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Abstract: The polymer anti-seepage wall composed of polymer materials is a new technology for
impermeable reinforcement in dykes and dams. Compared with traditional grouting materials,
polymer grouting materials have the advantages of early strength, convenience, good anti-seepage
performance, safety and durability. Because of the particularity of polymer materials, they form
a “root-like” cementing status with dam soils after grouting. This complex interface affects the
interaction between the wall and the dam, which subsequently influences the whole structure’s
properties under loads. In this paper, based on an original designed test mould, an SRS-150 dynamic
ring shear instrument was used to conduct static and dynamic ring shear tests to explore the static
and dynamic properties of the polymer–silty clay interface. Moreover, influence laws and the related
mechanism of different factors on the polymer–silty clay interface were studied in this paper. At the
same time, the hyperbolic constitutive model of the polymer–silty clay interface was established,
and the validity of the model was verified by comparing the numerical simulation with the relevant
experimental results. The achievements of this paper are helpful as they provide a scientific basis for
the structure’s mechanical analysis and lay the foundation for the promotion and application of the
new anti-seepage technology.

Keywords: polymer anti-seepage wall; polymer materials; original designed test mould; ring shear
tests; static and dynamic properties of the interface; the hyperbolic constitutive model

1. Introduction

The polymer anti-seepage wall is a new technology that has developed in recent
years for the anti-seepage reinforcement of dams [1]. It has the advantages of a fast speed,
being lightweight, high toughness, economy, durability and environmental protection,
etc., and meets the urgent need for dam reinforcement. It has gradually become the
main measure for the anti-seepage reinforcement of medium and small reservoirs and
earth–rock dams [2–9]. To date, some scholars have studied the degradation of polymer
grouting materials. Shi [10] studied the corrosion resistance and aging resistance of polymer
grouting materials. When it is in the underground environment for a long time, the polymer
grouting material does not easily degrade or lose its stability due to the chemical corrosion
in the normal foundation environment. Hanover University [11] used differential thermal
analyses to quantify the thermal stability of the polymer materials as a loss of quality,
and conducted a long-term continuous test on polymer grouting materials. The results
show that the life of the material can reach 33 years, and more than 100 years when
used underground. The above experiments are sufficient to prove that polymer grouting
materials have long-term stability and do not cause degradation problems that adversely
affect the surrounding environment. The polymer grouting technology is used to grout
non-water reactive polymer materials into the place reserved inside the dam body at a
high pressure through professional grouting equipment, and then the polymer materials
undergo a chemical reaction and expand rapidly in volume filling the cavity and solidifying
to form a polymer anti-seepage wall [12] (Figure 1).
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The non-water reactive polymer grouting materials are composed of raw materials
such as polyisocyanates and polyester polyols or polyether polyols, which have advantages
of good anti-seepage ability, good ductility, good tensile and compressive capabilities,
good expansion force and excellent durability [13]. At the same time, the solidified body
of the polymer grouting material after the reaction is not degraded, and is pollution-free
and has good stability. Therefore, polyurethane polymer grouting materials as ideal
chemical grouting materials have been widely used in the field of civil engineering to repair
or reinforce engineering diseases, including for highways, bridges, tunnels, reservoirs,
dams, coal mines [14], geological exploration and other projects in waterproof plugging,
building foundation reinforcement, complex underlying stability, road pavements and
airport pavement maintenance [12,15,16]. Among them, the cumulative application mileage
of polymer grouting technology in expressway rapid repair has reached 3 million km, and
the cumulative repair disease area has exceeded 1 million m2. The complete set of polymer
grouting technology for dam anti-seepage reinforcement has been applied in more than
200 dangerous dam reinforcement projects and more than 20 small and medium-sized river
management projects [1]. As a new anti-seepage wall reinforcement technology, when
the polymer grouting material is grouted into the soil, it forms a “root-like” structure that
infiltrates into the soil, as shown in Figure 1a, which complicates the wall–dam interface
and makes it differs from the static and dynamic properties of the interface between the
traditional concrete anti-seepage wall and dam. However, the interface has a great influence
on the load transmission and deformation coordination between the soil and the structure,
and is also a weak point in the soil–structure interaction system, which affects the structural
stability of the anti-seepage wall [17,18]. In view of this, it is essential to conduct research
on the static and dynamic properties of the interface between the polymer anti-seepage
wall and the earth–rock dam.

The shear properties of the soil–structure interface form the basic theoretical bases
for studying the interaction between soil and structures [19]. Many domestic and foreign
scholars have performed a series of work on the experimental study of the shear properties
of soil–structure interfaces. Aimed at the influencing factors of the shear properties of the
interface, Feng et al. [20] conducted an interface cyclic shear test by using an 80 t large
three-dimensional interface cyclic single shear tester to explore the impact of vertical stress
on the properties of the interface, and the results showed that the vertical stress had a sig-
nificant effect on the tangential stress and tangential stiffness of the interface; Liu et al. [21]
conducted a shear test on the interface between the wall and dam by considering the effects
of different levels of interface roughness, different vertical stresses and different soil sample
thicknesses on the interface properties in the test, and simultaneously defined the concept
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of “nominal interface”; Liang et al. [22] investigated the factors influencing the interface
surface properties of the silty clay structure by using the ring shear instrument and proved
that the interface properties developed from strain softening to strain hardening when the
vertical stress was greater than 100 kPa. Meanwhile, they obtained parameters such as
adhesive force and internal friction angle of the interface. For the study of interface shear
deformation, Kishida et al. [23] first used a stacked ring single shear instrument to conduct
shear tests on the interface of the soil–structure and found that large shear deformation
occurs at the shear zone of the interface; Bishop et al. [24] found that the rupture surface
occurred at the junction of the upper and lower shear boxes by using a new ring shearing
instrument to perform ring shear tests on different clay soils. Aiming at the development
law of the shear properties of the interface, Wu et al. [25] studied the dynamic properties of
the interface such as shear stiffness and damping ratio by using a single shear instrument,
and the test results showed that the dynamic shear stress and relative displacement of
the interface of the soil and concrete exhibited a hyperbolic relationship; Yang et al. [26]
used the HJ-1 ring shearing instrument to conduct ring shear tests on the interface between
clay and clay core dams, and found that the mechanical properties of different types of
interfaces differed greatly. The interface of the clay core dam exhibits properties of strain
hardening, and the stress–strain trend conforms to the hyperbolic relationship.

