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Abstract: In this paper, a red-eared slider turtle is used as the prototype for the bionic design of
the foamed silicone rubber sandwich structure. The effect of impact angle on the performance of
the foamed silicone rubber sandwich structure against low-velocity impact is studied by the finite
element method. The numerical model uses the intrinsic structure model of foamed silicone rubber
with porosity and the three-dimensional Hashin fiberboard damage model. The validity of the model
was verified after experimental comparison. Based on the finite element simulation of different
impact angles and velocities, the relationship between impact velocity and residual velocity, as well
as the penetration threshold at various impact angles are obtained, and the change law of impact
resistance of foamed silicone rubber sandwich structure with impact angle and velocity, as well as
the damage pattern of sandwich structure at different impact angles and velocities are given. The
results can provide a basis for the impact resistance design of the bionic foamed silicone rubber
sandwich structure. The results show that, at a certain impact speed, the smaller the impact angle,
the longer the path of the falling hammer along the plane of the sandwich structure, the lighter the
damage to the sandwich structure and the greater the absorbed energy, so that avoiding the impact
from the frontal side of the sandwich structure can effectively reduce the damage of the sandwich
structure. When the impact angle is greater than 75◦, the difference in impact resistance performance
is only 2.9% compared with 90◦, and the impact angle has less influence on the impact resistance
performance at this time.

Keywords: red-eared slider turtle; foamed silicone rubber sandwich structure; finite element simulation;
impact angle; damage mode; impact resistance

1. Introduction

In recent years, biostructural materials have gained great interest because they exhibit
mechanical properties that far exceed those of synthetic materials [1–5]. As a typical sand-
wich structure, they have evolved a complex hierarchy through long-term natural selection,
usually consisting of a keratin layer, a dorsal cortical layer, a middle foamy cancellous
bone layer, and an abdominal cortical layer, which is considered a defense structure against
environmental intrusion to resist extreme mechanical forces, which include sharp, high-
strain-rate attacks of crocodiles [6,7]. In this paper, we designed a bionic sandwich structure
with unique properties based on the red-eared slider turtle shell, which can be used in
protective armor and panel structures such as aircraft wings, floors, and ship hull shells.

So far, researchers at home and abroad have carried out some experimental and nu-
merical simulations of composite structural materials of bionic tortoiseshell back armor.
Xu Zhang [8] systematically analyzed the damage behavior of tortoise shells under differ-
ent immersion times and impact cycles and investigated the impact kinetic behavior of
tortoise shells during impact wear, which provided a reliable experimental basis for the
design of bionic materials. Professor Fengchun Jiang’s group at Harbin Engineering Uni-
versity designed a multilayer composite material with alternating superimposed titanium
metal plates and silicon carbide fiber-reinforced aluminum matrix composite plates, and the
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strength and toughness of the composite structural material were significantly improved [9].
Pei, BQ [10] studied the chemical composition of the shell structure and its mechanical
properties by investigating the composition of the compounds in various parts of the shell,
based on the shell keratin sheath and spongy bone. Based on the microstructure of the
carapace keratin sheath, spongy bone and spine, a bionic sandwich structure consisting of
plate, core and back plate was designed by using modeling software. The impact resistance
of the bionic structure was verified by finite element analysis and drop hammer experi-
ments. Numerical results showed that all the bionic structures showed different degrees of
impact resistance improvement compared to the control group. Prasad, N [11] generated
functionally graded two-stage fiber concrete composed of steel and polypropylene fibers
based on the impact resistance bionic of turtle shells to enhance impact resistance and
damage mitigation.

