. As a dielectric material, PDMS with different mi-
crostructures and types of functionalization can be obtained through etching and pattern
preparation and used for pressure sensing and tension sensing [58,59]. Based on the advan-
tages of the material itself and the above processing technologies, its applicability in the
field of pressure sensing has been further expanded [4,17,60].

2.2. PVDF

Polyvinylidene fluoride (PVDF), as a typical piezoelectric polymer, offers a low di-
electric constant, remarkable sensitivity, high deformability, excellent thermal stability,
and high chemical resistance, and is considered to be the most promising dynamic tactile
sensing component among prospective wearable electronic devices. In order to obtain
high-performance nanostructured PVDF materials, researchers have used various prepa-
ration methods, such as chemical vapor deposition (CVD) [61], sol–gel processes [62],
hydrothermal methods [63], electrospinning [64], etc.

PVDF is a semicrystalline homopolymer with five phases (α, β, γ, δ, and ε phases), and
can be obtained under various fabrication conditions [65]. PVDFs of different phases show
different electric dipole moments from 5 to 8 × 10−30 C m and exhibit electric polarization
change of electric dipole moment at different degrees when applying an external mechanical
force, thus showing piezoelectric characteristics [66]. The piezoelectric properties of PVDF
mainly depend on the polar crystalline phase, especially the highest electric dipole moment,
namely, the β Phase [67]. Therefore, in order to increase the β Phase content in materials,
researchers have proposed a variety of methods, including thermal annealing [68–70],
uniaxial stretching [71], the use of a high electrical field [72,73], electrospinning [74–76],
surface charge approaches [77,78], curing processes [79], etc.

Moreover, β Phase crystallization can be enhanced by adding nano fillers such as
carbon materials [38,80,81], metal nanoparticles/nanofibers, [72,82] semiconductive ce-
ramic [83,84], and other polymers [85,86]. The nanofibers of PVDF copolymers and their
nanocomposites have been successfully prepared into oriented PVDF nanofibers, which
were used as functional layers of piezoelectric sensors and piezoresistive sensors with
excellent performance.

Among the materials in this category, poly (vinylidene fluoride trifluoroethylene)
(P(VDF-TrFE)) has attracted much attention because the additional phase of TrFE can sig-
nificantly improve the formation of β phases in order to obtain high piezoelectricity [81,87].
P(VDF-TrFE) also shows ferroelectric characteristics and excellent piezoelectric effects as
well as great chemical stability and biological compatibility [88,89]. Moreover, via a facile
fabrication process, P(VDF-TrFE) materials can be used to produce functional flexible tactile
sensors with light weight, high detection performance, and low cost. This material can
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obtain a better piezoelectric response than PVDF film and offers a large effective working
area and highly tensile structure [90,91].

Via a more directional arrangement of P(VDF-TrFE) fibers, piezoelectric performance of
40 times higher than the sensitivity of PVDF-based film pressure sensors can be obtained [87,92].

3. Polymer-Based Sensors

Different microstructural designs provide different types of performance for a sen-
sor. According to the performance characteristics and application scenario requirements,
researchers can design microstructures of different morphologies for sensors and select
the optimal structure by weighing and comparing the sensor performance in terms of
sensitivity, response time, detection limit, liner sensing range, duality, etc.

3.1. Pyramid Microstructure

Pyramid structures have been employed in pressure sensors because of their unique
triangular structure. This special microstructure is usually accompanied by high sensitivity
under low pressure, which is imparted by the sharp tip [93–97].

Figure 1a shows a mechanistic schematic diagram of the classic pyramidal microstruc-
ture pressure sensor [98]. When pressure is concentrated on the upper surface of the sensor,
R1 and R2 will increase with the deformation of the soft surface substrate. As presented, the
surface resistance (R1) and bottom resistance (R2) are several orders of magnitude smaller
than the total resistance (Rc) of the sensor (greater than 1G ohm). Relative to the overall
resistance of the sensor, R1 and R2 can be ignored. When the sensor surface is subjected
to an external force, Rc will decrease with the increase in pressure due to the increasing
contact area. Then, the small deformation of external load is converted into the change in
the current signal under constant bias voltage. However, pyramidal microstructure sensors
with high sensitivity show a very narrow pressure-sensing range.

