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Abstract: Ultra-high-molecular-weight polyethylene (UHMWPE) matrices containing low-density
polyethylene (LDPE), hydroxyapatite (HAp) as filler, and rosemary extract (RM) as stabilizer were
investigated for their qualification for long-term applications. The significant contributions of the
blend components were analyzed, and variations in mechanical properties, oxidation strength,
thermal behavior, crystallinity, and wettability were discussed. SEM images of microstructural
peculiarities completed the introspective survey. The stability improvement due to the presence
of both additives was an increase in the total degradation period of 67% in comparison with an
unmodified HDPE/UHMWPE blend when the materials were subjected to a 50 kGy γ-dose. There
was growth in activation energies from 121 kJ mol−1 to 139 kJ mol−1 when HAp and rosemary
extract delayed oxidation. The exposure of samples to the action of γ-rays was found to be a proper
procedure for accomplishing accelerated oxidative degradation. The presence of rosemary extract
and HAp powder significantly increased the thermal and oxidation resistances. The calculation of
material lifetimes at various temperatures provided meaningful information on the wearability and
integrity of the inspected composites.

Keywords: UHMWPE; LDPE; compatibility; radiation effects; structural modifications

1. Introduction

The manufacture of reinforced polymer materials has become common practice in
the manufacture of improved composites with foreseen durability [1–3]. UHMWPE is a
versatile material whose various purposes include biomedical achievements [4,5], drug
delivery [6], manufacture of orthopedical devices [7], and wearable products [8] and are
sustained by satisfactory mechanical properties and chemical resistance, good friction coef-
ficients, availability for compounding, and, in essence, good durability. For the extension
of long-term durability and improvement in material toughness, the peroxide treatment of
UHMWPE promotes the crosslinking of macromolecules in the presence of vitamin E [9].
However, a promising alternative for the efficient sterilization and the promotion of surface
modification of UHMWPE matrices is radiation processing [10,11]. Recent investigations on
radiation-exposed UHMWPE [12,13] have emphasized that this kind of processing initiates
the formation of several alkyl radicals further converted into oxygen-centered radicals
after their reactions with diffused oxygen. The understanding of the long-term stability of
γ-irradiated UHMWPE is based on the generated radicals and their decay after a maximum
of 10 h from the elapsing of irradiation [14]. The dependence of consumption rates of
polyenyl radicals on the crystallinity degree of UHMWPE is correlated with the diffusion
rate of oxygen, which feeds oxidative degradation [15]. Accordingly, the behaviors of
various sorts of ultra-high-molecular-weight polyethylene matrices follow various kinetics
because the unlikely spreading of radicals between the crystalline and amorphous phases
influences the local abundance of degradation products formed from the inhomogeneous
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distribution of former radicals. An analysis of the fragmentation process occurring during
the high-energy exposure of UHMWPE revealed that each dose of 15 kGy created 2 mmol of
macroradicals, and the extraction of a proton by one peroxyl radical required an activation
energy of 108 kJ mol−1 [16]. In fact, the degradation mechanism described previously
states that the main oxidation products (alcohols, ketones, acids, peracids) appeared by
the reactions of hydroperoxides, whose concentrations grew proportionally with applied
dose [16].

Hydroxyapatite-containing UHMWPE composites were explored for the identifica-
tion of the interaction degrees among components and the evaluation of inorganic phase
contribution to the improved stability of the host matrix [17]. Radiation-induced processes
in polymer matrices have not been explored fully.

The association of various sorts of polyethylene with UHMWPE can determine a rein-
forcement of blend compositions that can be easily compatibilized with several inorganic
fillers, such as hydroxyapatite [18,19], carbon nanotubes [20], graphene [21], inorganic ox-
ides [22], nanoclays [23], and many others. All these hybrid systems confirm the availability
of the basic component for intimate, compatibilized materials destined for a large variety of
applications requiring high durability. Oxidative resistance can be greatly increased by the
addition of an antioxidant. Some detailed studies have been achieved with vitamin E, which
depict the provided good protection against aging during operation or over shelf life [24,25].

The availability of polyethylene to generate high-performance blends has been com-
prehensively studied [26,27]. Accordingly, some procedures through which the compat-
ibilization of blending components makes possible the achievement of intimate phase
interpenetration during radiation processing have been published [28–30]. The structure
and morphology of various sorts of polyethylene are the favorable features by which
polyethylene is modified due to the action of radiolysis-free radicals and their contribution
to forming intermolecular bridges [31]. The challenge position of γ-treatment on polyethy-
lene blends is motivated by the high number of technologies by which new polymer
materials are converted into materials with expected properties [32].

The association of two types of polyethylene, LDPE and UHMWPE, is based on the
scission of these molecules [33,34], the formation of free radicals, and their recombination
to form new, crosslinked material [35]. Improvement in oxidation resistance has previously
been studied by the addition of biological stimulators [25,36,37], which efficiently protect
polyolefin against aging in biological environments. The medical applications of this tan-
dem polyethylene are guaranteed by the presence of appropriate antioxidant structures [38].
Of course, high-energy irradiation is a convenient technological procedure through which
molecular scission is promoted without difficulties, and it does not need any additional
reagent for the assistance of crosslinking.