The shear stress–shear displacement curves between the soil and the structure can
reflect the deformation law of the interface and the reliability of engineering design is
closely related to the selected constitutive model [27]. The constitutive model of the inter-
face between the soil and the structure has been studied by many scholars. At present, the
nonlinear elastic model based on the hyperbolic model proposed by Clough et al. [28] is
widely used [29]. In addition, Boulon et al. [30] proposed an elastic–plastic model of inter-
face deformation based on the relationship between shear stress and relative displacement
in the direct shear test, and its tangential constitutive relation is similar to the hyperbolic
model. Esterhuizen et al. [31] used the shear test of the clay–geotechnical material interface
to obtain that the shear stress of the reinforced soil interface decreases significantly after
reaching the peak value, showing the phenomenon of shear softening, and proposed a
hyperbolic model to fit the nonlinear properties after the peak value. Liu et al. [21] mainly
investigated the influence of roughness, normal stress and soil sample thickness on the
shear properties of the interface by using the improved cyclic simple shear testing system,
and proposed that obtaining the shear strength properties and parameters of the interface
is a key issue in the study of the constitutive relationship of the interface.

However, most of the above studies were aimed at the interface mechanical properties
of soil–traditional geomaterials, and the shear properties of the interface between polymer
grouting materials and the earth–rock dam have not yet been thoroughly and systematically
researched. Therefore, according to the complex stress state of the interface between a
polymer anti-seepage wall and a dam, the static shear test and cyclic shear tests of the
polymer–soil interface were carried out to study the influence laws and related mechanism
of different factors on the static and dynamic properties of the polymer–soil interface. At the
same time, the hyperbolic constitutive model of the polymer–soil interface was established
and verified by comparing the numerical simulation with the relevant experimental results.
The research results are expected to provide scientific basis and theoretical guidance for the
further promotion and application of the new anti-seepage technology.

2. Ring Shear Test Research on Polymer–Soil Interface Properties
2.1. Test Equipment

The polymer–soil interface ring shear test adopts the SRS-150 dynamic ring shear
instrument of GCTS Company in the United States, and the main parameters of the SRS-150
dynamic ring shear instrument test device are shown in Table 1. The SRS-150 dynamic ring
shear device consists of three parts: the main ring shear module, the PCP-15U pressure
plate and the DA/PC system, as shown in Figure 2.
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Table 1. Main parameters of SRS-150 test device.

Main Parameters Value Unit

exercise frequency 0–5 Hz
shear rate 0.0008–314 mm/min

consolidation stress 0–1000 kPa
vertical displacement 0–50 mm

sample inner diameter 100 mm
sample outer diameter 150 mm

cross-sectional area 98.16 cm2
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2.2. Mould Design

Based on the “root-like” contact state of the polymer–soil interface and the liquidity
and expansion of the polymer materials, a special mould is designed to fabricate the
polymer–soil sample, as shown in Figure 3. The mould consists of a fixed structure and a
mould-forming structure. The fixed structure includes a bottom plate, an upper cover, a
screw, a pressure relief cover plate and an injection cover plate, while the mould-forming
structure includes a core body and a ring. The bottom plate and the upper cover, the
pressure relief cover plate and the injection pressure plate are all connected by bolts,
respectively, and the ring is placed inside the core body. In order to avoid the damage
caused by the grouting pressure to the soil, a new type of grouting duct (Figure 4) needs to
be added, which is designed as follows: the upper part of the grouting duct is connected to
the polymer grouting port, and the lower part is embedded in the ring body. The polymer
slurry flows into the grouting duct from the grouting port and is sprayed on the wall of the
circle at an angle of 20◦, which dissipates the grouting pressure and effectively avoids the
damage to the soil sample caused by the polymer slurry under high pressure.
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The mould assembly steps are as follows: Firstly, place the soil sample in the core
body. Secondly, assemble and fasten the fixed structure and the mould-forming structure.
Then grout the polymer slurry from the grouting port into the grouting pipe through the
pressure equipment. When the polymer slurry comes into contact with the soil sample, the
reaction of coagulation and solidification takes place. Finally, the grouting ends when the
polymer slurry overflows from the slurry outlet.

2.3. Preparation of Samples

In the test, the two-component isocyanate and polyol materials are preheated using
polymer integrated grouting apparatus, and the polymer samples are prepared by the
constant pressure grouting device in a certain proportion. At the same time, the density
of the specimens can be controlled by injecting different masses of polymers into a fixed
volume of the mould. The non-water reactive polymer grouting materials used in the
test were provided by Zhengzhou Anyuan Engineering Technology Co., Ltd., Zhengzhou,
China, and the technical indicators are shown in Table 2. Additionally, the test chose silty
clay as the dam material, and the parameters of its main physical and mechanical properties
are shown in Table 3. The specific preparation process of the polymer–soil interface sample
(Figure 5) is as follows: 1© filling the soil sample in the core body; 2© daubing lubricating
fluid to the ring; 3© fastening the connection between the core and the ring; and 4© grouting
in the mould with grouting equipment. After grouting, the samples were demoulded after
standing for 1.5 h at normal atmospheric temperature, and all the prepared samples met
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the requirements of the polymer–soil interface ring shear test. The sample after grouting is
shown in Figure 6.