To solve this problem, Park et al. [99] improved the pyramidal structure to increase the
effective contact area, thus obtaining high linearity in a wide pressure range, as shown in
Figure 1b. The capacitance change of the device is determined by the distance between the
electrodes coated on the surface and the top of the pyramid and the contact area between the
electrodes and the pyramid structure. Moreover, with the increase in pressure, the distance
between the two electrodes and the contact area between the electrode and the pyramid
structure increase linearly, which promotes the linear range of the capacitor. Moreover,
Li etc. [100] modified the internal structure and further increased the number of conductive
paths, resulting in a decrease in volume resistivity. Figure 1c shows that when stress is
applied, the stress concentrated at the tip of the pyramid reduces the distance between
the internal conductive networks of PDMS/CNT composites. As the pyramid’s height
decreases, the contact area increases significantly, which leads to a decrease in contact
resistance, thus increasing the device’s current. Subsequently, Zhang etc. [101] combined a
nanofiber mat and a micropyramid array by electrospinning to increase their pressure sen-
sitivity and greatly decrease their detection limit, as shown in Figure 1d. They developed a
pressure sensor featuring micropyramid arrays (HD-µPA) and an active piezoelectric mate-
rial composed of a poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)]/barium
titanate (BTO) nanofiber-based mat with silver nanowires (AgNWs) assembled as con-
nected film electrodes. Consequently, the sensitivity was improved by about 1.7 times that
of a flat substrate sensor because of the stress concentration on the top and the unbalance
of the elastic modulus between the polymer-based nanofiber mat. At the same time, the
pressure detection limit of the structural pressure sensor can be as low as 0.6 Pa, which
shows great potential with respect to wearable applications.

Furthermore, Liu et al. [102] designed a flexible pressure sensor with a uniquely
engineered pyramid wall grid microstructure (PWGM) on polydimethylsiloxane (PDMS)
film, as shown in Figure 1e. The square pyramid with a dome-shaped head and a large
top area and the reinforcing wall connecting all the pyramids endow the sensor with a
series of resistance changes; consequently, first the pyramid and then the various walls
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contact and deform under vertical pressure. Meanwhile, the interconnection between
the pyramid and the wall improves the crushing pressure of the PWGM PDMS film,
and its new delamination deformation mechanism makes it highly sensitive and quickly
responsive and endows it with long-term stability. The pressure sensor shows excellent
sensitivity and mechanical durability of 383,665.9, 269,662.9, 48,689.1, and 1266.8 kPa−1 in
the pressure ranges 0–1.6, 1.6–6, 6.1–11, and 11–56 kPa, respectively, thus showcasing its
potential applications in wearable health-monitoring electronics. In conclusion, a single-
row pyramid structure presents high sensitivity under micro pressure due to its special
triangular pyramid structure.

According to Table 1, a pyramidal structure shows obvious deformation under low
pressure; thus, pressure sensors of this structure always perform with ultra-high sensitivity
under low pressure, which is suitable for monitoring weak signals such as respiration,
pulse, etc.
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Figure 1. (a) Response mechanism of a SWCNT-coated polymer pyramidal pressure sensor [98].
(b) Mechanism of structural change of a transparent linear pressure sensor under pressure [99].
(c) Schematic of the conductive PDMS/CNT micropyramids, showing more conductive paths under
stress [100]. (d) Schematic of fabrication process of electrospun fibers combined film with nanofiber
mat [101]. (e) A pair of designed pyramids with dome-like tops touching the bottom film.

3.2. Pillar Microstructure

In order to pursue both high sensitivity performance as well as a large and stable
linear-sensing recognition area, researchers have designed pressure sensors with a pillar-
shaped microstructure. By varying the pillar’s geometry, a pressure sensor with a desirable
pressure-sensing region can be obtained. The micropillar array is applied to the pressure
sensor with the help of the air gap between the pillar structure and the underlying substrate,
and its response and relaxation time scales can reach milliseconds [103]. The current
passing through the device will depend on the contact resistance between the covered
micro-pillar and the substrate film and the resistance of the substrate film between two
adjacent micropillars. By changing these two resistance parameters, pressure sensors with
different sensitivities in different pressure areas can be designed [104].

Figure 2a shows a typical pressure sensor device composed of Au micropillar arrays
and a deformable PPy/PDMS substrate film [6]. One micropillar-structured pressure
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sensor achieved high sensitivity in the low-pressure range by controlling the change in the
contact resistance between the Au-coated micropillar surface and the yielding PPy film.
Figure 2a shows a typical pressure sensor device composed of Au micropillar arrays and
a deformable PPy/PDMS substrate film. The bottom of the figure shows a top view and
a cross section of a regular and uniform pillar array. With a device composed of similar
structures, Ha et al. [105] replaced the electrode with an improved Ag nanowire sticker
to stabilize the electrical performance of pressure sensor on a deformable substrate under
tension, as shown in Figure 2b. The polyaniline nanofibers are collected on a PET film as
the bottom layer, and the gold-coated PDMS micropillars are used as the top layer.