The utilization of natural antioxidants for the oxidation protection of irradiated polymers,
especially material destined for medical purposes, is a suitable solution because they are
biologically compatible with the human body, their content of active component is enough
high, and their price is quite accessible [39]. According to our praxis on a range of antioxidants,
rosemary extract is a proficient additive that efficiently blocks the oxidation of polymers by
means of polyphenolic composition [40,41]. The conversion of rosmarinic acid into various
related structures, such as rosmanol or carnosol [41,42], enables long-term protection and
convenient thermal stability in aggressive environments, such as biological surroundings.

In this paper, the effects of component loadings, the presence of rosemary in sample
formulations, and the irradiation conditions are presented. The discussion is turned to the
contribution of γ-processing to the evolution of material states, where the complementary
evaluation methods provide information for the application of radiation technologies.
This study investigates the extension of γ-exposure to sterilization applications, to the
fabrication of medical wear such as scaffolds, and to the conversion of polyethylene waste
into useful products by high-energy methods. The investigated systems and investigation
approach may be considered as new intakes by which the compatibilization technique,
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the association of the two additives, and the applied evaluation background open a new
direction for the large-scale manufacture of ecological materials.

2. Materials and Methods
2.1. Materials

All the studied material compositions are described in detail in a previous paper of
this series [27]. A picture illustrating the blending ratios of the components, including
low-density polyethylene (LDPE), ultra-high-molecular-weight polyethylene (UHMWPE),
hydroxyapatite (HAp), and rosemary extract (RM), is shown in Figure 1.
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Figure 1. Illustration of component loadings for studied patterns.

2.2. Preparation of Samples

The details on the preparation of the investigated samples were reported earlier [27].
All preparatory conditions, including name, size, and weight, were previously specified.
The results obtained for the unirradiated probes were analyzed in the first part of this
series [27]. However, sample preparation by solvent (CHCl3) evaporation at room temper-
ature, the addition of HAp and rosemary powders after homogenization of the polymer
solutions, and the gentle drying of liquid aliquots in aluminum caps were the main stages
accomplished until the specimens were irradiated and measured. The final weights of dry
samples were placed in the range of 3–5 mg.

2.3. Irradiation

Exposure to the action of γ-radiation was accomplished in an irradiation machine
(Ob Servo Sanguis, Budapest, Hungary) by applying the continuous rotation of a hosting
can for the homogenous exposure of γ-processed samples. The applied dose rate was
0.5 kGy h−1. The environment of radiation processing was achieved at room temperature.
Four irradiation doses were selected for the characterization of component interactions,
namely 0, 25, 50, and 100 kGy. Greater values are usually applied in the technological
processing of polymers, while smaller ones (25 and 50 kGy) may be considered extremely
valuable techniques for the radiation sterilization of plastics when an irradiated material
allows it without degradation. All the measurements were performed immediately after
the elapse of irradiation, avoiding the modification of radical distributions over time.

2.4. Chemiluminescence

The evaluation of the thermal and radiation stabilities was carried out with a LU-
MIPOL 3 chemiluminescence spectrometer (Institute of Polymers, Slovak Academy of
Sciences, Bratislava, Slovakia) according with the description of procedures [43]. Two types
of measurements were applied: nonisothermal determinations were conducted at four
heating rates (3.7, 5.0, 10.0, and 15.0 ◦C min−1) for characterizing thermal behavior under
various diffusion rates, while isothermal determinations were performed at 170 ◦C. This
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temperature was a convenient value where the degradation maintained a reasonable rate
to be accurately evaluated. The aluminum caps where the dry investigating materials were
placed did not interfere during photon emission because they were inert relative to the
thermal quanta emission.

The mechanisms of chemiluminescence emission are presented in Figure 2, where
different considerations on the interpretation of emission sources lead to similar comments
on the development of degradation.
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For the characterization of material stability, two kinetic parameters, namely t1/2
(the moment when the rate of radical generation equals the rate of decay) and tmax (the
maximum oxidation time) were taken into consideration.

2.5. FTIR Spectroscopy

The FTIR spectral investigation was achieved with a JASCO 4200A (JASCO, Tokyo,
Japan) spectrometer. The spectra were recorded in the region of carbonyl vibration
(1720 cm−1), which described the evolution of oxidation in correlation with the chemi-
luminescence measurements. The spectral records were the result of 48 scans with a
satisfactory resolution of 4 cm−1.

2.6. DSC

The thermal analysis of the present composites was performed by means of a DSC
823e calorimeter (Mettler Toledo, Switzerland) at a suitable heating rate of 10 ◦C min−1.
The crystallinity degree was calculated with Equation (1):

Xc =
∆Hm

∆H100%,polyole f in
× 100% (1)

where ∆Hm is the measured enthalpy of the melted blends (J g−1), and ∆H100%, polyolefin is
the enthalpy of melting for 100% crystalline LDPE (289.74 J g−1) [44].

2.7. Mechanical Testing

The mechanical survey was achieved by testing conducted on the polymer samples
using an LFM 30 kN Walter & Bai AG Switzerland testing machine at room temperature
according to BS EN ISO 6892-1:2009. Tensile testing was realized on rectangular samples
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with dimensions of Lxlxh = 40 mm × 10 mm × 2 mm at a speed of 5 mm/min, performing
5 tests for each sample. The average values are presented as the final results.