Table 2. Polymer technical indicators.

Item Technical Indicators

Appearance Light brown transparent liquid

Viscosity/(mPa·s) 60–600

Induced coagulation time/s 10–13000

Expansion ratio/% 350–1000

Permeability coefficient k(cm/s) 1 × 10−9

Elastic modulus E (MPa) 58.11

Poisson’s ratio µ 0.26

Table 3. Basic physical properties of soil used in experiment.

Specific Gravity
Gs

Void Ratio
e

Water Content
Ω (%)

Permeability
Coefficient k (cm/s)

Elastic Modulus
E (MPa)

Poisson’s Ratio
µ

Cohesion
C (kPa)

Internal Friction Angle
ϕ (◦)

2.7 0.804 21 2.3 × 10−5 37.2 0.35 22.2 11.3
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2.4. Experimental Methodology

The program of this test is divided into two parts: the static shear test program and
the cyclic shear test program. The static shear test program mainly takes into account some
influence factors such as the bonding state, different polymer densities, vertical stresses,
different dam materials and different anti-seepage bodies, etc., as shown in Table 4, while
the influence factors of the cyclic shear test include different polymer densities, different
shear stress magnitudes and different vertical stresses as shown in Table 5.
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Table 4. Static shear test schemes of polymer–soil interface.

Test Type Test Number Type of Interface Water Content Shear Rate Density Vertical Stress
(%) (mm/min) (g/cm3) (kPa)

static shear

A-1 polymer–silty clay
(bonding) 21 1 0.188 100

A-2 polymer–silty clay
(non-bonded)

B-1
polymer–silty clay 21 1

0.188
100B-2 0.210

B-3 0.280

C-1

polymer–silty clay 21 1 0.188

100
C-2 200
C-3 300
C-4 400

D-1 polymer–silty clay
21 1 0.188 100D-2 polymer–silt

E-1 polymer–silty clay
21 1

0.188
100E-2 concrete–silty clay — —

F-1 polymer–silty clay
21 1

0.188
100F-2 plain soil — —

Table 5. Dynamic shear test schemes of polymer–soil interface.

Test Type Test Number Type of Interface Density Cycle Amplitude Vertical Stress
(g/cm3) (mm) (kPa)

cyclic
shear

G-1
polymer–silty clay

0.188
1 100G-2 0.210

G-3 0.280

H-1
polymer–silty clay 0.188

0.5
100H-2 1

H-3 1.5

I-1
polymer–silty clay

0.188 1

100
I-2 200
I-3 300

3. Analysis of Static Test Results of Polymer–Soil Interface
3.1. Influence of Different Bonding States

When we directly grout the polymer on the silty clay, the polymer has not been
consolidated at this time, showing a certain flow diffusivity, with strong adhesion and
bonding ability. At this time, the polymer fills in the gap between the adjacent soil particles,
and the adjacent soil particles are adhered to form the bonding state of the interface. When
waiting until the polymer solidification is formed and then combined on the soil, it is in a
non-bonded state.

In the case of a vertical stress of 100 kPa and polymer density ρ = 0.188 g/cm3, the
shear stress–shear displacement relationship curves of polymer–silty clay interfaces with
different bonding states are plotted in Figure 7, and the shear strength indexes of the
interfaces with different bonding states are presented in Table 6.

From Figure 7 and Table 6, it can be seen that with the increase in shear displacement,
the shear stress of the polymer–soil interface in the bonded condition continues to increase,
while the shear stress of the interface in the non-bonded condition reaches a peak at 10 mm
and then decreases slightly before reaching a steady state, which shows the characteristic
of shear softening. At the same time, the peak shear stress of the interface in the bonded
condition is increased by 3.4 kPa compared with that in the non-bonded condition; the
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internal friction angle and the adhesive force of the polymer–silty clay (bonded) interface
are increased by 0.42◦ and 4.2 kPa, respectively, compared with those of the polymer–silty
clay (unbonded) interface.
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Figure 7. Shear stress–shear displacement curves of different interface bonding states.

Table 6. Shear strength indexes of interfaces in different bonding states.

Type of Interface c/kPa ϕ/◦

polymer–silty clay
(bonding) 9.05 25.55

polymer–silty clay
(non-bonded) 4.85 25.13

The reasons for the above phenomenon can be summarized as follows: the bonding
function causes the polymer–silty clay (bonded) interface’s internal friction angle and adhe-
sive force to increase compared with those of the polymer–silty clay (non-bonded) interface,
which enhances the interface’s peak shear stress in the bonded condition correspondingly.
In addition, when the shear test is performed, the adhesive force of the polymer–silty
clay (bonding) interface increases constantly due to the permeation and bonding of the
polymer grouting material, which enhances the degree of hardening of the stress–strain
curve. However, the polymer–silty clay (non-bonded) interface lacks adhesive force, and
the shear stress–displacement curve produces a slight strain softening phenomenon after
reaching the shear stress peak. Therefore, in order to make the calculation results more
realistic, the bonding function of the polymer–silty clay interface should be considered in
the analysis of the interaction between the wall and the dam in the earth–rock dam project.