More recently, different structural designs have been developed in order to improve
sensitivity, such as that developed by Zhou et al. [106], which demonstrated a hybrid
structure of interlocked micropillars and mesodomes (shown in Figure 2c). The increased
number of micropillars brought about by a structural design featuring interlocked assem-
bly not only increased the surface contact area but also caused larger pressure-induced
deformation induced by the interlocking micropillars and mesodomes. Therefore, in terms
of sensitivity and detectable pressure range, compared with the traditional structure based
on single-fold domes, this hybrid structure shows excellent sensing performance.

To modify the micropillar structure, Hu et al. [107] discussed the influence of aspect
ratios on micropillar structures by comparing the sensitivity of pressure sensors with
three different height-to-diameter ratios, as shown in Figure 2d. It can be seen that the
sensor with a greater height-to-diameter ratio shows higher sensitivity in the low-pressure
range. Furthermore, Fang et al. [108] reported an Au-coated PDMS micropillar sensor with
high-aspect-ratio microstructures, which can sense touch and detect weak physiological
signals, even fingertip pulses. Figure 2e shows the skin–electrode mechanosensing structure
of micropillars with a length (L) to radius (R) aspect ratio of 6. Unlike other sandwich
structures, the skin–electrode mechanosensing structure consists of two electrodes, and the
skin is designed to utilize ion transport in biological systems. Due to its ionic and electronic
properties, the structure presents low noise but high signal strength when touched. Further
mechanical analysis reveals that the instability of high-aspect ratio microstructures plays a
critical role in sensing.
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3.3. Microdome

Another form of microdome-shaped geometry has been developed to obtain a stable
pressure sensor without experiencing fatigue during multiple cycles. Compared with
pyramid and pillar structures where the pressure is concentrated at the tip, because a
microdome’s geometry can expand the external tension more uniformly, this microstruc-
ture offers a stabler structure under pressure [109–111] and leads to a wider linear range
and cyclic stability [112]. The linear range can be further widened by adjusting the mi-
crostructure of the sensing layer. Due to the special microdome shape of the elastomer, the
contact area with the conductive electrode increases under external pressure, resulting in a
significant reduction in the tunneling resistance or contact resistance. Although the sensors
assembled with this structure show excellent sensing performance, they still suffer from
problems such as the imbalance between high sensitivity and a wide linear range, which
requires further optimization of the structure and composition [113,114].

To improve its sensitivity, Ko et al. used [115] a microdome structure design of inter-
locked microdome arrays, which display extreme resistance-switching behavior, including
significant improvements in sensitivity and response/relaxation times. This massive im-
provement is achieved by the interlocking of the microdome arrays, which leads to an
increase in the tunneling resistance at the contact point and the tunneling piezoresistance
in the flexible film, as shown in Figure 3a. Later, Lee et al. [116] filled urchin-shaped metal
nanoparticles into a polyurethane particle array to prepare a highly sensitive pressure sen-
sor (71.37 kPa−1) with high optical transmittance (77.7% at 550 nm), as shown in Figure 3b.
The excellent sensing performance of the transparent piezoresistive pressure sensor can be
attributed to the effective quantum tunneling effect caused by the stress concentration at
the small contact point and the deformation in the contact area.
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Figure 3. Schematic of microdome array-based pressure sensor. (a) Schematic of the working
principle for interlocked microdome arrays with conductive nanofiber inside. Under pressure, the
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diagram showing the difference in distance and contact area between film and microdome array
under pressure [117]. (d) Thermal expansion of microdome with irregular structure under applied
temperature [118].