2.8. Contact Angle

The contact angle measurements were conducted with a lab-made device composed
of an xyz mobile table and a DinoLite microscope at ambient temperature (22 ± 1 ◦C)
and relative humidity (20−40%) [2]. A separate testing syringe was dedicated for each
test liquid to avoid crosscontamination. A liquid droplet of about 3 µL was formed at the
end of each syringe and carefully deposited onto the sample surface. The contact angle
was calculated with DinoLite software. The reported contact angle values represented the
average of 5 measurements from both left and right sights. DI water produced by means of
a Millipore system was used in this study. Ethylene glycol (99.8%) and glycerol (99%) were
used as received from Sigma-Aldrich.

The contact angle measurement of a pure liquid presenting known surface tension
and surface tension parameters with respect to a given solid surface is the common way to
evaluate the surface energy that characterizes the interactions of solid material. The surface
free energy (σS) of a solid is defined as the change in the total surface free energy (G) per
surface area (A) at constant temperature (T), pressure (P), and moles (n) [45]:

σS = (δG/δA)T,P,n (2)

The Owens–Wendt theory (also sometimes referred to as the “harmonic mean” method)
was developed to account for specific (polar-type) interactions between solid surfaces and
liquids. Owens and Wendt envisioned the surface energy of a solid as being comprised of
two parts: a dispersive component and a polar component. The dispersive component the-
oretically accounts for van der Waals and other non-site-specific interactions that a surface
is capable of establishing with applied liquids. On the other hand, the polar component
theoretically accounts for dipole–dipole, dipole-induced dipole–hydrogen bonding, and
other site-specific interactions that a surface can establish with applied liquids. Based on
this idea, Owens and Wendt developed a two-parameter model for describing surface
interactions in contrast with the one-parameter model reported by Zisman [46].

Mathematically, the theory is based on two fundamental equations, which describe
the contact interactions between solid surfaces and liquids. The equations are as follows:

- Good’s equation

σSL = σS + σL − 2(σD
L σD

S )
1/2 − 2(σp

L σP
S )

1/2
(3)

- Young’s equation

σS = σSL + σL cos θ (4)

where σL is the overall surface tension of the wetting liquid, σL
D is the dispersive compo-

nent of the surface tension for the wetting liquid, σL
P is the polar component of the wetting

liquid, σs is the overall surface energy of the studied solid, σs
D is the dispersive component

of the surface tension for the solid, σs
P is the polar component of the surface tension energy

of the studied solid, σSL is the interfacial tension between the solid and liquid phases, and
θ is the contact angle between the two contacted materials.

The Owens–Wendt relationship combines the equations of Good and Young to gener-
ate Equation (5):

σL(cos θ + 1)

2(σD
L )

1/2 = (σP
S )

1/2 (σP
L )

1/2

(σD
L )

1/2 + (σD
S )

1/2
(5)

Since the Owens–Wendt theory is a two-component model for solid surface energy, it
is also a two-component model for liquid surface tension. The overall surface tension of
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each probe liquid must be separated into polar and dispersive components as well. This is
achieved using a standard reference surface. The accepted standard reference surface for
two-component liquid surface tension determination is poly(tetrafluoroethylene) (PTFE). Pure,
untreated PTFE has a surface energy of 18.0 mJ m−2, assuming that it can establish no polar-
type interactions. On the other hand, σs = σs

D = 18.0 mJ m−2, as well as σs
P = 0 mJ m−2 for

PTFE. By substituting these values into the primary Owens–Wendt equation, the dispersive
surface tension (σL

D) can be determined for any liquid when the overall surface tension (σL)
is initially known. The real method of evaluation is the measurement of the contact angle
between an investigated liquid and PTFE (θPTFE). The polar surface energy component for a
liquid is accordingly determined by the following difference: (σL

P = σL − σL
D).

2.9. Biodegradability Testing

The assessment of polymeric composite biodegradability was performed by exposure to
a fungi suspension (a mixture of Aspergillus niger, Penicillium funiculosum, Paecilomyces variotii,
and Chaetomium globosum si Gliocladium virens) in the presence of Czapek-Dox nutritive
medium in Petri dishes according to the ISO 846/2019 standard [47]. The incubation was con-
ducted in conditions favorable to fungi germination and growth at T = 30 ◦C and RH = 90%.
Fungal growth was observed at regular intervals of 7, 14, 21, and 28 days.

2.10. SEM

The SEM images were obtained with an FESEM–Auriga scanning electron microscope
(Carl Zeiss, Germany). The selected experimental parameters were a 5 kV acceleration
voltage with a working distance of 4.2–4.3 mm in a high-vacuum room. This tension value
was appropriately required by the compensation accomplished with a nitrogen CC system
that prevented the formation of an electronic cloud. Polymer samples embedded in epoxy
resin with conductive properties were further polished and treated with permanganic
(chemical solution) etching. The prepared surfaces were analyzed in an SESI (secondary
electron secondary ions) detector chamber of an Everhart–Thornley-type model.

3. Results and Discussion

The high-energy irradiation of polymers inevitably produces molecular scissions where
the looser bonds are places. Accordingly, the formation of free radicals initiates two main an-
tagonist processes: crosslinking and degradation [48]. The availability of polyethylene to form
homogenous and stable blends has seldom been confirmed [49,50]. As always demonstrated,
polymers and polymer blends satisfy the requirements of society [51]. Radiation processing
demonstrates constantly that exposure to high-energy radiation (accelerated electrons and
γ-rays) provides pertinent solutions for the foreseen modifications [52]. In addition, the effects
of high-energy treatments are always associated with improvement in oxidation resistance
and, consequently, material durability by the crosslinking of available radical intermediates.