3.2. Influence of Polymer Density

Under the condition of 100 kPa vertical stress, the shear stress–shear displacement
relationship curves of the polymer–silty clay interface under different densities are plotted
in Figure 8, and the shear strength indexes of interfaces with different polymer densities
are shown in Table 7.

As can be seen from Figure 8 and Table 7, with the polymer density increasing from
0.188 g/cm3 to 0.280 g/cm3, the peak shear stress at the polymer–silty clay interface in-
creases continuously, and the adhesive force and internal friction angle of the polymer–silty
clay interface also increase successively. At the same time, the shear stress under different
polymer density conditions all increase with the increase in shear displacement.

Analysing the reasons for the above phenomena, according to the research results
of Zheng et al. [32], it is known that the bond strength of polymer materials is positively
correlated, and the increase in bond strength makes the bonding function between the
interfaces more significant, which improves the shear resistance of the interface. At the
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same time, the increase in polymer density improves the expansion anchoring force of
the polymer materials, which enhances the shear strength of the polymer materials. In
view of this, as the density of the polymer increases, its effect on the mechanical properties
of the interface becomes more and more obvious, so the choice of polymer density has a
significant effect on the grouting effect in the actual grouting process. Actually, it does not
mean that the mechanical properties of the interface can be improved simply by increasing
the polymer slurry density. The optimal polymer slurry density should be considered by
taking into account the actual soil loading circumstances, anticipated improvement effect,
economy and other considerations, comprehensively.
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Figure 8. The relationships between the shear stress and the shear displacement of the interface
under different polymer densities.

Table 7. The shear strength indexes of the interfaces with different polymer densities.

Type of Interface c/kPa ϕ/◦

polymer–silty clay (ρ = 0.188 g/cm3) 9.05 25.55
polymer–silty clay (ρ = 0.210 g/cm3) 15.20 26.61
polymer–silty clay (ρ = 0.280 g/cm3) 34.90 27.11

3.3. Influence of Vertical Stress

The shear stress–shear displacement relationship curves of the polymer–silty clay
interface under different vertical stresses are presented in Figure 9.
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As can be seen from Figure 9, in the case where there is the same density of polymer,
the slope of the initial section of the curve increases with the increase in vertical stress,
which means that the initial shear modulus of the polymer–silty clay interface is positively
correlated with the vertical stress. Meanwhile, when the vertical stress increased sequen-
tially from 100 kPa to 400 kPa, the peak shear stress increased from 60 kPa to 208.1 kPa,
showing shear hardening properties.

It is known from the test that with the increase in vertical stress, the compactness of
the soil near the interface of polymer–silty clay also increases, and the interaction between
the polymer and the soil becomes closer, which improve the adhesive force of the interface.
At the same time, when the vertical stress increases, the frictional resistance between the
soil particles also increase accordingly, which drives more soil particles to flip, roll and
rearrange and increases the peak shear stress of the interface. At this point, a larger load
needs to be applied to make the interface if shear damage is to occur, and the interface
strain hardening tendency becomes more pronounced.

3.4. Influence of Dam Construction Materials

The test results of the interface shear stress–shear displacement relationship curves
between different dam-building materials and polymer are shown in Figure 10. The shear
strength indexes of the interfaces of different dam-building materials are shown in Table 8.
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Figure 10. The shear stress–shear displacement relationship curves of the polymer–different dam
materials interfaces.

Table 8. The shear strength indexes of the interfaces of different dam materials.

Type of Interface c/kPa ϕ/◦

polymer–silty clay 9.05 25.55
polymer–silt 7.75 21.45

From Figure 10 and Table 8, it is clear that the peak shear stress of the polymer–silty
clay interface is 4.9 kPa higher than that of the polymer–silty clay interface under the same
polymer density, which means the polymer–silty clay interface has better shear properties
than the polymer–silty clay interface. In addition, it can be seen that the adhesive force and
internal friction angle of the polymer–silty clay interface are increased by 1.3 kPa and 4.1◦,
respectively, compared with those of the polymer–silty clay interface.

As for the causes of the above phenomenon, the following analysis can be made:
under the same test conditions such as the water content of soil samples, the adhesive force
and internal friction angle of silty clay are larger than those of silty soil, which means the
shear strength of the silty clay is better than that of the silty soil. Meanwhile, the content
of clay particles in silty clay is also higher than that in silt. The presence of clay particles
enhances the adsorption of the interface and the nearby soil, which improves the peak shear
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stress of the interface. Therefore, the shear resistance of the polymer–silty clay interface is
better than that of the polymer–silt interface. In the actual earth–rock dam project, the dam
construction materials containing clay particles can be considered to fill the dam body so
as to obtain better structural shear performance.

3.5. Influence of Different Anti-Seepage Bodies

The test results of the shear stress–shear displacement relationship curves of the
interfaces between different anti-seepage bodies and soils are shown in Figure 11. The
shear strength indexes of the interfaces of different anti-seepage bodies are shown in Table 9.
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Figure 11. Shear stress–shear displacement relationship curves of different impermeable body–soil interfaces.

Table 9. Shear strength indexes of the interfaces of different impermeable bodies.

Type of Interface c/kPa ϕ/◦

polymer–silty clay 9.05 25.55
concrete–silty clay 5.50 28.90

From Figure 11 and Table 9, it can be seen that under the same vertical stress, the
polymer–silty clay interface shows a trend of strain hardening, and the shear stress increases
continuously with the shear displacement. However, the concrete–silty clay interface shows
a tendency of strain softening, and the shear stress reaches its peak and then begins to
decrease and finally tends to a stable residual strength. Moreover, the adhesive force of the
polymer–silty clay interface is higher than that of the concrete–silty clay interface, and the
difference is 3.55 kPa.