Considering that the turtle shell may be impacted from all directions along with the
purpose of the designed synthetic bionic sandwich structure, these areas are vulnerable
to the impact of foreign objects, such as debris thrown from the runway during landing,
birds in the sky, etc., which may cause serious damage to the target structure [12]. At the
same time, in a real situation, there are very few cases that completely satisfy the vertical
impact, the impact of foreign objects on the sandwich structure often comes with a certain
angle, and the direct adoption of the findings of positive impact to explain the widely
occurring events of different impact angles, in reality, is not based on sufficient evidence.
The specific damage pattern of the sandwich structure after the impact of foreign objects
is very complex, and the damage and energy absorption become more complicated when
coupled with the frictional slip effect existing at different impact angles [13]. In this paper,
a survey of the literature on the effect of the impact angle on sandwich structures was
conducted. Pascal et al. [14] studied the damage mechanism of sandwich structures with
different stacking sequences at tilt angles of less than 15 degrees. Boonkong et al. [15]
experimentally investigated the low-velocity impact response of curved aluminum alloy
sandwich panels at different impact angles, analyzed their energy absorption characteristics
and corresponding failure mechanisms, and found that the perforation increased with the
increase of the impact angle. Chen, Kai et al. [16] explored the effect of impact angle on
the dynamic response of a steel trapezoidal corrugated sandwich plate in their simulation
model and concluded that the reason why the dynamic response of the structure is more
affected by the impact angle is the different contact area between the falling hammer and
the structure due to the difference in impact angle.

Although a great deal of research has been conducted on tortoiseshell back armor
bionics, it has been limited to three-layer sandwich structures composed of foam and
honeycomb, balsa wood, etc. Compared with these sandwich structures, there is a lack
of more comprehensive experimental studies on rubber sandwich structures. Foamed
silicone rubber sheet is one of the good core materials. As a kind of rubber with low
density, it is light, soft, elastic, not easy to transfer heat, and has excellent mechanical
properties such as anti-shock, impact mitigation, thermal insulation, and sound insulation.
In addition, although a lot of research has been conducted on the mechanical properties
of sandwich structures under different impact angles, when the impact angle is large, the
test conditions are limited by the test and the test is difficult to implement, and scholarly
studies of the oblique impact conditions are often based on a specific angle; the mechanical
properties of rubber sandwich structures under different impact angles are still lacking a
more comprehensive study. Under impact conditions, the sandwich structure will definitely
produce damage, which is also inevitably accompanied by the transformation and transfer
of energy, and it is important to explore the damage mechanism to improve the impact
resistance of the bionic sandwich structure. In view of this, this paper focuses on the
analysis and discussion of the impact angle and speed of the impact on the effect of damage
on the foamed silicone rubber sandwich structure.
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2. Materials and Methods
2.1. Bionic Sandwich Structure Design

The adult red-eared slider turtle has a long oval body, a gently elevated dorsal carapace
with distinct ridges, and a serrated posterior edge, and it is considered to be an invasive
species. The microstructural characteristics of the red-eared slider turtle obtained from the
scanning electron microscopy (SEM) results in the literature [6] are shown in (b) in Figure 1.
As shown in the figure, the armor is composed of a sandwich composite structure that
consists of a relatively dense exterior covering the interior of a fiber foam network, a
biomimetic design based on its structural features. The sandwich structure in this study is
composed of PVB/ethanol solution coating, unidirectional carbon fiber layer, and foamed
silicone rubber sandwich layer, taking into account the size of the tortoiseshell back armor
structure and the size of the impact test specimen. The size of the sandwich structure
adopts 2.5 times the size of the same layer level of the tortoiseshell back armor, and the size
of its structure is 100 mm × 100 mm × 8.9 mm. The thickness of each layer of PVB/ethanol
solution coating is 5 µm, there are a total of 60 layers, total thickness is 300 µm, thickness
of unidirectional carbon fiber layer is 0.15 mm, density is 300 g/m2, thickness of foam
silicone rubber is 5 mm, and density is 950 kg/m3. Figure 1c represents the stacking order
of sandwich structure, respectively, coating (Co)60/(0◦)6/(90◦)6/Core/(0◦)6/(90◦)6, the
stacking order is top-down, and the subscript indicates the number of repetitions.
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(c) [6]A μCT reconstruction modified using an SEM fractography showing the sagittal surface of the 