Recently, Hu et al. [117] assembled a capacitive pressure sensor by adding a dielectric
layer of polyvinylidene fluoride (PVDF) between two microdome-shaped conductive soft
layers. For comparison, the internal stresses of the devices with flat and microdome-
shaped conductive layers under pressure are shown in Figure 3c. As the contact area of the
device with a flat conductive layer hardly changes under pressure, the relative capacitance
of the device is only determined by the change in the dielectric layer’s thickness. In
contrast, the microstructure in the devices with microdome-shaped conductive layers will



Polymers 2023, 15, 764 8 of 22

deform significantly under pressure, leading to a change in the thickness and contact area
of the dielectric layer. Hence, a noticeable improvement in sensitivity was observed in
the microdome device. To modify the surface morphology of microdome arrays, Cho
et al. [118] fabricated a 3D microstructure elastomer for flexible pressure sensors via the
internal popping of microspheres. Each microsphere possesses a core–shell structure,
consisting of thermoplastic resin as the shell and liquid hydrocarbon as the core. Figure 3d
(left) shows the volume expansion process of the microspheres from state 1 to state 2 and,
finally, the “expansion state” under a specific temperature. For a comparison of the volume
change, Figure 3d (right) shows the SEM images and particle diameter distribution before
and after the expansion.

3.4. Porous Sponge Microstructure

The structural characteristics of porous materials are similar to spongy and loose mi-
crostructures, which make them easier to deform under low pressure; thus, these materials
exhibit a low detection limit and a larger deformation detection range. In addition, porous
materials are very suitable for wearable flexible electronic devices due to their ultra-high
illumination and good permeability. Researchers used an internal porous microstructure
as a conductive or dielectric layer to fabricate lightweight pressure sensors. At the same
time, the unique pressure detection function of porous microstructures in a large size range
and in different planes enables them to be applied to detection in 3D space [119–121].
According to the requirements of different flexible wearable devices, such as light weight,
low detection limit, and other characteristics, researchers have developed various porous
microstructures with low density and high compressibility [122].

Due to the unique interconnective network of a porous sponge, electrons can move
very quickly through the 3D network of the seamless interconnections of the conductive
network, thus imparting very high electrical conductivity to the structure. It is very
important to build a highly connected conductive filler network in the insulating matrix to
improve the conductivity of the composite [123]. A typical fabrication process of a porous
sponge-microstructured sensor is shown in Figure 4a [124]. This figure shows multilayer
graphene grown on a nickel foam template by the chemical vapor deposition (CVD) method.
Then, nickel foam coated with graphene sheets was immersed into prepared PDMS. The
composite sample was subsequently cured in a hot plate at 100 ◦C, and the nickel skeleton
was removed using hydrochloric acid. A composite of a graphene skeleton surrounded
by PMDS was fabricated by removing the redundant PDMS. Moreover, the composite
displayed good bending, torsional, and stretching properties.

Recently, some conductive organic composite polymers have replaced the PDMS-based
3D frame structure, and the assembled sensors show good pressure-sensing abilities [125–128].
A conductive sponge copolymer composed of poly (3,4-ethylenedioxythiophene): poly
(styrene sulfonate) (PEDOT: PSS) was constructed, and it presented a stable piezoresistive
response under a compression strain of up to 80% [129]. Figure 4b shows a photograph and
SEM image of the porous sponge sample as well as the structural changes during compression.
Under compression force, the conduction mechanism is called the negative piezoresistive
effect, which forms more conductive paths in the conductive elastomer composite or sponge,
resulting in the lower resistance of the sensor. Due to the pores in the composite’s pressure
and strain sensors, it can realize the strain-sensing characteristics of pressure and tension at
the same time and shows a wide pressure-sensing range. The sponge reveals its robust porous
morphology, high mechanical compressibility, high sensitivity, and stable compress−release
cycles over 1000 cycles.

More recently, with the development of 1D nano/micro particles or 2D materials
such as Fe2O3 particles, reduced graphene oxide, carbon nanofibers, MXene, etc. [130–136],
Li et al. [137] successfully combined MXene with aerogel to increase its conductivity in
order to assemble an interdigital sensor system, as shown in Figure 4c. The 3D porous
MXene aerogel was composed of MXene nanosheets and cellulose nanofibers, which
provide enough conductive channels with and without an external force. Finally, the 3D
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MXene aerogel was encapsulated in a PU layer to integrate a pressure-sensing device with
self-healing properties. In addition, the MXene aerogel pressure sensor shows excellent
response sensitivity of 306 kPa−1 with a wide pressure detection range from 2.3 Pa to
87.3 kPa and a fast response time of 35 ms. Moreover, it shows remarkable stability over
2000 cycles and confers self-healing characteristics to the system, constituting properties
that can be applied in a variety of wearable sensor devices.
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Figure 4. Schematic of pressure sensor based on porous composite material. (a) Photograph of a
bendable porous composite sensor with GPN-PDMS and Schematic of the porous structure [124].
(b) Photograph of PEDOT:PSS-coated melamine sponge, SEM image of the porous sponge, and
schematic of structural change under compression [129]. (c) Schematic of 3D porous sensor composed
of MXene aerogel [137].