The γ-irradiation of blends consisting of LDPE and UHMWPE is a proper route to
produce improved materials, which may have the required suitability for different ranges
of application, including medical wear, scaffolds, pipes, cases, sheets, bottles, automotive
items, and many others. Their thermal strength is obtained not only due to appropriate
chemical structures, convenient morphology, functional properties, but also to the long-
term resistance offered by stabilizers [53]. The homogeneity of γ-exposed materials is
assured by spreading radicals in polymer matrices and high concentrations of radicals
along the radiation track.

3.1. Chemiluminescence

Chemiluminescence evaluation of polymer stability is considered accurate insight
into structural changes during degradation or molecular modifications [54]. After the
γ-radiolysis of polymer matrices, the progress of oxidative degradation advances differently
because the components have their own contribution to the fates of free radicals. In Figure 3,
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emerging oxidation was conducted in relation to the present fillers, which acted efficiently
in the diminution of oxidation rates.

Polymers 2023, 15, x FOR PEER REVIEW 3 of 16 
 

 

always demonstrated, polymers and polymer blends satisfy the requirements of society 

[51]. Radiation processing demonstrates constantly that exposure to high-energy radia-

tion (accelerated electrons and -rays) provides pertinent solutions for the foreseen mod-

ifications [52]. In addition, the effects of high-energy treatments are always associated 

with improvement in oxidation resistance and, consequently, material durability by the 

crosslinking of available radical intermediates. 

The -irradiation of blends consisting of LDPE and UHMWPE is a proper route to 

produce improved materials, which may have the required suitability for different ranges 

of application, including medical wear, scaffolds, pipes, cases, sheets, bottles, automotive 

items, and many others. Their thermal strength is obtained not only due to appropriate 

chemical structures, convenient morphology, functional properties, but also to the long-

term resistance offered by stabilizers [53]. The homogeneity of -exposed materials is as-

sured by spreading radicals in polymer matrices and high concentrations of radicals along 

the radiation track. 

3.1. Chemiluminescence 

Chemiluminescence evaluation of polymer stability is considered accurate insight 

into structural changes during degradation or molecular modifications [54]. After the -

radiolysis of polymer matrices, the progress of oxidative degradation advances differently 

because the components have their own contribution to the fates of free radicals. In Figure 

3, emerging oxidation was conducted in relation to the present fillers, which acted effi-

ciently in the diminution of oxidation rates. 

0 500 1000 1500
0.0

0.2

0.4

0.6

0.8

5

4

3

2

1

 

C
L

 I
n

te
n

si
ty

 (
H

z 
g

−
1 ) 

x 
10

−
7

Time (min)  

1 2
0

400

800

1200

t
max

t
1/2

C
L

 I
n

te
n

si
ty

 (
H

z
 g

−
1
) 

* 
1
0

−
7

Temporal parameter (min)
 

(a) (b) 

Figure 3. (a) Isothermal CL curves recorded on samples with different polyolefin compositions. (b) 

Temporal kinetic parameters of t1/2 and tmax characterizing the progress of oxidation in the studied 

samples. Testing temperature: 160 °C; irradiation dose: 50 kGy. Compositions: (1) LDPE/UHMWPE; 

(2) LDPE/HAp; (3) LDPE/HAp/RM; (4) LDPE/UHMWPE/HAp; (5) LDPE/UHMWPE/HAp/RM. The 

symbol colors are the same for both graphs. The colors of the bars have the same meanings as in (a). 

The kinetic analysis of the oxidation of these blends after being subjected to the action 

of -radiation revealed the consistent contributions of hydroxyapatite and rosemary pow-

der, even when added separately or as an antioxidant couple. These two compounds 

showed individual stabilizing features offering the possibility to delay oxidation, but the 

material stability with the combined effect became much more relevant. The protection 

mechanisms are totally different. If the active components of rosemary extract, especially 

the majoritarian constituent of carnosic acid [55], act as the scavengers of free radicals by 

the substitution of phenolic-proton-like hindered phenols [56], hydroxyapatite delays ox-

idation by the adsorption and superficial blocking of the chain initiator in degradation 

