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Abstract: Low-molecular-weight carrageenan has attracted great interest because it shows advantages
in solubility, absorption efficiency, and bioavailability compared to original carrageenan. However
more environment-friendly and efficient methods to prepare low-molecular-weight carrageenan
are still in great need. In the present study, a photocatalytic degradation method with only TiO2

has been developed and it could decrease the average molecular weight of κ-carrageenan to 4 kDa
within 6 h. The comparison of the chemical compositions of the degradation products with those
of carrageenan by FT-IR, NMR, etc., indicates no obvious removement of sulfate group, which is
essential for bioactivities. Then 20 carrageenan oligosaccharides in the degradation products were
identified by HPLC-MSn, and 75% of them possessed AnGal or its decarbonylated derivative at
their reducing end, indicating that photocatalysis is preferential to break the glycosidic bond of
AnGal. Moreover, the analysis results rheology and Cryo-SEM demonstrated that the gel property
decreased gradually. Therefore, the present study demonstrated that the photocatalytic method with
TiO2 as the only catalyst has the potential to prepare low-molecular-weight carrageenan with high
sulfation degree and low viscosity, and it also proposed the degradation rules after characterizing the
degradation products. Thus, the present study provides an effective green method for the degradation
of carrageenan.

Keywords: degraded carrageenan; photocatalysis degradation; polysaccharide degradation; car-
rageenan oligosaccharides; photocatalyst TiO2

1. Introduction

Carrageenans, a family of highly sulfated polysaccharides, are derived from marine red
algae, such as Eucheuma, Gigartina, Chondrus, and Hypnea [1]. According to the number and
position of the sulfate groups, they can be classified into kappa (κ)-, iota (ι)-, and lambda
(λ)–carrageenan. Among them, κ-carrageenan, which is mainly composed of D-galactose-4-
sulfate (G4S) and 3,6-anhydro-D-galactose (An), demonstrates the lowest viscosity, and it is
universally used as thickeners, gelling agents, and stabilizers in processing foods, including
yogurt, ice cream, and some processed meats [2].

Recently, various biological activities of κ-carrageenan such as antiviral, antioxidant,
anticoagulant, and anti-obesity effects have attracted widespread attention [3–6]. However,
κ-carrageenan has a large molecular weight, poor solubility, and low bioavailability, which
greatly limit its application range [7]. As the degradation products of carrageenan, car-
rageenan oligosaccharides exhibited diverse biological activities as well as other remarkable
properties, especially better solubility and higher absorption [8]. In addition, carrageenan
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oligosaccharides also have potential as an antimicrobial agent [9], antifreeze agent [10], and
drug delivery carrier [11].

Therefore, it is meaningful to develop the degradation methods to prepare low-
molecular-weight carrageenan with excellent solubility so as to improve its biological
activities and expand its application range. The reported degradation methods for κ-
carrageenan include acid, enzymatic, microwave-assisted, ultrasonic-assisted, and oxida-
tive degradation [12–14]. The operation process of acid degradation polysaccharide is
relatively simple and costs less, but it is difficult to master the conditions of the acid degra-
dation polysaccharide process, and easy to damage the structure of the polysaccharide, such
as the sulfate groups, thus affecting its biological activities [15]. The enzymatic approach
is high-cost and inefficient, which has limited its industrial-scale applications. Although
the microwave-assisted and ultrasonic-assisted degradation are simple and non-pollution,
their production costs are also high due to their necessary equipment [16]. Therefore, it is
essential to develop a high-efficiency, environmentally friendly, and low-cost degradation
method, which can retain the sulfate groups of κ-carrageenan.

Photocatalytic degradation, as an advanced oxidation process, has made rapid progress
since the discovery of the first water splitting reaction using a semiconductor in 1972 by
Fujishima and Honda. As shown in Figure 1, the photocatalytic process begins from the
semiconductor band gap. When an electron (e−) in a semiconductor valence band is ex-
cited to transition to the conduction band, photogenerated holes (h+) in the valence band
will be generated in response, thus yielding electron-hole (e− and h+) pairs inside the
semiconductor [17]. As a result, the excited electrons will produce free radicals to impel
the photocatalytic reactions. Among various semiconductor catalysts, titanium dioxide
(TiO2) is one of the best photocatalysts for inducing a series of reductive and oxidative
reactions on its surface, as TiO2 is the most active photocatalyst under the photon energy
of 300 nm < λ < 390 nm, and it remains stable after several catalytic cycles [18]. Besides
this, TiO2 catalyst also has many functional properties, such as its strongly thermal stability
and resistance to chemical damage, which promote its wide application in photocatalytic
technology [19].
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Figure 1. Photocatalytic formation mechanism of electron−hole pair in a semiconductor TiO2 particle.