3.5. Bio-Inspired Microstructure

Biomimetic materials are widely used in multi-functional flexible electronic mate-
rials [138,139]. In 2014, for the first time, Choi et al. [31] made use of nanoscale crack
connections inspired by the geometry of a spider’s slit organs to prepare sensors with ultra-
high sensitivity (gauge factor exceeds 2000) when detecting small vibrations (0–2% strain
range). Figure 5a shows a schematic of the disconnection–reconnection mechanism of the
sensor with ultra-high mechanical sensitivity and a zipper-like nanoscale crack connection
under strain. Spiders use the slit organs on their leg joints to detect external vibrations
and transmit signals to the nervous system. In this paper, the researchers mimicked the
slit organ and obtained an ultra-sensitive strain sensor by preparing a crack-like Pt-coated
viscoelastic polymer. When the coated Pt layer is as low as 20 nm thick, it forms cracks
under mechanical bending. In addition, the detection sensitivity is greatly affected by the
crack spacing (or density).

Later, Jiang et al. [140] reported a bionic hierarchical graphene material (BHGM) that
exhibits ultra-high elasticity and stability when the compressive strain reaches 95%. The
BHGM was constructed by imitating the structure of Elytrigia repens and is similar to an
ice-crystal-induced cellular microstructure, as shown in Figure 5b (left). Elytrigia repens
shows remarkable mechanical properties and light weight due to its gradually formed
hierarchical structure and macro hollow structure and micro cellular structure. Researchers
utilized an ink-based 3D printing strategy to prepare 3D multi-layer porously structured
BHGMs (Figure 5b, right). The imitation of Elytrigia repens’s structure also grants the
BHGM remarkably low weight and extremely high stiffness and elasticity.
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Figure 5. Schematic illustrations and images of bio-inspired pressure sensors. (a) Schematic of a
spider’s sensory system and an ultra-mechanosensitive pressure sensor based on spider-inspired
nanoscale crack junctions [31]. (b) Schematic of Elytrigia repens and 3D-printed hierarchical structure.
SEM image of the hierarchical structure [140]. (c) Schematic illustration of the fabrication of the silk
fibroin-based hydrogel. SEM image of interconnected porous architecture (right) [141]. (d) Optical
images of an aureum leaf and SEM image of a replicated microstructured PDMS film. Scale bar:
1000 µm (left), 100 µm (middle), and 100 µm (right) [142].

Other structures such as silk fibroin-based hydrogels exhibit remarkable extensibility
and compressibility, thus enabling them to be assembled into strain/pressure sensors with a
wide range from 2% to 600% and good stability over multiple cycles [141]. Figure 5c shows
the fabrication procedures of the composite hydrogel composed of silk fibroin, polyacry-
lamide, graphene oxide, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). The
SEM images display the interconnected porous structure of the composite hydrogel, which
leads to its excellent elastic and mechanical stability, thus allowing it to be manufactured
into any shape.

Recently, researchers have used elastic PDMS to replicate the rough surface of Epiprem-
num aureum leaves and successfully prepared this bio-inspired microstructure [142,143].
Not only does this pressure sensor with a bio-inspired hybrid porous surface show an
excellent sensitivity of 83.9 kPa−1 and excellent stability (>28,000 cycles), but it is also more
attractive due to its ultra-low detection limit of less than 0.5 Pa, as shown Figure 5d. The
optical images of a typical aureum leaf are shown in Figure 5d (left and middle) under
scale bars of 1000 and 100 µm, respectively. In addition, the surface morphology of the
replicated microstructured PDMS is shown on the right side of Figure 5d. The bio-inspired
hybrid porous microstructure shows an increased contact area and reduced = Young’s
modulus and introduces an additional level of pore resistance. Consequently, the pressure
sensor exhibits high sensitivity and a low limit of detection. These aspects enable the
designed sensor to detect finger pressure, sound vibrations, swallowing activity, and wrist
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pulse, and showcase its potential applications in artificial intelligence and flexible medical
electronic applications.