Figure 1. Bionic red-eared slider turtle sandwich structure design: (a) A macroscopic morphology
of a turtle shell. (b) [6] A cross-sectional view of the turtle shell carapace showing composite layers.
(c) [6] A µCT reconstruction modified using an SEM fractography showing the sagittal surface of the
carapace rib. The fractography reveals the dorsal and ventral cortices and the cancellous interior of
the rib. (d) Schematic diagram of stacking sequence of bionic sandwich structure and impact region.
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2.2. Ontological Model and Numerical Simulation Method
2.2.1. Composite Laminate Damage Criterion

The failure criterion is necessary to predict the failure of composite laminates under
composite stress conditions. In the past decades, the 3D Hashin failure criterion is the most
commonly used criterion in research. Thus, the 3D failure criterion based on the Hashin
failure model is described as follows [17–19]:
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σ11

XT

)2
+

(
σ12

S12

)2
+

(
σ13

S13

)2
≥ 1 (1)
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σ11
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≥ 1 (2)
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+

(
σ12
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+
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where XT, XC, YT, and YC are the tensile and compressive strengths in the longitudinal
and transverse directions, respectively, and σij(i, j = 1, 2, 3) are the Corsi stress tensor
components. S12 is the shear strength in the fiber and transverse directions, S13 is the shear
strength in the fiber and thickness directions, and S23 is the shear strength in the transverse
and thickness directions.

In this paper, the damage criterion of composite laminates was modeled using the
user-defined subroutine (VUMAT) employed in Abaqus/Explicit to analyze the damage
mechanism of composite laminates. Table 1 lists the strength parameters associated with
the carbon fiber plies used in the finite element simulations, with parameters obtained from
the manufacturer. It should be noted that the failure elements will be eliminated from the
geometry in order to ensure stability during the analysis and will not be considered in the
next calculation step.

Table 1. The strength parameters adopted in FE simulation.

Parameters Symbol Value Units

Young’s modulus E11, E22, E33 135, 8.8, 8.8 GPa

Poisson’s ratio v12, v13, v23 0.33, 0.33, 0.35 _

Shear modulus G12, G13, G23 4.47, 4.47, 4.0 GPa

Ultimate tensile stress XT, YT, ZT 1548, 55.8, 55.8 MPa

Ultimate compressive stress XC, YC, ZC 1226, 131, 131 MPa

Ultimate shear stress S12, S13, S23 89.9, 89.9, 51.2 MPa

The maximum tensile stress theory is used for the damage criterion. When the max-
imum tensile stress of the material reaches a certain limit value (i.e., the strength limit
measured by the axial tensile test of the material), the material fractures; the strength
formula is as follows:

σ1 ≤ [σ] (5)
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where, σ1 is the maximum tensile stress of the material and [σ] is the strength limit of
the material.

2.2.2. Rubber Intrinsic Structure Model and Parameters

Rubber is a viscoelastic solid and its viscoelasticity is a time-dependent function.
Considering the short duration of the low-velocity impact process, the foamed silicone
rubber is treated as a super-elastomer and reduced to the Cauchy elasticity problem.
Considering only purely mechanical processes under isothermal conditions, the model
is further simplified to an isotropic substance, so that the strain energy density function
W is a function of the right deformation tensor [C] (or the left deformation tensor [B]), or
expressed as a function of the elongation ratio so that the strain energy density function
per unit volume can be expressed as:

W = W
(

I1, I2, J = I1/2
3

)
or W = W(λ1, λ2, λ3) (6)

The performance of foamed silicone rubber differs from that of conventional rubber
in that, at the initial stage of loading of foamed silicone rubber, the rubber undergoes
compressible deformation (Poisson’s ratio v ≈ 0) due to the presence of internal pores, and
when the pores in the rubber are compacted, the material again exhibits properties similar
to those of conventional rubber [20].