Figure 3. (a) Isothermal CL curves recorded on samples with different polyolefin compositions.
(b) Temporal kinetic parameters of t1/2 and tmax characterizing the progress of oxidation in the studied
samples. Testing temperature: 160 ◦C; irradiation dose: 50 kGy. Compositions: (1) LDPE/UHMWPE;
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The kinetic analysis of the oxidation of these blends after being subjected to the action of
γ-radiation revealed the consistent contributions of hydroxyapatite and rosemary powder,
even when added separately or as an antioxidant couple. These two compounds showed
individual stabilizing features offering the possibility to delay oxidation, but the material
stability with the combined effect became much more relevant. The protection mechanisms
are totally different. If the active components of rosemary extract, especially the majoritarian
constituent of carnosic acid [55], act as the scavengers of free radicals by the substitution of
phenolic-proton-like hindered phenols [56], hydroxyapatite delays oxidation by the adsorption
and superficial blocking of the chain initiator in degradation development [2]. The evolution
of oxidation described by the temporal parameters (Figure 3b) highlights the favorable con-
tributions of the used fillers on the last stage of oxidation. In an earlier step of degradation
when the generation rate for peroxyl radicals exceeded the rate of their consumption, the
stabilization effect presented lower levels. If the oxidation process overtook the t1/2 moment
(when the formation and decay rates were equal), the protection activities became more
visible. It allowed for considering that the stabilization efficiency is more effective and the
oxidation state of this kind of polymer material is maintained at a lower possible level. The
simultaneous presence of both polyolefins, LDPE, and UHMWPE in the radiation-processed
material indicated a good concern in the fabrication of high-performance products with a very
long life time. The high values of the maximum oxidation times (980 min and 1318 min at
160 ◦C and 50 kGy for LDPE/UHMWPE/HAp and LDPE/UHMWPE/HAp/RM, respec-
tively) proved the noteworthy intervention of the used fillers with propitious consequences
on material durability. The solution of the found stability improvement demonstrates the
present proposition as an ecological version of composition.

As can be noticed from Figure 4, there were two temperature ranges that char-
acterized the material stability. The first group, consisting of LDPE/UHMWPE and
LDPE/Hap, needed smaller values of temperatures because their stability was some-
what lower. The second group, composed of LDPE/HAp/RM, LDPE/UHMWPE/Hap,
and LDPE/UHMWPE/HAp/RM, needed elevated temperatures because their thermal
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resistances were more improved. The main reason for this behavior was not only the
modification of crystallinity degree [57], but also the radiation crosslinking of the polymeric
components or the presence of the stabilizing couple. It should be noted that the extension
of oxidation induction time for the second group of compositions was also an indication of
their stability over a larger temperature range.
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The progress of oxidative degradation ran in concordance with the characteristic values
of activation energies (Table 1). Since the investigated materials were subjected to γ-irradiation,
they required less energy compared with pristine samples [27]. However, the values found
were high enough to describe good thermal stability after radiation processing.

Table 1. Activation energies required for the radiation oxidation of LDPE/UHMWPE compositions
irradiated at 50 kGy.

Sample
OIT (min) Correlation

Factor
Ea

(kJ mol−1)160 ◦C 170 ◦C 180 ◦C 190 ◦C

LDPE/UHMWPE 462 258 104 - 0.99410 121
LDPE/HAp 415 198 99 - 0.99998 116
LDPE/HAp/RM - 480 186 109 0.98922 127
LDPE/UHMWPE/HAp - 385 172 81 0.99998 132
LDPE/UHMWPE/HAp/RM - 634 288 124 0.99952 139

The nonisothermal CL measurements, which provided the peculiar values of temper-
ature for the start of oxidation, allowed visualizing the intimate structural modifications
produced by the increase in temperature. These spectra presented in Figure 5 reveal some
peculiarities related to the formation of peroxyl radicals as the initiators of oxidation in
the mechanism of polymer aging [58]. The pristine samples, which were unirradiated
specimens, presented a smooth evolution of degradation, where the hydroperoxides were
instantly converted into oxygenated products and no accumulation of these initiators oc-
curred (Figure 5a). At 50 kGy, when a radiation pretreatment led to the fragmentation of
polymer chains, a shoulder appeared at 175 ◦C. It indicated the availability of hydroper-
oxides to initiate several degradation chains, continuing the degradation with a higher
amplitude after this temperature was overtaken. The direct consequence of this behavior
led to in increase in the values of onset oxidation temperature (Figure 5b). Longer exposure
of the samples by irradiating them at 100 kGy decreased the stability of the materials, and
the OIT values become smaller (Figure 5c). While the presence of hydroxyapatite tended to
allow easier penetration of oxygen, which fed oxidation, the added rosemary extract acted
as an efficient antioxidant. These contradictory directions placed the nonisothermal curves
in certain orders that differed as the value of irradiation dose was changed.

The implications of γ-irradiation in the modification of the studied polymer blends
found possible applications in the recycling of polyethylene waste, as the final properties
could be further improved, and the amelioration obtained was illustrated in the relevant
functionality over a long period of time. The lack of structural changes at a low irradiation
dose of 25 kGy (Figure 6) suggested that radiation sterilization is a proper treatment for
implementation in microbiological cleaning.

These blends may serve as an example of quality improvement by means of high-
energy technology assisted by nanofillers and natural antioxidants.

The chemiluminescence investigation proved that the compatibilization of LDPE
and UHMWPE in stable blends may be achieved by pertinent γ-irradiation doses when
appropriate compounds delay oxidation.
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3.2. FTIR Spectroscopy

Advances in polymer degradation can be worthily described by the accumulation of
degradation products containing carbonyl units. The initial peak was narrow, illustrating
the presence of this function in the pristine material (Figure 7a). It was assumed that this
peak may be explained by the presence of extract components or some impurities of HAp.
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LDPE/UHMWPE/HAp; (–blue) LDPE/UHMWPE/HAp/RM.

Upon the γ-radiolysis of polymeric components, the formation of carbonyl-containing
structures is inevitable. The growth in the measured transmission values followed the
accumulation of these compounds according with the existing compositional restrictions.
Figure 7b proves that the coupling of HAp/RM was very efficient, and the amount of car-
bonyls reached the lowest level, even though the spectroscopic determination established a
contrary situation.