4. Performance Comparison
4.1. Comparison of Different Structures

Flexible pressure-sensing materials with various surface morphologies have different
advantages and characteristics. To evaluate the effects of these different microstructures
on the macrostructure of materials, researchers have compared several classical surface
morphologies (pyramids, columns, and micro-bodies). Ko et al. [144] reported a sensitiv-
ity comparison of pressure-sensing materials with planar, microdome, micropillar, and
micropyramid morphologies in different pressure detection ranges and simulated the
contact area variation of different microstructures under normal pressure by a finite ele-
ment method. The linear pressure sensitivity of devices with different non-planar surface
morphologies shows much higher sensitivity (18.3, 12.6, and 5.3 kPa−1 for microdome,
micropyramid, and micropillar structures, respectively) than that of a planar structure
(0.5 kPa−1), especially in a pressure range of less than 1 kPa. In a planar structure, the main
factor affecting the change in resistance is the inter-tube distance of the sandwich structure,
while the contact area is basically unchanged. Compared with planar structures, other mi-
crostructures have smaller contact spots with the connected membrane electrodes, resulting
in stress concentration, which increases the contact area and decreases the PDMS barrier
thickness, ultimately increasing the tunneling current between the microstructure and the
electrodes. In a medium pressure range, the pressure sensitivity decreases, but the trend of
sensitivity for different microstructures remains unchanged (microdome > micropyramid >
micropillar > planar), as shown in (Figure 6a). The finite element simulation is aimed at
the stress distribution of the finite element simulation under the pressure of 10 kPa. It was
found that the structural stress of the microdome and micropyramid is concentrated at the
tip, resulting in a significant increase in sensitivity, as shown in Figure 6a.

A random distribution spinosum structure (RDS) shows superior sensing performance
compared to that of a pyramid, hemisphere, or nanowire [145]. The simulation results
in Figure 6b show the pressure distribution of pyramid, hemisphere, nanowire, and RDS
structures under a 5 kPa load. For the pyramid and hemisphere structures, the stress
is concentrated on the top of the tip area, and the nanowires show a uniform pressure
distribution along the height direction. In contrast, the RDS shows a more uniform pressure
distribution than that of the three other morphologies. The calculation shows that the
stress in the RDS nanostructure concentrates at the contact tip and can be transferred to
contiguous peak roots under the applied pressure, which indicates that the deformation
in the low-pressure range is quite small. Therefore, surface treatment can confer great
yield strength and a large linear range of strain and stress in the microstructure. Finally,
the researchers concluded that the modified spinosum microstructure can achieve high
sensitivity, while the randomly distributed spinosum morphology can achieve a large linear
range of sensing performance.

4.2. Performances

The performance of polymer-based pressure/strain sensors is generally charac-
terized by the following diagnostic parameters: sensitivity, response time, detection
limit value, linearity range, and durability. This paper summarizes and compares the
characteristic parameters of polymer-based pressure/strain sensors assembled with
different microstructures, thereby providing a reference for strain/pressure sensor
design [146,147].
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Figure 6. Comparison of the performance and mechanisms of pressure sensors with different
microstructures. (a) Schematic illustration of differently microstructured arrays of pressure sensors.
Calculation of localized stress distributions in response to pressure and relative contact-area changes
in response to pressure determined by finite-element analysis (FEA) [144]. (b) The simulation results
of pressure distribution and resistance variation versus applied pressure for different geometries
under loading pressure [145].

First, sensitivity is considered to be the most important performance index of a pres-
sure sensor, and it is defined as the slope of the pressure response curve, representing
the ability of a device to convert pressure into an electrical signal. For piezoresistive and
capacitive sensors, the pressure sensitivity is normally defined as S = δ(∆X/X0)/δp, where
∆X is the variation in the signals; X0 denotes the initial signals, which can be resistance or
capacitance; and p denotes the applied external pressure [148,149].

Next, the linear sensing range is a performance parameter used to evaluate the sensing
stability range of a pressure sensor [150]. Generally, sensing materials with high sensitivity
show great structural deformation or large changes in the conductive path at low pressure,
which means that nonlinear resistance or capacitance changes will occur at higher pres-
sure. Therefore, the preparation of pressure-sensing materials with both high sensitivity
and a wide linear range has always been the goal of researchers. Recently, biomimetic
pressure-sensing materials have made breakthroughs concerning the provision of high
sensitivity and a large linear range at the same time [145,151,152]. There are other methods
of determining sensitivity, such as using peak charge output to detect small vibrations [101].
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Other important index parameters are the response time and relaxation time, which
reflect the time resolution of the pressure sensor. Response time is the time required for the
output signal to reach 90% of the maximum stable output value. Time resolution plays an
important role in biomedical and biological detection [83,149]. Another method used to
characterize response time is to count the frequency response, and the frequency signal can
be easily converted into a pulse signal with any desired amplitude through data processing
or additional circuits (such as an edge detector) [100]. High time resolution means faster
and more accurate dynamic detection [37,43].