Using the porosity f0 to represent the pore size of the foamed silicone rubber, the strain
energy density W of the foamed silicone rubber can then be determined by the material
parameters of the base rubber, i.e., the porosity f0 at the initial time and the invariants I1, I2 ,
I3 of the deformation tensor B.

W = W(I1, I2, I3, f0) (7)

where f0 = 1 − ρP/ρS, ρP is the density of foamed silicone rubber and ρS is the density
of solid rubber. According to the density of solid rubber range of 1100~1200 kg/m3, take
ρS = 1150 kg/m3.

To obtain the expression for the strain energy density of foamed silicone rubber,
the model of a thick-walled spherical shell can be used to represent the internal porous
structure [21]. Assuming that the elongation ratios of the spherical shell in three directions
are λ1, λ2, and λ3 for each point on the solid part, there is a corresponding strain energy
density W and corresponding invariants I1, I2, and I3.

Although the foamed silicone rubber as a whole exhibits extremely high compress-
ibility, the compressibility of the solid part of the rubber is small and can be considered
incompressible. For incompressible materials, the Jacobi determinant j of the deformation
gradient tensor F can be expressed as j = det(F) = 1, and since B = FFT, then I3 = det(B) = 1
holds at any point within the spherical shell. The strain energy density is simplified as
W = W (I1, I2) and is related only to the first and second invariants I1 and I2. The invariants
I1 and I2 at any point in the spherical shell can be expressed as a function of the macroscopic
principal elongation λ̂1, λ̂2, λ̂3; the macroscopic invariants Î1, Î2, ĵ (Jacobi determinant of
the macroscopic deformation gradient); and the coordinates X, Y, and Z of the reference
configuration, i.e.,

I1 =
1

ĵ2/3

[
Î1ψ2 +

1
R2

(
λ̂1

2X2 + λ̂2
2Y2 + λ̂3

2Z2
)(

ψ−4 − ψ2
)]

(8)

I2 = ĵ2/3

[
Î1

ĵ2ψ2
+

1
R2

(
X2

λ̂1
2 +

Y2

λ̂2
2 +

Z2

λ̂3
2

)(
ψ4 − ψ−2

)]
(9)

where the mapping function from the reference configuration to the current configuration is

ψ = ψ(R) =
[
1 +

(
ĵ − 1

)
(b/R)3

]1/3
and the radial distance from the reference point to the
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origin of the coordinates R = (X2 + Y2 + Z2)1/2. Using the above equation, the integration of
the strain energy density over the entire spherical shell representative unit can be obtained
and divided by the volume of the ball V0 = 4πb3/3, b being the outer radius of the ball.
The average strain energy density of the foamed silicone rubber as a whole is obtained Ŵ
as follows:

Ŵ =
1

V0

∫ b

b f 1/3
0

∫ 2π

0

∫ π

0
W(I1, I2, I3)R2 sin θdθdϕdR (10)

where θ, ϕ, R are the three components in the spherical coordinate system of the reference
configuration, and 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π are the standard spherical angles. From
this, the average strain energy density can be used to obtain the average Corsi stress of the
foamed silicone rubber as a whole.

σ̂ =
2
ĵ

∂Ŵ
∂ Î1

B̂ +
2
ĵ

∂W
∂ Î2

(
Î1B̂ − B̂2

)
+

∂Ŵ
∂ ĵ

I (11)

where I is the second-order unit tensor.
If the solid rubber is treated as a Yeoh material, the derivative term of ∂/∂I2 is consid-

ered to be much smaller than ∂/∂I1, so the derivative term of I2 in the strain energy density
can be discarded, and the expression of the strain energy density WY is

WY =
3

∑
i=1

Ci0
(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)i
+ Wv (12)

where C10, C20, C30, are material parameters and Wv is zero if the material is incompressible
and no volume deformation occurs. According to the uniaxial tensile test data in the
published literature, C10 = 0.6, C20 = −0.21, and C30 = 0.08.