During the operation period, these studied blends could be aged under energetic
conditions, but the additives protected them, and their lives were accordingly extended.
The important aspect to be considered is the preservation of the oxidation state when the
coupling of HAp and RM effectively delayed the deterioration of the material condition.

3.3. DSC

The application of this thermal analysis procedure is based on structural modifications,
which are tracked by material response to heating processes [59,60]. The characterization of
component behaviors during the compatibilization of the LDPE-UHMWPE mixtures was
suggested by the evolution of the DSC curves in which the thermal features were envisaged.
DSC curves for the LDPE-based composites investigated at different doses are shown in
Figure 8. These DSC curves show the temperatures at which components were turned
from solid to liquid states. The Tm of UHMPE was higher than the similar value for LDPE,
which reflects individual thermal behaviors of the components. Because of the lamellar
structure of UHMWPE [61], its penetration by LDPE was difficult. While the irradiation
of the LDPE/UHMWPE composite with a γ-dose of 50 kGy led to a decrease in the first
endothermic melting peak by about 2 ◦C compared to the unirradiated sample, the Tm of
UHMWPE increased from 132.7 ◦C (initial sample) to 133.6 ◦C at a dose of 100 kGy. This
composite exhibited a higher Xc at all doses (32.9% for 0 kGy, 38.4% for 50 kGy, and 38.8% for
100 kGy) compared to the other corresponding formulations due to the easier crystallization
of lower-molecular-weight chains occurring as an effect of radiation-induced cleavage.
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Figure 8. DSC thermograms for various LDPE-based composites (first heating scan) at
0 kGy (a), 50 kGy (b), and 100 kGy (c) (exo down). Sample compositions: brown)
LDPE/UHMWPE; (–red) LDPE/Hap; (–black) LDPE/Hap/RM; (–green) LDPE/UHMWPE/Hap;
(–blue) LDPE/UHMWPE/Hap/RM.

The simultaneous presence of both types of polyethylene was marked by separate
peaks and revealed a clear separation of the phases and a weak interaction between
them [62]. The thermal effects of the additives (hydroxyapatite and rosemary extract) are
profoundly noticeable because the particles affected the interface energy [63]. These non-
overlapping curves suggest different degrees of miscibility [64] when the added particles
were surrounded by unlikely polymer entanglements.

The polyethylene blends studied by DSC presented some peculiarities that demon-
strate certain compatibilization degrees due to the structural similarities in the molecular
configurations. However, the different morphological aspects of components led to mod-
ifications in the compatibilization features (Figure 9). The effects of inorganic materials,
such as Hap [65], as well as polyphenol types of natural antioxidants [66], cause different
thermal responses related to interface cohabitation, where crystalline islands are spread
through amorphous material. The presence of Hap in the composites led to a decrease in
Xc values compared with the LDPE/UHMWPE composites at all the irradiation doses. For
the LDPE/Hap composite, Xc increased by ~20% only at 50 kGy compared to the untreated
sample due to the nucleation role of Hap [67]. At the dose of 50 kGy, decreases in both Xc
and Tm associated with LDPE and UHMWPE were recorded as being accompanied in the
LDPE/UHMWPE/Hap and LDPE/UHMWPE/Hap/RM composites. At this dose, the
mobility of the polymer chain was higher, favoring the occurrence of radical decay. This
behavior can be explained by “frozen free radicals” that hindered the chain mobility of rad-
icals formed in the crystalline regions of the polyethylene during irradiation [68]. Similar
effects of decreasing degree of crystallization with irradiation dose have been observed
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for blends of polyethylene/rosemary extract [69], poly(lactic acid) (PLA)/Hap [2], and
UHMWPE/Vitamin E [70].
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The introduction of RM into the composites led to a slow decrease in the Tm of LDPE
due to a plasticizing effect. At the 100 kG dose (Figure 9), a decrease in the Tm of LDPE was
observed for the LDPE/Hap/RM, LDPE/UHMWPE/Hap, and LDPE/UHMWPE/Hap/
RM composites by about 2 ◦C compared to untreated composites. It was found that
the Tm values of UHMWPE became higher for the LDPE/UHMWPE (133.6 ◦C) and
LDPE/UHMWPE/Hap/RM (133.6 ◦C) composites at 100 kGy in comparison with the ini-
tial composite values (132.7 ◦C and 132 ◦C, respectively). It may be noticed that there
was an evident increase in the Xc values for the LDPE/UHMWPE, LDPE/Hap/RM,
LDPE/UHMWPE/RM, and LDPE/UHMWPE/Hap/RM composites at 100 kGy in com-
parison with the crystallinity degrees of the initial composites by 18%, 15%, 22%, and 10%,
respectively. The presence of rosemary extract in the polyolefin matrix had a favorable
effect on the inhibition of the reaction of free radicals with oxygen during radiation process-
ing. It was accompanied by growth in the crystalline phase [71]. It was expected that the
radical decay rate in the crystalline region would be very low due to the restriction in the
macromolecular chains [72]. Higher crystallinity was associated with shorter chains that
crystallized easier, leading to the radiation protection imparted by Hap and RM moieties.
These finding were consistent with the chemiluminescence results (Figure 3).
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As the results indicate, the thermal effects of the studied additives, Hap and RM,
were important on the lifetimes of the materials, and their concentrations must be carefully
selected so that the properties of final products must be equilibrated products with long-
term applications.