Analysing the essence of the phenomenon, it can be shown that when the adhesive
and consolidation effects occur between the polymer and the soil, the polymer is filled in
the gap between adjacent soil particles after grouting to form a “root-like” structure, which
adheres to the adjacent soil particles, improves the compactness of the soil and achieves
the effect of solidifying the soil, thereby enhancing the shear resistance of the interface. At
the same time, the shear deformation of the sample is mainly caused by the fragmentation
and tumbling arrangement of the soil particles near the interface. When the morphology of
soil particles is disrupted, more angularities are created on the surface, so it can bite better
with the polymer (Figure 12), which makes the shear strength of the interface increase
in the process of shear deformation and show strain hardening properties. Additionally,
under the vertical stress of 100 kPa, the shear strength of the concrete–silty clay interface
is smaller than that of the silty clay–silty clay, so the shear deformation of the sample is
caused by the misalignment slip of the concrete and soil interfaces. When the misalignment
slip occurs, the bonding state of the polymer–soil interface is destroyed, which makes
the shear strength of the interface decrease during the shear deformation of the sample
and show strain softening properties in the shear process. Therefore, the bonding effect
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of non-water reactive polymer grouting material–soil is better than that of conventional
concrete material–soil.
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3.6. Influence of Additional Polymer Anti-Seepage Wall in the DAM Body

The polymer anti-seepage wall is a subsidiary structure formed by grouting in the dam
body after earth–rock dam construction. Comparing the shear test results of polymer–silty
clay and plain soil is of great significance to analyse the influence of the polymer anti-seepage
wall on the structural stability of the dam body.

The relationships of the shear stress–shear displacement curves of plain soil and
polymer–silty clay are shown in Figure 13, and the shear strength indexes of their in-
terfaces are presented in Table 10. From Figure 13 and Table 10, it can be seen that the
shear stress–shear displacement curves of both polymer–silty clay and plain clay exhibit
strain hardening under the same vertical stress, while the shear stress at the interface of
polymer–silty clay is increased by 11.2 kPa compared with that of plain soil. At the same
time, it is clear that the shear strength indexes at the interface of polymer–silty clay are
higher than those of plain soil, and the adhesive force and internal friction angle at the
interface of polymer–silty clay are increased by 0.42 kPa and 0.71◦, respectively, compared
to those of plain soil.
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Figure 13. The relationships between shear stress and shear displacement of plain soil and polymer–silty clay.

Table 10. The shear strength indexes of polymer–silty clay interface and plain soil.

Type of Interface c/kPa ϕ/◦

polymer–silty clay 9.05 25.55
plain soil 8.63 24.84

The reasons for the above phenomenon can be summarized as follows: due to the
similar elastic modulus of polymer materials and silty clay, polymer materials and silty clay
exhibit good deformation coordination ability, which makes the adhesive force develop
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steadily under the vertical stress. At the same time, the plain soil changes from loose to
dense when subjected to the vertical stress, and the adhesive force of the interface also
maintains a stable development, so the strain hardening properties of polymer–silty clay
and plain soil are similar. However, compared with silty clay, the expansion extrusion and
the permeation bonding of the polymer increase the shear strength of the polymer–silty
clay interface, which improve the shear properties of the contacting silty clay and increase
the anchoring force of the soil near the interface. Therefore, the construction of polymer
anti-seepage walls in the dam body can not only enhance the anti-seepage performance
of earth–rock dams but also improve the overall stability and shear resistance of the
earth–rock dams.

4. Analysis of Dynamic Test Results of Polymer–Soil Interface

The hysteresis curve is formed by the round-trip development of shear stress and shear
displacement at the interface of polymer–silty clay under cyclic loading. The hysteresis
curve represents the energy absorption and dissipation process of the polymer–silty clay
interface, and the area of the hysteresis curve represents the magnitude of energy absorbed
by the polymer–silty clay interface. Through the cyclic shear test on the interface of
polymer–silty clay, the effects of polymer density, shear displacement amplitude and
vertical stress on the dynamic shear stress–shear displacement of the interface can be
obtained, and on this basis, the development and change law of the interface shear stiffness
and damping ratio can be summarized. The shear stiffness is one of the parameters
reflecting the resistance of the interface to shear deformation damage, and the damping
ratio reflects the change regularities about the energy dissipation of the interface under the
dynamic action [33–35].

4.1. Influence of Polymer density

The dynamic shear stress–shear displacement relationship curves for the 10th cycle
shear of the interface for three conditions with polymer densities of 0.188 g/cm3, 0.210 g/cm3

and 0.280 g/cm3, respectively, are shown in Figure 14. The test results of the shear stiffness
development trends of the interface under different densities are shown in Figure 15, and
the damping ratio development trends are shown in Figure 16.

As can be seen from Figure 14, with the increase in polymer density, the hysteresis
loop image of the polymer–silty clay interface begins to expand. As the hysteresis loop
area increases, the peak shear stress of the interface also increases. At this time, the peak
shear stresses corresponding to the polymer densities of 0.188 g/cm3, 0.210 g/cm3 and
0.280 g/cm3 are 28.9 kPa, 35.4 kPa and 56.8 kPa, respectively. The effect of polymer density
on the interfacial shear strength is largely through increasing the shear modulus and
shear strength of the polymeric material to increase the peak shear stress strength at the
polymer–clay contact interface.