Using the above equation to integrate over the interior of the spherical shell, the
average strain energy density is thus obtained as

ŴY =
3

∑
i=1

Ci0

[
Î1

[
2 − 1

ĵ
−

f0 + 2
(

ĵ − 1
)

ĵ2/3η1/3

]
− 3(1 − f0)

]i

(13)

2.2.3. Finite Element Modeling

In the numerical simulation, the sandwich structure has a size of 100 mm × 100 mm ×
8.9 mm, which accounts for a small proportion of the overall structure due to the small thick-
ness of the coating and is considered as an isotropic material with a density of 400 kg/m3

and Young’s modulus of 6 GPa in this study species, using eight-node linear hexahedral
cells, shrinkage integration, and hourglass control. The thickness of the unidirectional
carbon fiber layer is 0.15 mm, the density is 300 g/m2, and the fiber plate uses a univer-
sal continuous shell grid within the eight-node quadrilateral face, reduction integration,
hourglass control, and finite film strain (SC8R). The foamed silicone rubber thickness is
5 mm, the density is 950 kg/m3, and the rubber sandwich uses four-node linear tetrahedral
cells (C3D4). A finite element model of the rubber sandwich structure is generated and
analyzed using ABAQUS/Explicit software with fixed boundary conditions and 48 fully
constrained supports, applying symmetric edge specimens on the upper and lower surfaces
with displacements and rotation angles set to zero in the x, y, and z directions. In this paper,
it is assumed that the pores are initially spherical and uniformly distributed, making the
porous material initially isotropic. Figure 2 shows the finite element model of the sandwich
structure under impact loading.
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Figure 2. Finite element model of composite laminate under impact loading. (a) The whole model.
(b) The rubber model: there are 400 same-sized spherical voids uniformly distributed in the model.
(c) Half of void-containing cube.

The impact angle of the falling hammer is varied in the numerical simulation, as
shown in Figure 3. The impact angle θ is defined as the angle between the impact axis
and the specimen. The two components of the vertical impact velocity are normal velocity
Vn and tangential velocity Vt. In this paper, the impact velocities are set as 4.970 m/s,
5.495 m/s, 5.973 m/s, 6.419 m/s, 6.830 m/s, and 8 m/s, and the impact angles are 30◦, 45◦,
60◦, 75◦, and 90◦, respectively.
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Figure 3. Schematic diagram of the inclined impact.

2.3. Model Validation

The comparison between the experimental results and the finite element results when
the stacking order of the rubber sandwich structure is W (woven fiber)3/Core/W (woven
fiber)3, the porosity is f 0 = 0.17, the impact velocity is 2.97 m/s, and the impact angle is 90◦

is shown in Figure 4. It can be seen from the figure that the curves have the same variation
trend and the relative error between the finite element simulation and the experimental
results is within 15%, indicating that the experimental results have good correlation with
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the simulation results. The reason for the error may be that the internal pores of rubber are
assumed to be uniformly distributed, have uniform pore size, and have a certain number of
spherical pores in the calculation process, while the actual internal pore structure of rubber
is more complex.
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3. Results and Discussion
3.1. Energy Change

In order to gain insight into the effect of the impact angle on the impact resistance of
the sandwich structure, more than 30 impact simulations were conducted in this study, with
the falling hammer impacting the sandwich structure at 4.970 m/s, 5.495 m/s, 5.973 m/s,
6.419 m/s, 6.830 m/s, and 8 m/s, respectively. vr is the residual velocity. When vr is
negative, it means the falling hammer bounces off the sandwich structure, and a positive
value means the falling hammer penetrates the sandwich structure.