Previous research revealed that photocatalysis showed a good performance in the treat-
ment of organic pollutants due to its advantages of fast reaction speed, low cost, and “green
chemistry” technology [20]. At present, photocatalysis technology is applied in not only
the removement of organic pollutants, but also anti-virus, anti-bacteria, etc. [21,22]. Photo-
catalytic degradation shows the advantages of high-efficiency, energy-saving, ecofriendly,
and sustainability [23]. More importantly, it is more suitable for sulfated polysaccharide
degradation because it does not obviously remove the sulfate group, which is critical for
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the bioactivities [24]. Photocatalysis with the addition of H2O2 could degrade chondroitin
sulfate [25] and fucoidan [26]. However, there is no report on the successful photocatalysis
degradation of sulfated polysaccharides without H2O2 to date.

In the present study, a photocatalytic method with only TiO2 as photocatalyst was
developed for κ-carrageenan degradation, and the resulting degradation products were de-
tected by a series of analytical methods to reveal changes of κ-carrageenan in the structure,
composition, rheological property, and microstructure during photocatalytic degradation.

2. Materials and Methods
2.1. Chemicals

κ-carrageenan was obtained from Aladdin Co. Ltd. (Shanghai, China). Titanium diox-
ide (TiO2) nanoparticles (25 nm) were obtained from Evonik Degussa Specialty Chemicals
Co., Ltd. (Frankfurt, Germany). All dextran standards were provided by Sigma-Aldrich (St.
Louis, MO, USA). Other reagents were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China).

2.2. Photocatalytic Degradation of κ-Carrageenan

A CEL-HXF300-T3 system (Zhongjiao Jinyuan Technology Co., Ltd., Beijing, China)
was used for the photocatalytic reaction, and it was configured with a 300 W Xenon lamp
whose wavelength range is 300 nm–2500 nm (PerkinElmer, Waltham, MA, USA).

κ-carrageenan (1 g) was dissolved in water (200 mL), magnetic stirring at 60 ◦C for
6 h, and placed in the refrigerator at 4 ◦C overnight to obtain κ-carrageenan solution (0.5%
w/w). The κ-carrageenan solution was added into the photocatalytic reactor, and TiO2
(5%), the combination of H2O2 (300 mM) and TiO2 (5%), or H2O2 (300 mM) were added
while stirring (the addition amounts of TiO2 and H2O2 were based on the results optimized
by our team previously [26]). During the photocatalytic experiment, the solution was
continuously stirred and exposed to a Xenon lamp for 6 h, and the samples degraded for
2 h, 4 h, and 6 h. After centrifugation at 10,000 rpm for 20 min, the supernatants were
lyophilized individually, which were named as DC-2, DC-4, and DC-6, respectively.

2.3. Chemical Composition Analysis

The total sugar content was measured by phenol–sulfuric acid method using galactose
as the standard [27]. The reducing sugar content was measured by 3,5-dinitrosalicylic
acid (DNS) assay using galactose as the standard [28]. The uronic acid content was de-
termined by m-hydroxy biphenyl method using D-galacturonic acid as the standard [29].
The sulfated polysaccharide content was determined by the metachromatic assay with
1,9-dimethylmethylene blue (DMB) using pure κ-carrageenan as the standard [30]. The
3,6-anhydro galactose content was measured by resorcinol method with a minor modifica-
tion [31]. The total sulfate group content was determined by the barium chloride-gelatine
method using anhydrous potassium sulfate as the standard [32]. The free sulfate con-
tent was determined through ion chromatography using a DIONEX IonPac AS23 column
(4.0 mm × 250 mm) at 30 ◦C and 4.5 mM Na2CO3 and 0.8 mM NaHCO3 were utilized as
mobile phases.