As can be seen from Figure 15, when the number of cyclic shearings increases, the
shear stiffness of the polymer–silty clay interface increases with the increase in the number
of cycles, and decreases slightly after reaching the peak value then tends to develop steadily.
The reason for this phenomenon may be related to the breakage of soil particles on the
interface after cyclic shearing and the change in the interfacial shear strength caused by
the rearrangement of the particles. In addition, as the polymer density increases, the
shear stiffness of the interface also increases. With the increase in the density of the
polymer materials, the shear modulus and shear strength of the polymer increase, and
the permeation and bonding function of the interface is also improved accordingly, which
improves the shear stiffness of the interface.

From Figure 16, it can be seen that the damping ratio of the interface decreases with
the increase in the number of cycles and the density of the polymer. The reason for this
phenomenon, according to the group’s previous study [36], is that the increase in polymer
density improves the storage modulus of the material, reduces the loss factor, slows
down the energy dissipation rate of the polymer–silty clay interface, and intensifies the
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rearrangement of particles at the interface in the cyclic shear test. Therefore, the damping
ratio of the polymer–silty clay interface decreases with the increase in the number of
shear cycles.
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Figure 14. The shear stress–shear displacement relationship curves of different polymer densities.
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4.2. Influence of Shear Displacement Amplitude

When the shear amplitude γ is set to 0.5 mm, 1 mm and 1.5 mm, the dynamic shear
stress–shear displacement relationship curves of the polymer–silty clay interface for the
10th cycle are shown in Figure 17, the shear stiffness development trends of the interface are
plotted in Figure 18 and the damping ratio development trends are presented in Figure 19.
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Figure 17. The curves of shear stress and shear displacement under different shear displacement amplitudes.
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Figure 18. Development trends of shear stiffness with different shear amplitudes.
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As can be seen from Figure 17, the hysteresis loop curve gradually develops from
a regular ellipse to an S-shape when the shear displacement amplitude increases from
0.5 mm to 1.5 mm, and the areas of the hysteresis loop and the peak shear stress increase
accordingly. The reason for this phenomenon is that as the shear displacement amplitude
increases, the soil particles near the polymer–silty clay interface become more orderly and
the energy absorbed and dissipated increases, which further increases the shear stress and
improves the shear strength of the interface.

As shown in Figure 18, the shear stiffness of the polymer–silty clay interface increases
with the increase in shear displacement amplitude. However, at lower shear displacement
amplitudes, the interfacial shear stiffness keeps increasing with the number of cycles,
showing shear hardening properties, while at larger shear displacement amplitudes, the
interfacial shear stiffness reaches a peak and then decreases, indicating that the shear
hardening–softening alternation phenomenon exists at the interface during the cyclic shear.
The reason for this phenomenon may be that when the shear displacement amplitude is
small, the particles do not break significantly, and the dense effect of the cycle makes the
interface contact more closely, which improves the shear stiffness continuously; meanwhile,
when subjected to larger shear displacement amplitudes, with the increase in the number of
cycles, a shear fragmentation zone appears at the interface and the particles at the interface
undergo violent reorganisation, which causes the shear stiffness decreases.

According to Figure 19, the damping ratio of the polymer–silty clay interface is signifi-
cantly sensitive to the shear displacement amplitude, and the damping ratio corresponding
to the same number of cycles is positively correlated with the shear displacement amplitude,
indicating that the increase in displacement amplitude leads to greater energy dissipation
at the interface during cyclic shear. At the same time, it can also be seen that the interface
damping ratio decreases and then increases with the number of cycles under the shear
displacement amplitudes of 1.0 mm and 1.5 mm, while the damping ratio decreases with
the number of cycles when the shear displacement amplitude is 0.5 mm.

4.3. Influence of Vertical Stress

Under the 100 kPa, 200 kPa and 300 kPa vertical stress conditions, the dynamic
shear–shear displacement relationship curves of the polymer–silty clay interface for the
10th cycle are plotted in Figure 20, the shear stiffness development trends for vertical
stresses are presented in Figure 21, and the damping ratio development trends are shown
in Figure 22.

As shown in Figure 20, with the vertical stress increasing, the area of the hysteresis
loop increases continuously, and the shear stress of the interface also increases. At this
time, the shear stress increments are 3.1 kPa and 11.5 kPa, respectively. The reason for
this phenomenon, on the one hand, is mainly due to the linear relationship between
vertical stress and shear strength at the interface [32], the greater the vertical stress applied,
the greater the frictional restraint between the soil particles near the interface will be,
which contributes to improve the peak shear stress. On the other hand, as the vertical
stress continues to increase, the pore structure of the soil changes and the soil near the
interface is squeezed more compactly, while the soil particles are broken and the degree
of shear hardening becomes more obvious, which leads to an increase in the increment of
shear stress.

As can be seen from Figure 21, the shear stiffness of the interface develops with the
increase in the number of cycles under the vertical stresses of 100 kPa, 200 kPa and 300 kPa,
and the shear stiffness corresponding to the same number of cycles also becomes larger
with the applied vertical stress increases. This is due to the increase in vertical stress that
causes the stronger occlusal effect of the soil near the interface, which leads the soil to
become more dense and improves the interface shear resistance, and shear stiffness is an
important parameter characterizing the interface shear resistance to shear damage; thereby,
the shear stiffness will also increase. It follows that an increase in vertical stress will lead to
an increase in the shear stiffness of the interface within a certain range.
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Figure 20. Shear stress–shear displacement relationship curves under different vertical stresses.
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Figure 21. Development trends of shear stiffness under different vertical stresses.
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Figure 22. Development trends of damping ratios with different vertical stresses.