The relationship between the initial and residual velocities of the impact at different
angles was obtained from the data in Table 2, and the curve was fitted using the Levenberg–
Marquardt optimization algorithm based on the data and the following equation (R2 > 0.99)
as shown in Figure 5, with the expression valid only for vi > vthreshold.

vr = A
(

vB
i
− vB

threshold

)1/B
(14)

where A, B, and vthreshold are the fitting parameters; vi is the initial velocity of the impact;
and vthreshold is defined as the velocity penetration threshold at a given angle.

Table 2. Residual velocity and impact velocity for different impact angles.

θ
V i (m/s)

30
vr (m/s)

45
vr (m/s)

60
vr (m/s)

75
vr (m/s)

90
vr (m/s)

4.970 −1.445 −1.365 −1.308 −0.921 −0.433

5.495 −0.854 −0.738 −0.153 0.321 0.431

5.973 −0.766 0.190 1.66411 2.185 2.170

6.419 −0.143 2.255 2.814 3.176 3.083

6.830 1.082 3.089 3.603 3.910 3.959

8.000 4.327 5.119 5.518 5.634 5.696
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Figure 5. Residual velocity vs. impact velocity for different impact angles.

As shown in Figure 6, the penetration thresholds at 30◦, 45◦, 60◦, 75◦, and 90◦ can
be obtained from the regression curves in Figure 5 as 6.747 m/s, 5.968 m/s, 5.640 m/s,
5.482 m/s, and 5.466 m/s, respectively. From this, it can be seen that the impact resistance
decreases with the increase of impact angle by 11.5%, 16.4%, 18.7%, and 18.9% when the
impact angle is greater than 45◦ and, with the increase of impact angle, the difference of
impact threshold becomes smaller and smaller. When the impact angle is greater than 75◦,
compared with 90◦, the difference of impact resistance performance is only 2.9%; at this
time the impact angle has less impact resistance performance.
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In summary, the smaller the impact angle is, the more energy is absorbed; therefore,
90◦ is the most unfavorable impact angle to the structure deformation, and avoiding the
impact from the frontal side of the sandwich structure can effectively reduce the damage
degree of the sandwich structure. Analysis: as the impact angle decreases, the separation
between the core layer and the panel along the outer side of the falling hammer trajectory
becomes more and more obvious, and the damage mode of the sandwich structure changes
from shear damage to tensile damage and the path of the falling hammer through the
sandwich structure becomes longer as the impact angle decreases, so the absorbed energy
increases. This phenomenon indicates that the change of the path of the drop hammer
through the sandwich structure at different impact angles has a greater effect on the energy
absorption of the rubber sandwich structure.

3.2. Mechanical Response Analysis

A diagram comparing positive impact (impact angle of 90◦) with oblique impact
(impact angles of 30◦, 45◦, 60◦, and 75◦) is shown in Figure 7. Under the low-speed oblique
impact condition, the hemispherical drop hammer first makes a point of contact with the
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sandwich structure and then continuously presses down on the sandwich structure. At
this time, the contact area between the drop hammer and the specimen becomes elliptical.
Because of the angle between the drop hammer and the sandwich structure, the drop
hammer will produce a certain amount of slip on the upper panel of the sandwich structure,
so the loading process of the drop hammer is tangential slip and normal loading at the
same time, the deformation shape of the sandwich structure is constantly changing and
expanding tangentially, and the position of the drop hammer on the sandwich structure is
also constantly changing. When the kinetic energy of the hammer is completely dissipated,
the elastic strain energy of the sandwich structure starts to be released and the hammer
starts to rebound. In the rebound process of the drop hammer, because the drop hammer
only has the translational freedom in the Z-axis direction, the drop hammer will still slide
on the surface of the sandwich structure during the rebound process, and the frictional
dissipation energy will be generated until the drop hammer is out of contact with the
sandwich structure.
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However, under positive impact conditions, the shape of the contact deformation
generated during the loading of the drop hammer on the sandwich structure is always
circular and always in a symmetrical state. Although there is a slight slip of the drop
hammer on the sandwich structure when the deformation occurs, the slip is so small that
the friction loss is almost negligible, so the kinetic energy of the drop hammer can be
considered to be completely dissipated by the sandwich structure in the form of internal
damage. When the kinetic energy of the falling hammer is completely dissipated, the elastic
strain energy accumulated in the sandwich structure starts to be released, and the sandwich
structure starts to push the falling hammer to rebound. Since there is no tilting relationship
between the hammer and the sandwich structure at this time, there is almost no friction
loss during the rebound process, so the process can be considered as only the conversion of
the elastic strain energy of the sandwich structure to the kinetic energy of the hammer until
the hammer is out of contact with the sandwich structure and the positive impact process
is finished.