3.4. Mechanical Testing

The characterization of material viability involves the description of mechanical prop-
erties that define the intimate cohesion and integrity of material. The availability of
polyethylene to be crosslinked under the action of γ-radiation may be compared with
the behavior of polyethylene structures containing a certain degree of unsaturation [73].
Figure 10 illustrates some mechanical properties measured for LDPE-based composites.
The presence of Hap induced a slight modification in the continuity of the material, while
rosemary extract was involved in the crosslinking tendencies due to free radical activities.
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Figure 10. Mechanical properties for various LDPE-based composites at three processing doses. Types
of samples: (1) LDPE/UHMWPE, (2) LDPE/HAp, (3) LDPE/HAp/RM, (4) LDPE/UHMWPE/HAp,
(5) LDPE/UHMWPE/HAp/RM. (a) tensile strength, (b) yield stength, (c) deformation at failure,
(d) Young modulus.

As it is known, the mechanical properties of composite materials are dependent on the
type and quantity of filler materials in the basic matrix, their geometry, and their orientation,
as well as the method of manufacturing the composite materials. The degree of interaction
at the interface between components is one of the most important factors that affect the final
performance of composite materials, with a strong degree of interaction having a beneficial
effect on mechanical properties. From Figure 10, the tensile strength and yield strength
showed the highest values for P1, P4, and P5 where UHMWPE was present, regardless of
processing condition or the use of irradiated or nonirradiated materials. The values of yield
strength (Figure 10b) showed similar aspects because the UHMWPE component restricted
the material flow. For the unirradiated samples, the values of deformation of failure in
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the cases of P1, P2, and P3 (Figure 10c) were much higher with respect to the other two
compositions, which may be ascribed to material strength values near their flow limits. An
opposite behavior may be noticed for Young’s modulus (Figure 10d), when the interactions
between components had a similar significance to that reported for deformation at failure.

The γ-irradiation produced the fragmentation of macromolecules, followed by two
contradictory processes: the oxidation and recombination of free radicals and the reassem-
bling of molecules happening simultaneously with crosslinking. The HAp loading as an
inorganic filler was involved in the modification of the rate of oxygen diffusion and in the
stabilization activity as well [2]. Rosemary extract acted efficiently on the oxidation delay.
Consequently, their attendance modified the mechanical properties of the studied poly-
mer blends. The values of tensile strength (Figure 10a) increased with the yield strength.
The same consequences of crosslinking may be noticed for the other properties, which
were modified in relation with the radiation-processing effects. These results have been
previously reported for UHMWPE [74,75] and LDPE [76,77].

The exposed results are reliable proof for the implementation of radiation processing
in the production of high-quality polyethylene-based products, which are appropriate
materials for a large variety of items subject to the action of destructive agents working
under hazardous energetic conditions.

3.5. Contact Angle

The influence of liquid surroundings on polymer surfaces makes a difference in the
adhesion, penetration, and lifetime of products. The current behavior of any polymeric
material is undoubtedly related to the humidity characterizing the environmental condi-
tions [78]. Wettability controls the penetration of liquids into materials and determines
material durability. Consequently, the evolution of product state is influenced by the inti-
mate interaction between liquid superficial pellicles and the inner polymer layers that can
be disturbed by this tunneling penetration [79,80].

The contact angle measurements revealed the influence of molecule fragmentation,
which produced an increase in wettability proved by the reduction in the contact angle
values [81]. All the studied compositions of LDPE-based blends showed this tendency
(Figure 11), but the diminishing degrees depended on the presence of the fillers, HAp and
RM, which mitigated alteration in superficial tension. Figure 12 correlates the consequences
of polymer degradation with superficial interaction when the droplets changed their
adhesion angles in relation to the degree of scission. The peculiar actions of HAp and
RM were revealed by their involvement in the degradation process when the inhibition
of oxidation, as well as changes in the diffusion migration of oxygen and free radicals,
remodeled the wettability behavior.

The interference of additional compounds was highlighted by the moderation of
differences that existed between same-structured materials exposed at various γ-doses. The
overall results related to the competition between the progress of oxidative degradation
and the protection efficiency of additives was integrated into the evolution of the superficial
behavior of the currently processed blends.

In Figure 12, the most striking differences in the values of surface energies were found
for the LDPE/HAp formulation. This material had neither high-crystalline UHMWPE nor
the efficient protector of RM. This demonstrates that the presence of these compounds in
the structures of other formulations generated interaction effects with contacting liquids.

The liquids used were water, glycerol, and ethylene glycol with different surface
tension values (72.8, 63.4, and 47.7 nN m−1, respectively) [82], and they could describe
the responses of materials related to aging evolution when these materials operated under
unlikely conditions. The smallest differences between the values of surface tension could
be noticed for the complete composition, where UHMWPE, Hap, and RM were included in
the LDPE matrices. Thus, the hydrophilicity was modified according to the contributions
of all the particle components existing in the outer limit surface of the material. A certain
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composition led to a particular roughness [83], whose effects accompanied the contributions
of the differences due to component alternation.
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3.6. Biodegradability Testing

The biodegradability of polymeric materials by means of microorganisms can take
place through various mechanisms, such as enzymatic depolymerization or polymer degra-
dation by enzymatic hydrolysis [84]. The role of these mechanisms is to obtain short-chain
compounds or small molecules (oligomers, dimers, or monomers), easily assimilated by
cells, as well as the induction of functional groups in the polymer structure that reduce the
degree of hydrophobicity of a material [85,86].