From Figure 22, it is clear that the damping ratio corresponding to the same number
of cycles decreases with the increase in the vertical stress. At the same time, the damping
ratios of the interfaces under the three vertical stresses is quite different in the initial several
shear cycles. With the increase in the number of cycles, the development of the interface
damping ratio under the three vertical stresses tends to be stable, indicating that the energy
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dissipation at the soil interface under cyclic shear tends to be stable with the increase in the
number of cycles without considering the change in the physical state of the interface such
as particle breakage, material deformation and wear under high vertical stress.

5. Nonlinear Constitutive Model of Polymer–Soil Interface
5.1. Static Interface Model

It can be seen from the test results that the stress–strain curve of the interface be-
tween the polymer anti-seepage wall and the earth–rock dam conforms to the hyperbolic
relationship. The tangential and normal relationships of the nonlinear interface elements
are expressed in matrix form as follows:{

∆τ1
∆τ2

}
=

[
ks1 0
0 ks2

]
(1)

The nonlinear hyperbolic model of shear stress–shear displacement proposed by
Clough and Duncan [28] is used to represent the stress–strain relationship of the nonlinear
interface element, in which the asymptotic value of the hyperbolic is

(
C− f σy′

)
/R, and

the tangential stiffness kx′ and normal stiffness ky′ are expressed in the form of quadratic
parabola, as shown in Equations (2) and (3).

kx′ = kx′0

1− 1
cos α

Rτx′(
C− f σy′

)
2

(2)

ky′ = ky′0

1− 1
sin α

Rτy′(
c− f σy′

)
2

(3)

In the formula: kx′0 and ky′0 are the initial tangential stiffness and initial normal
stiffness of the interface, respectively;

C is the adhesive force;
ƒ is the friction coefficient;
α is the friction angle of the shear surface.
Based on the nonlinear hyperbolic model proposed by Clough and Duncan [28], the

shear deformation increment is replaced by the tangential and normal directions of the
interface, which can be expressed as:

ksx =

(
1− R f

τ1

σn tan δ

)2
Kxγw

(
σn

Pa

)n
(4)

ksy =

(
1− R f

τ2

σn tan δ

)2
Kyγw

(
σn

Pa

)n
(5)

In the formula: Kx and Ky are the tangential and normal stiffness coefficient, respectively;
R f is the interface damage ratio;
δ is the friction angle of the interface;
γw is water unit weight;
Pa is atmospheric pressure.
Referring to the static shear test results of the polymer–silty clay interface, the tangen-

tial and normal stiffness coefficients are obtained according to the logarithmic slope of the
stress–strain curve of the interface; the failure ratio R f is the ratio of the shear strength τf
of the interface to the ultimate shear stress τuk; and the friction angle of the interface δ is
obtained by fitting the shear strength with the vertical stress curve. The tangential stiffness
ksx and the normal stiffness ksy can be calculated by substituting the tangential stiffness
coefficient Kx and the normal stiffness coefficient Ky, the failure ratio R f and the friction
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angle δ of the polymer–silty clay interface into Equations (4) and (5). Then the shear stress
of the interface will be updated automatically with the displacement variable iteration to
obtain the stress–strain relationship of the interface. The interface model parameters are
shown in Table 11.

Table 11. Static model parameters of polymer–soil interface.

Interface Kx Ky Rf n δ γw Pa

polymer–soil 1137 1137 0.89 0.45 26.57 10 100

5.2. Dynamic Interface Model

According to the results of the cyclic shear test, the shear stiffness and damping ratio
are used to simulate the dynamic properties of the interface between the wall and the dam.
The dynamic constitutive model of the interface is as follows:

K =
Kmax

1 +
KmaxR f u
σn tan δ

(6)

where Kmax is the shear modulus;
σn is vertical stress;
R f is the interface damage ratio;
δ is the friction angle of the interface;
u is the shear displacement.
The damping ratio of the cyclic shear test results of the interface represents the energy

dissipation of the interface, and its mathematical model [33] is as follows:

a = 1/K1γw(σn/Pa)
n1 , b = R f /σn tan δ (7)

λ =
λ0

1 + ku
+

(
λult −

λ0

1 + ku

)(
1− a

a + bu

)α1+α2σn

(8)

In the formula: λ0 is the initial damping ratio;
λult is the limit damping ratio;
k, α1 and α2 are the model parameters.
According to the cyclic shear test results of the interface, the dynamic parameters are

obtained on the basis of the static interface model parameters, and the dynamic model
parameters of the interface are shown in Table 12.

Table 12. Dynamic model parameters of polymer–soil interface.

Interface Kx Ky Rf n δ γw Pa λ0 λult k α1 α2

Polymer–soil 1137 1137 0.89 0.45 26.57 10 100 0.31 0.27 1.25 1.84 0.01

5.3. Implementation of Interface Unit

Due to the shear hardening properties of the interface between the polymer and silty
clay, the nonlinear interface element can be used to simulate the shear hardening properties
of the interface in the finite element analysis. The element is based on the starting point
stiffness method and can simulate complex nonlinear contact problems through the FRIC
subroutine interface provided by ABAQUS software [37,38].