The contact force displacement curves of the sandwich structure under different impact
angles with impact velocities of 4.970 m/s and 6.830 m/s are shown in Figure 8. It can be
seen from the curves that when the impact velocity is 4.970 m/s, the load goes through
two rises and two falls, and the sudden fall of the load is due to the compression damage
of the substrate in the impact area. In the rebound phase, the curve is relatively stable,
and finally, the hammer head is out of contact with the sandwich structure, and the load
disappears. When the impact speed is 6.830 m/s, the sandwich structure is completely
penetrated at various impact angles, and no rebound occurs. It can be seen from the
figure that in the case of oblique impact, whether the falling hammer partially bounces
or the falling hammer completely penetrates the core structure, the peak contact force is
positively correlated with the impact angle, and the displacement under the maximum load
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is negatively correlated with the impact angle. In the positive impact case, the friction force
is very small and almost negligible, and its maximum contact force is slightly less than 75◦.
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When the impact angle is less than 45◦, the tangential impact force becomes larger
than the normal impact force, and the slip of the hammer becomes easier. As the hammer
slides, it changes its position on the sandwich structure. As the position changes, the units
that were farther away from the hammer begin to join the impact resistance process of
the hammer, and these newly added units will continuously deform in flexure to absorb
the kinetic energy of the hammer. Although the impact angle increases when the hammer
slide increases the new unit damage, the easier the slide also means that the greater the
frictional energy dissipation, which leads to a large amount of kinetic energy of the hammer
being dissipated through the slide in the form of frictional heat, so the actual impact energy
loaded into the sandwich structure plate is not much, which leads to the structure only
being the expansion of the damage area, while tilting the impact of the hammer and the
contact area of the sandwich structure. At the same time, the contact area between the
falling hammer and the sandwich structure is relatively increased, so the overall damage
will be reduced.

3.3. Failure Modes

Different failure modes were observed at different velocities. This subsection is
analyzed for v = 4.970 m/s (less than the penetration threshold) and 6.830 m/s (greater
than the penetration threshold) velocities, respectively.

Figure 9 shows the final damage and stress clouds of each profile of the sandwich
structure under different angles of impact at v = 4.970 m/s. According to Figure 9, it
can be seen that the structure will always produce craters after the impact of the falling
hammer regardless of the change of the impact angle, but the center of the craters will
change, which is more obvious when the impact angle is small. As the impact angle
decreases from 90◦ (positive impact), the slip becomes more and more, and the center of
the crater moves in the direction of the slip, accordingly. The nature of the crater is the
plastic deformation of the sandwich structure to absorb the energy after the impact load
is applied. Comprehensive Table 2 and Figure 9 show that at v = 4.970 m/s, the impact
head bounced to different degrees at various impact angles, and the sandwich structure
was not completely penetrated, but the bottom panel had different degrees of damage,
of which 90◦ damage was the most serious. When the impact hammer head penetrated
the coating, the upper panel, and the core, the coating of the sandwich structure was
broken, the upper surface had fiber fracture, and the core was broken, which were caused
by the shearing process, and these damages appeared independent of the impact velocity.
As the impact velocity was below the penetration threshold, the bottom panel showed
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matrix cracks. In addition, it is obvious that when excluding the energy consumed by slip
friction, most of the impact energy loaded onto the structure is mainly consumed through
plastic deformation of the upper panel and flexural deformation of the core unit, and the
deformation of the lower panel under low-energy impact is extremely small and almost
does not participate in energy absorption. When the impact is oblique, craters appear in
the coating, the upper panel, and the core, and cracks extend from the edges of the craters.
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Figure 9. Damage of the coating, upper panel, core, and bottom panel of sandwich structure at
different impact angles when v = 4.970 m/s.