The sulfate content = Total sulfate content− Free sulfate content (1)

2.4. Molecular Weight Determination

The molecular weights (Mw) of samples were examined by high performance gel
permeation chromatography (HPGPC), which was configured with a refractive index
detector (Waters 2414, Milford, MA, USA) and a TSK G5000PWXL chromatographic column
(7.8 mm × 300 mm) was used for separation. The sample was eluted with 100 mM
ammonium acetate at a flow rate of 0.4 mL/min. A series of dextran standards with
molecular weights of 5, 25, 50, 410, and 670 kDa were applied as standards.
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2.5. Thin Layer Chromatography (TLC)

Each 2 µL of polysaccharide samples and standards (glucose, lactose, and β-cyclodextrin)
were spotted separately onto a 20 cm × 20 cm plastic TLC plate (Macherey, Düren, Ger-
many), and the plate was performed with the solvent system of n-butanol: formic acid:
water (2:1:1, v/v/v) at 25 ◦C. Then, the plate was stained with orcinol–sulfuric acid reagent
which consisted of 50 mg of orcinol and methanol: H2SO4 (5:1, v/v), and then heated at
120 ◦C to visualize the bands.

2.6. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis

The carrageenan and its degradation products (2 mg) were individually pressed into
1 mm pellets with KBr (100 mg). The FTIR spectra of sample pellets were recorded in a dry
atmosphere at room temperature (21± 1 ◦C) by using a Spectrum One-B FTIR Spectrometer
(PerkinElmer, Waltham, MA, USA) in the range of 500 to 4000 cm− 1. Furthermore, a
background spectrum was subtracted automatically by using pure dried KBr to eliminate
the interferences of carbon dioxide and water in the atmosphere.

2.7. Nuclear Magnetic Resonance (NMR) Analysis

DC-6 (50 mg) in 500 µL of D2O (99.9%) was dissolved and lyophilized three times. 1H
NMR, 13C NMR, and 2-dimensional heteronuclear single quantum correlation (HSQC) of DC-6
were recorded on a Bruker Avance III 400 NMR spectrometer (Bruker, Rheinstetten, Germany).

2.8. Mass Spectrometry Analysis

DC-6 was further fractionated with a molecular weight cut-off (MWCO) of 3 kDa to
obtain κ-carrageenan oligosaccharides, which were further subjected to mass spectrometry
analysis according to our previously reported method with minor modification [33]. Briefly,
the oligosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP) at first,
and then the products were analyzed by HPLC-MSn. LXQ mass spectrometer (Thermo
Fisher, Pittsburgh, PA, USA) coupled with a photodiode array detector (PDA) and an
electrospray ionization (ESI) source were employed. The oligosaccharide derivatives were
separated with a TSKgel-Amide-80 column (4.6 mm × 150 mm, 3 µm) and eluted with
20 mM ammonium acetate-acetonitrile (5:95, v/v) at 0.2 mL/min. For the electrospray
ion source, the spray voltage was set at 4.5 kV, the capillary voltage was set at 37 V, and
the capillary temperature was 275 ◦C [34]. All data were acquired and processed through
XCalibur software.

2.9. Rheological Measurement

The dynamic rheological measurement of the samples was obtained with a DHR-2
rheometer (TA Instruments, New Castle, DE, USA). A 60-mm diameter aluminum plate
geometry was used for measurement at the distance of 500 µm. First of all, about 2 mL of
the sample was taken and placed on the sample plate, the excess sample was scraped off,
coated with silicone oil, and covered with a moisturizing cap to minimize measurement
errors. Before the test, the initial temperature equilibrium of the samples was maintained
for 5 min. A strain sweep program (0.001–100% at 25 ◦C and 1 Hz) was performed to
determine the linear viscoelastic region. The time sweeps were conducted in the scope
of 0–160 s at 4 ◦C and 25 ◦C, and the frequency sweeps were carried out in the range of
0.01–10% at 4 ◦C and 25 ◦C.

2.10. Cryogenic Scanning Electron Microscopy (Cryo-SEM)

The microstructure of the samples was carried out by using a Cryo-SEM (SU8010,
Hitachi, Japan) configured with the PP3010T preparation system (Quorum Technologies
Ltd., East Sussex, UK). Briefly, an appropriate amount of sample was loaded onto rivet
and frozen quickly in liquid nitrogen slush. After that, the fractured samples were further
sublimated at −60 ◦C for 30 min and coated with gold for 30 s. At last, the samples were
transmitted to the SEM chamber for observation [35].



Polymers 2023, 15, 602 5 of 14

2.11. Statistical Analysis

All the results were presented as mean± SD. The statistical analysis was performed us-
ing one-way ANOVA multiple-comparisons tests by SPSS 19.0 statistical software. p < 0.05
was considered to be statistically significant between the groups.