The basic principle of the initial point stiffness method is to divide the shear stress
into several incremental steps during the application of shear stress, and the shear stiffness
coefficient is determined according to the initial shear stress of each shear stress increment
step. On this basis, the FRIC subroutine interface given by the software is compiled by
Fortran language on the Visual Studio platform. Finally, the generated dynamic link file



Polymers 2023, 15, 634 20 of 24

is linked with ABAQUS software to realize the application of the nonlinear interface unit.
The operation flow chart is shown in Figure 23.
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5.4. Interface Model Validation
5.4.1. Static Shear Model Verification

Based on the specific parameters of the polymer–silt clay interface test, the numerical
model of the polymer–soil interface was established by ABAQUS, as shown in Figure 24.
In the vertical stress conditions of 100 kPa, 200 kPa, 300 kPa and 400 kPa, the simulation
values and test results are shown in Figure 25.
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It can be seen from Figure 25 that the numerical simulation results using nonlinear
interface elements are in good agreement with the experimental results. Under the vertical
stress conditions of 100 kPa, 200 kPa, 300 kPa and 400 kPa, the average relative error is
10.74%. The average error of the simulation result meets the reasonable range. Therefore,
it is reasonable and feasible to use the above nonlinear interface element to simulate the
static properties of the polymer–silty clay interface.
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Figure 25. Shear stress–displacement curves of interface static shear simulated values and test values.

5.4.2. Dynamic Shear Model Validation

In the vertical stress conditions of 100 kPa, 200 kPa and 300 kPa, the polymer–soil
interface dynamic model simulation and test results are shown in Figure 26.
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It can be seen from Figure 26 that the dynamic shear stress–displacement relationship
curves of the polymer–soil cyclic shear simulation results and test results are basically
consistent, showing nonlinear properties. The average error between the simulation re-
sults is 14.91%, which is in a reasonable range. Therefore, it is reasonable and feasible
to use the above nonlinear interface element to simulate the dynamic properties of the
polymer–soil interface.

6. Conclusions

The polymer anti-seepage wall is a new type of anti-seepage reinforcement technology
for earth–rock dam engineering with the advantages of being fast, efficient and durable,
with good seismic and anti-cracking properties, etc., and is currently applied in reinforce-
ment projects in many places. However, due to the “root-like” contact state of the new
polymer–soil material and the complex stress state of the wall–dam interface, the inter-
face properties between the wall and the dam are unclear, which limits the promotion
and application of polymer anti-seepage walls. Therefore, based on the original designed
polymer–soil interface test mould, the SRS-150 dynamic ring shear instrument was used to
conduct ring shear test research on the static and dynamic properties of the polymer–soil
interface, and the following research findings and conclusions were drawn:

(1) The interface properties of polymer–silty clay are better than those of the polymer–silty
interface, concrete–silty clay interface and plain soil interface, which are reflected in
the higher shear strength, greater adhesive force of the polymer–silty clay interface
and more obvious improvement in the shear properties of the earth–rock dam. As
the viscosity of the soil increases, the adhesive force and internal friction angle of the
interface increase as well, and the silty clay contains more clay particles compared to
the silty clay, which enhances the adsorption and adhesion of the interface between the
polymer and the nearby soil, resulting in the peak shear stress being further improved.
At the same time, compared to conventional concrete-based anti-seepage structures,
the polymer bonds with the soil more closely due to adhesive and consolidation
effects, which leads to the shear resistance of the polymer–soil being better than the
traditional concrete materials.

(2) The bonding state, polymer density and vertical stress affect the static properties of
the polymer–silty clay interface, and the specific performances are as follows: the
shear resistance of the polymer–silty clay interface in the bonded state is better than
that in the non-bonded state; meanwhile, the peak shear stress of the polymer–silty
clay interface increases with the increases in polymer density and vertical stress. The
influence of the bonding state and polymer density on the static properties of the
interface is mainly through changing the adhesion between the soil and the structure
to increase the adhesive force and internal friction angle of the interface, and the
increase in polymer density enhances the expansion anchorage force of polymer
materials and strengthens the shear strength of the interface. When the vertical stress
increases, the compactness of the soil near the interface of polymer–silty clay also
increases, and the frictional resistance between soil particles increases accordingly as
well, which drives more soil particles to flip, roll and rearrange to increase the peak
shear stress of the interface.

(3) The polymer density, shear displacement amplitude and vertical stress affect the dy-
namic properties of the polymer–silty clay interface, and the specific performances are
as follows: the hysteresis loop area and dynamic shear stress of the polymer–silty clay
interface increase with the increase in polymer density, shear displacement amplitude
and vertical stress. The effect of polymer density on the dynamic properties of the
interface is mainly through enhancing the shear modulus and shear strength of the
polymer materials; the effect of shear displacement amplitude on the dynamic proper-
ties of the interface is mainly through acting on the soil near the interface, resulting
in a more orderly arrangement of soil particles near the interface of polymer–silty
clay, so that the energy absorbed and dissipated increases accordingly, which further
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improves the shear stress; the influence of vertical stress on the dynamic properties
of the interface is mainly through enhancing the frictional restraint between the soil
particles near the interface and squeezing the soil near the interface to increase the
peak shear stress of the interface hysteresis loop.

(4) Polymer density, shear displacement amplitude and vertical stress have similar effects
on the shear stiffness of the polymer–silty clay interface: the shear stiffness of the
interface increases with the increases in polymer density, shear displacement am-
plitude and vertical stress. In addition, the damping ratio of the polymer–silty clay
interface is negatively correlated with polymer density and vertical stress, while the
damping ratio of the polymer–silty clay interface is sensitive to the shear displacement
amplitude, and the damping ratio corresponding to the same number of cycles is
positively correlated with the shear displacement amplitude.

(5) According to the interface properties of polymer–silty clay, the construction process of
the hyperbolic constitutive model is systematically expounded by using mathematical
formulae. Verified by numerical simulation, the test values of the shear strength and
shear displacement curves of the static shear model and cyclic shear model have a
good fitting degree with the simulation values.
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