Finally, durability, as an important parameter of a pressure sensor in long-term practi-
cal use, is an important indicator of whether a sensing material can be commercialized for
mass production and practical application. Researchers have greatly improved durability
by mixing nano materials into sensing polymers [153].

After a long period of development, the reports based on polymer-based pressure
sensors found that individual performance can be close to practical applications. However,
it is difficult to achieve an overall balance for multiple functions and types of performance;
thus, it is necessary to balance the sensitivity, linearity, and working range in the actual
selection of the materials. Different microstructures can be designed according to the
performance characteristics of the sensor and the requirements of the application scenario,
thereby allowing for the best structure to be selected. To facilitate the comparison of
the sensors developed in research, Table 1 lists the structural design and main evaluation
parameters of representative polymer-based pressure sensors with different microstructures
reported in recent years.
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Table 1. Summary of main evaluation parameters of polymer-based flexible pressure sensors with different microstructures.

Polymers Additive Agent Technology Micro
Structure Sensitivity Pressure

Detection Limit Response Time Linearity Range Detection Range Durability Ref.

PDMS – Photolithography Pyramid ~0.2 kPa−1 100 Pa – 0–10 kPa 0–22 kPa – [93]

PDMS Au particles Plasma etching Pyramid 383,665.9 kPa−1 0.25 Pa 75 ms 0–1.6 kPa; 1.6–6 kPa;
6.1–11 kPa <60 kPa 1000 cycles [102]

PDMS CNT Drop casting Pyramid 0.34 kPa−1 – 10 to 120 Hz 10−60 kPa 0−120 kPa Over 1000
cycles [100]

PDMS PEDOT:PSS layer
Photolithography,

anisotropic etching,
and CVD

Pyramid 0.034 kPa−1 14 Pa 210 ms 10–100 kPa 5–100 kPa 5500 cycles [99]

PDMS P(VDF-TrFE)/BTO
Nanofiber

Ultraprecision
microgroove fly

cutting technology
Pyramid Peak charge output

of 47 pC 0.6 Pa – – 0.6–20 kPa – [101]

PVDF Polyacrylamide/
sodium-alginatehydrogel Wet etching Pyramid 12.4 kPa−1 – – 0–50 kPa – 100 cycles [96]

PDMS PPy film
Cutting and
chemically
depositing

Pillar −1.8 kPa−1 2 Pa decisecond 0–0.4 kPa 0–1 kPa – [6]

P(VDF-
TrFE) – Spin coating and

annealing Pillar 458.2 mV/N <2 Pa 2 Hz 0–4 N – 36,000 cycles [154]

PDMS AgNWscoated Spin coating and
dip-coating Pillar 128.29 kPa−1 2.5 Pa 0.2 ms 0–200 Pa 0–80 kPa 2000 cycles [106]

PDMS Au-coated
Photolithography
and catalytic wet

etching
Pillar 1.3–11.8 kPa−1 0.2 Pa 15 ms <3 kPa 0–15 kPa 5000 cycles [108]

PDMS − spin coating and
oxygen plasma Microdome 0.44% kPa−1 ~55 Pa 288 ms <11 kPa <500 kPa 1000 cycles [155]

PDMS CNTs Micromolding and
sputter coating Microdome −15.1 kPa−1 ∼0.2 Pa ∼0.04 s <0.5 kPa 0–70 kPa 1000 cycles [115]

PU Metal nanoparticles Soft molding Microdome 71.37 kPa−1 4 Pa 30 ms <100 Pa ∼1.5 k Pa
15 days under

70 ◦C and
humidity 70%

[116]

PDMS Microspheres Spin coating and
metal deposition Microdome −50.45 kPa−1 0.209 Pa 39 ms 0–50 Pa 0–400 Pa 4000 cycles [118]

PU Gold Ion sputtering Porous 59–122 Pa−1 0.568 Pa 9 ms <10 kPa ∼14 kPa 1000 cycles [126]
PDMS Graphene CVD and etching Porous 0.09 kPa−1 – 100 ms 0–1000 kPa 0–3000 kPa >10 cycles [124]

PEDOT:PSS Melamine Cutting and dip
coating Porous GF ≈ −2.32 1 Pa 3.5 s 1 Pa–1 kPa 0–35.0 kPa 1000 cycles [129]