3. Results and Discussions
3.1. Photocatalytic Degradation of Carrageenan

In order to reveal the molecular weight change of κ-carrageenan in the photocatalytic
reaction, HPGPC and TLC were used to analyze the hydrolysates during the photocatalytic
reaction. We compared the degradation effects of 300 mM H2O2 (Figure 2A), the combina-
tion of 300 mM H2O2 and 5% TiO2 (Figure 2B), and 5% TiO2 (Figure 2C) on carrageenan.
Comparison of the molecular distribution of products collected at 2 h and 4 h indicates
that the combination of H2O2 and TiO2 possesses the highest degradation efficiency, fol-
lowed by using H2O2 alone, then TiO2. However, all of the three conditions could degrade
carrageenan to 3~6 kDa after 6 h. Notably, it is unexpected that a similar outcome of 6 h
degradation could also be achieved by using only TiO2. TLC analysis (Figure 2D) also
demonstrated that oligosaccharides gradually accumulated by using TiO2 alone.
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Figure 2. Molecular weight distribution changes of carrageenan during photocatalytic reaction
monitored by HPGPC. (A) 300 mM H2O2, (B) 5% TiO2 and 300 mM H2O2, (C) 5% TiO2, and (D) TLC
with 5% TiO2 of degraded carrageenan.

TiO2 as photocatalyst could generate electron-hole (e− and h+) pairs under the light,
and the excited electrons can further generate free radicals. H2O2, which could also produce
radicals, is widely applied in the degradation of polysaccharides [36]. We have reported
the photocatalytic degradation of fucoidan and chondroitin sulfate with TiO2 as well as
H2O2, and the products of 3~5 kDa were obtained after a 6 h reaction [25,26]. As a strong
oxidizing agent, H2O2 could promote the oxidation degradation [37], but it is harmful
to health and unfriendly to environment [38]. Moreover, its addition could increase the
production cost.

In the present study, 4 kDa degradation product of κ-carrageenan was produced
through a 6 h reaction without H2O2. Of note, fucoidan and chondroitin sulfate could
not be degraded obviously within 6 h (data not published). The efficient degradation of
κ-carrageenan by photocatalytic reaction without H2O2 may be attributed to its structure.
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Notably, the results showed that sulfated polysaccharides can be effectively degraded by
photocatalytic degradation method with only TiO2, which is a significant discovery.

3.2. Structure Changes of Carrageenan by Photocatalytic Degradation

In order to monitor the chemical structure changes of κ-carrageenan during the photo-
catalytic reaction, colourimetry, FT-IR spectroscopy, and NMR spectroscopy were applied.
With the extension of photocatalytic time, the reducing sugar content increased from 0.85%
to 14.41% (Figure 3A), indicating the effective degradation by photocatalysis, which was
consistent with molecular weight change. At the same time, no significant difference in
sulfate group content was observed between κ-carrageenan and its degradation products
(Figure 3B). However, the total sugar content, sulfated polysaccharide content, and 3,6-
anhydro galactose content all decreased by around 20% after 6 h degradation (Figure 3C–E),
which reflected the breakdown proportion during the degradation. Of note, the uronic acid
content showed an increasing trend, suggesting the byproduct as uronic acid (Figure 3F).
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Figure 3. Changes in chemical compositions of κ-carrageenan. (A) Reducing sugar content,
(B) sulfated group content, (C) total sugar content, (D) sulfated polysaccharide content, (E) 3,6-
anhydro galactose content, and (F) uronic acid content. Data are expressed as the mean ± SD (n = 3).
Graph bars marked with different letters on top represent statistically significant results (p < 0.05)
based on one-way analysis of variance (ANOVA) with Duncan’s range tests, whereas bars marked
with same letter correspond to results that show no statistically significant differences.

The FT-IR spectra of κ-carrageenan, DC-2, DC-4, and DC-6 were presented in Figure 4.
The absorption band at 1642 cm−1 was attributed to the stretching vibration of C=O
group [39]. The presence of signals at 1245 cm−1 and 850 cm−1 were assigned, respectively,
to O=S=O symmetric vibration and to –O–SO3 stretching vibration at C-4 of the galactose
ring. Importantly, the peak position, shape, and intensity of the presence of signals at
850 cm−1 showed that sulfate group was retained during the photocatalytic reaction. The
absorption band at 929 cm−1 was attributed to the C–O–C vibration of the 3,6-anhydro-D-
galactose residue [40]. Furthermore, the absorption band at 1054 cm−1 was attributed to
the stretching vibration of C-O-C on the sugar ring, and this peak was the characteristic
absorption peak of pyranose ring. Notably, although great similarities were observed
between κ-carrageenan and its degradation products, an absorption band at 1740 cm−1

corresponding to the stretching vibration of C=O grew with the extension of photocatalysis
degradation, indicating the formation of carboxyl or aldehyde group [41,42].