Figure 10 shows the damage to the coating, the upper panel, the rubber core, and
the bottom panel of the sandwich structure at v = 6.830 m/s and at different angles.
Combining Table 2 and Figure 10, it can be seen that the sandwich structure was penetrated
at v = 6.830 m/s at various impact angles. Compared with an impact velocity greater than
the penetration threshold at v = 4.970 m/s, there is extensive fiber fracture in the bottom
panel due to the indentation of the falling hammer, and further indentation expands the
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fiber fracture area and the spalling of the bottom panel, which leads to the cracking of the
bottom panel matrix. The edges of the bottom panel fiber fracture were jagged, consistent
with the edge morphology of tensile fracture, and it was determined that the bending
tensile stress along the fiber direction caused the bottom panel fiber fracture. When the
impact angle was 30◦, the impact velocity was greater than the penetration threshold, the
path of the falling hammer along the plane of the sandwich structure was too long, and the
contact area was large, extensive fiber fracture and delamination occurred in the top panel,
and the bottom panel showed a damage pattern similar to that of normal impact. Similarly,
combined with Figures 9 and 10, it can be seen that at the same impact energy, the oblique
impact always produced less damage in the lower panel of the sandwich structure than the
positive impact.
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different impact angles when v = 6.830 m/s.
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4. Conclusions

In this paper, the red-eared slider turtle is used as the prototype of the bionic design of
the foamed silicone rubber sandwich structure, and five impact angles are selected by nu-
merical simulation to study the effect of impact angle on the impact resistance of the rubber
sandwich structure at different impact velocities. The response of the sandwich structure is
evaluated by using the penetration threshold and the absorption energy respectively, and
the damage mechanism of the sandwich structure is analyzed. The following conclusions
were obtained:

1. Numerical methods for calculating the structure of the foamed silicone rubber sand-
wich using a rubber intrinsic model with porosity and a three-dimensional Hashin
criterion are effective;

2. Based on the simulation data, the curve relationship between the initial velocity
and the residual velocity was fitted using the Levenberg–Marquardt optimization
algorithm, and the penetration thresholds for impact angles of 30◦, 45◦, 60◦, 75◦, and
90◦ were 6.747 m/s, 5.968 m/s, 5.640 m/s, and 5.482 m/s, and the impact resistance
decreased by 11.5%, 16.4%, 18.7%, and 18.9% with the increase of impact angle;

3. When the impact angle is greater than 45◦, with the impact angle increases, the
difference between the impact threshold is smaller and smaller. When the impact
angle is greater than 75◦, compared with 90◦, the impact resistance difference is only
2.9%; at this time, the impact angle has less impact resistance performance;

4. The impact angle has an obvious effect on the energy absorption characteristics of
the rubber sandwich structure. At a certain impact speed, the smaller the impact
angle, the longer the path of the falling hammer along the plane of the sandwich
structure, the larger the contact area, the lighter the degree of damage, and the
greater the energy absorbed by the sandwich structure; therefore, 90◦ is the most
unfavorable impact angle for structural deformation, and avoiding the impact from
the front of the sandwich structure can effectively reduce the degree of damage to the
sandwich structure;

5. The damage patterns of positive impact and oblique impact on the upper panel
are different. For positive impact, the upper panel of the sandwich structure had
fiber fracture caused by the shearing process. For oblique impact, fiber fracture and
multiple cracks were produced at the edge of the falling hammer due to the larger
contact area that the falling hammer passed through and then removed a large amount
of material from the upper panel.
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