In general, polyethylene-based materials are long-chain polymers with high molecular
weights and high degrees of hydrophobicity, making them not susceptible to degrada-
tion by microorganisms [86,87]. However, the application of various physical or chemical
treatments can induce changes in the degree of crystallinity, molecular weight, mechan-
ical properties, or surface properties, which are strictly connected to increased rates of
biodegradability [88].

In Figure 13, the images obtained of samples exposed to a fungi mixture after an
incubation time of 28 days are presented. As can be observed, there were different fungi-
covering degrees as a function of both sample compositions and irradiation dose. Thus,
the greatest biodegradation susceptibility was observed for the LDPE/UHMWPE and
LDPE/UHMWPE/HAp blends irradiated at 100 kGy, with more than 80% of the surface
attacked by fungi. In similar conditions, LDPE/UHMWPE/HAp/RM presented about 50%
and, for LDPE/HAp and LDPE/HAp/RM, about 25% of their surfaces were covered by
fungi. It must be noted that, after 7 days, only the edges of sample were attacked by fungi,
with the most significant differences between samples observed starting at the 14th day.

The consequences of γ-irradiation as an accelerated degradation process were found
through the availabilities of the materials to bioattack. The visual inspection placed the
biodegradability of the studied samples in the following order:

LDPE/UHMWPE/HAp > LDPE/UHMWPE > LDPE/UHMWPE/HAp/RM >
LDPE/HAp > LDPE/HAp/RM

The increase in the degree of biodegradability with irradiation dose was a consequence
of radiation-induced degradation (probably chain scissions) [89,90], which created favorable
conditions for the development of fungi. The resulting compounds with low molecular
weights were easily assimilated by cells, and the induction of functional groups with
oxygen (i.e., carbonyl and carboxyl, as shown in the FTIR study) increased the surface
hydrophilicity of the materials and improved the ability of the fungal strains to form a
biofilm on polyethylene [90,91].
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The detailed analysis of the biodegradation of polymer composites is an up-to-date
subject that reveals the necessity of this kind of study to demonstrate the durability of
materials [92]. The evolution control of biodegradability is a main purpose in applications
of polymers, especially in the medical field [93].
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Figure 13. Images of the samples exposed to a fungi mixture after an incubation time of
28 days. Types of samples: (a–c) LDPE/UHMWPE, (d–f) LDPE/HAp, (g–i) LDPE/HAp/
RM, (j–l) LDPE/UHMWPE/HAp, (m–o) LDPE/UHMWPE/HAp/RM. Irradiation doses: (a,d,g,j,m)
0 kGy, (b,e,h,k,n) 50 kGy, (c,f,i,l,o) 100 kGy.

3.7. SEM

The SEM images obtained by the morphological investigation are presented in
Figure 14. Some peculiarities related to the modifications occurring in the mass of the
polymer materials could be analyzed as the results of the radiolysis process [94]:

- The free radicals resulting from molecular scissions were the intermediates that were
involved in several decay reactions according to the degradation mechanism [56];

- The material densification illustrated by the blackened images was the consequence
of crosslinking. When the rosemary extract was present, the process took place more
evidently due to the stabilization activity of polyphenol components;

- Decrease in the size of HAp particles was also a noticeable effect, which could be
ascribed to the interactions between them and radicals that penetrated the surface
through the material holes;
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- Energy transfer occurred in the irradiated materials, stimulating the structural strength-
ening [95], which improved material durability. This behavior was also sustained by
chemiluminescence measurements that provided direct information on the intimate
changes in polymer configurations;

- The SEM images (Figure 14) are relevant proof for the involvement of the added
compounds in the evolution of the material aging that took place at various rates
when the polymer products were subjected to stressing actions.
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4. Conclusions

The current study presents useful information regarding the radiation processing
of various LDPE blends, where UHMWPE, hydroxyapatite, and rosemary extract com-
pleted the formulations. This technological procedure proved its benefits when the two
polyethylene materials were protected by the named additives. The irradiation technique
demonstrated their availability for the production of resistant materials. The relevant
oxidation stability maintained even at high-irradiation γ-doses recommends these for-
mulations as appropriate compositions for the manufacture of a large variety of items,
including pipes and sealing O-rings or stoppers; protective sheets and common com-
modities; cases and bottles for food handling and beverages; and construction items and
elastic buffers. Based on stabilization with rosemary extract, these compositions, especially
LDPE/UHMWPE/HAp/RM, may be processed for the production of a large spectrum of
items that are permanently in contact with people. The ecological features of these compo-
sitions are essential for applications in polymer recycling, when the valorization of polymer
wastes becomes a part of human attitudes with respect to nature. The present results
indicated that these kinds of materials may improve their lifespans through γ-processing.
The activation energy values required for oxidative degradation were appropriate for the
characterization of pertinent stability over long periods of operation. The contributions
of the additives to the extension of stability consisted of their intimate interactions with
free radicals, which were hindered to further promote material oxidative degradation. The
proposed solutions may be taken into consideration for the manufacture of a large variety
of products with foreseen durability.
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