Aerogel MXenes Spraying and laser
engraving Porous 306 kPa−1 2.3 Pa 35 ms 0–2.5 kPa 2.3 Pa–87.3 kPa >20,000 cycles [137]

PDMS Pt layer Depositing Bionics 2000 0–2% – ∼5 Pa 0–2% 5000 cycles [31]

PI Metal electrodes Spin coating and UV
lithography Bionics 22.4 kPa−1 7.3 ± 1.2 Pa 41 ms <16 kPa 0 Pa–400 kPa 54,000 cycles [156]

PEDOT:PSS;
PAM/GO Silkfibroin Dissolving Bionics 0.01374 kPa−1 ∼2%; 0.5 kPa 170 ms 0−15.9 0.5−119.4 kPa 2000 cycles [141]

PDMS Ag thin-film
Molding and
magnetron
sputtering

Bionics 5.9 kPa−1 ∼16 Pa 42 ms 0–15 kPa 0–30 kPa 2000 cycles [143]
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5. Conclusions and Perspectives

In conclusion, polymer-based pressure/strain sensors with different microstructures
show various respective performance characteristics. PDMS and PVDF are the two most
promising and common polymers used in this regard. PDMS has been applied to many
soft tensile sensors due to its excellent dielectric constant and simple preparation process
of various structural designs. However, PDMS-based pressure-sensing materials have the
disadvantages of poor stability due to structural instability in the long-term tensile process
cycles, the structural phase transition caused by temperature difference, and the brittle
phase transition that occurs in a dry environment. In the future, an increasing amount
of research will be needed regarding multiple cycle stability, reusability, and corrosion
resistance under different environmental conditions. In addition, PVDF has been widely
discussed and studied in recent years due to its special piezoelectric characteristics, which
make it applicable to the preparation of self-powered wearable pressure sensors. However,
the conversion efficiency of its piezoelectric performance and the stability of its signal
transmission are far from those required in practical applications, thus necessitating further
experiments on its structural optimization.

Among the polymer sensors with various structures, the pyramid structure shows
high sensitivity under low pressure, while the pillar microstructure exhibits a larger and
more stable linear sensing recognition area. Compared with the pyramid and pillar struc-
tures, microdome-structured sensors show better durability and a lack of fatigue over
multiple cycles. Moreover, porous materials show a lower detection limit and a larger
deformation detection range. The unique pressure detection function of porous microstruc-
tures across large size ranges and different planes enables their application to detection
in three-dimensional space. Finally, as widely used, multi-functional, flexible electronic
materials, bionic materials also show a variety of microstructures, including nanoscale
cracks, hierarchical structures, porous structures, and sphenoid surfaces. Different struc-
tures show different performance characteristics. For example, nanoscale crack structures
show ultra-high sensitivity with respect to detecting small vibrations along with high
elasticity and stability. The compression strain range of hierarchical structures can reach
95%, while porous structures and sphenoid surfaces display a wide range and ultra-low
operating voltage.

For the future development of ideal flexible pressure sensors, such sensors need to
have both ultra-high response sensitivity and an ultra-large sensing range, but these two
parameters are often contradictory. The development of these two parameters of the sensing
material such that they are reasonable and balanced constitutes an important problem
that researchers will need to solve. In this paper, the effects of various microstructures on
sensing performance have been summarized. Different morphologies of microstructures
can be designed for a sensor according to the desired performance characteristics and
application scenario requirements, and the optimal structure can be adjusted by weighing
and comparing sensor performance (e.g., sensitivity, response time, detection limitation
value, linear range, and duality).

In addition, the development of a flexible bifunctional or multifunctional sensor is
an important topic for future research. Multi-functionality can be achieved by designing
and preparing multi-functional materials [157,158] or integrating materials with various
sensing abilities [159,160]. Most of the reported sensor devices are not an integrated
unit but have a simple layout with two separate sensing elements lying in parallel on
the same side of the substrate. Future efforts will be directed towards determining a
method with which to integrate the sensing elements into multi-functional devices and
thus realize applications in flexible electronic systems. Lastly, in addition to the above
sensing performance-related problems, the comfort of flexible sensors when worn for a
long time in practical applications has also attracted an increasing amount of attention with
respect to aspects such as breathability, biocompatibility, waterproofing, the prevention of
sensory interference, etc. [18,161,162]. Therefore, the development of new types of ultra-
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thin flexible sensors with excellent breathability and anti-perspiratory properties in order
to achieve comfortable long-term wear is another research direction.
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