Polymers 2023, 15, 602 7 of 14

Polymers 2023, 15, 602 7 of 14 
 

 

to O=S=O symmetric vibration and to –O–SO3 stretching vibration at C-4 of the galactose 
ring. Importantly, the peak position, shape, and intensity of the presence of signals at 850 
cm−1 showed that sulfate group was retained during the photocatalytic reaction. The ab-
sorption band at 929 cm−1 was attributed to the C–O–C vibration of the 3,6-anhydro-D-
galactose residue [40]. Furthermore, the absorption band at 1054 cm−1 was attributed to 
the stretching vibration of C-O-C on the sugar ring, and this peak was the characteristic 
absorption peak of pyranose ring. Notably, although great similarities were observed be-
tween κ-carrageenan and its degradation products, an absorption band at 1740 cm−1 cor-
responding to the stretching vibration of C=O grew with the extension of photocatalysis 
degradation, indicating the formation of carboxyl or aldehyde group [41,42]. 

 
Figure 4. FT−IR spectra of κ-carrageenan after 0 h, 2 h, 4 h, and 6 h photocatalytic reaction. 

To further explore the possible structural changes caused by photocatalysis degrada-
tion, 1H NMR, 13C NMR, and HSQC spectra (Figure 5) of DC-6 were investigated. The 
cross peaks at 4.63/102.1 ppm and 5.08/94.5 ppm in the HSQC spectrum were identified 
as anomeric proton/carbon signals of Gal4S and AnGal, respectively. Other 1H and 13C 
chemical shifts were also assigned in Table 1. Comparison of the NMR signals with those 
of κ-carrageenan [43,44] indicates that DC-6 has no obviously structural changes. It is 
worth mentioning that no carbon signal was observed at 66.4 ppm corresponding to the 
C-4 position of galactose without sulfate substitutions [45], indicating no obvious desul-
phurization occurs in the photocatalytic degradation. 

 
Figure 5. (A) 1H NMR, (B) 13C NMR, and (C) HSQC spectra of DC-6. Correlation peaks are marked 
on the spectrum: G4S (G)—orange and AnGal (A)—green. 

Figure 4. FT−IR spectra of κ-carrageenan after 0 h, 2 h, 4 h, and 6 h photocatalytic reaction.

To further explore the possible structural changes caused by photocatalysis degrada-
tion, 1H NMR, 13C NMR, and HSQC spectra (Figure 5) of DC-6 were investigated. The
cross peaks at 4.63/102.1 ppm and 5.08/94.5 ppm in the HSQC spectrum were identified
as anomeric proton/carbon signals of Gal4S and AnGal, respectively. Other 1H and 13C
chemical shifts were also assigned in Table 1. Comparison of the NMR signals with those of
κ-carrageenan [43,44] indicates that DC-6 has no obviously structural changes. It is worth
mentioning that no carbon signal was observed at 66.4 ppm corresponding to the C-4 posi-
tion of galactose without sulfate substitutions [45], indicating no obvious desulphurization
occurs in the photocatalytic degradation.
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Table 1. 1H and 13C NMR chemical shifts of DC-6 in D2O.

Glycosyl Residues
13C/1H (ppm)

C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6

G: Gal4S 102.1/4.63 69.2/3.58 78.1/3.99 73.7/4.83 74.5/3.79 61.2/3.79
A: AnGal 94.5/5.08 69.3/4.12 78.7/4.51 77.8/4.60 76.5/4.63 69.2/4.18

3.3. Identification of Carrageenan Oligosaccharides Produced by Photocatalytic Degradation

The oligosaccharides in DC-6 were characterized by ESI-MSn in positive ion mode
after PMP derivatization, and their extracted ion chromatograms and MS2 spectra were
shown in Figure 6. The oligosaccharides were identified mainly based on their pseudo-
molecular ion and product ions. As illustrated in Figure 6A, the pseudo-molecular ion of
Peak 1 at m/z 1075 [M+H]+ gave product ions at m/z 931 [M-AnGal+H]+, m/z 769 [M-
AnGal-Gal+H]+, m/z 625 [M-AnGal-Gal-AnGal+H]+, and m/z 463 [M-AnGal-Gal-AnGal-
Gal+H]+. Thus, Peak 1 was considered to be a PMP-labeled pentasaccharide composed of
(Gal)2, (AnGal)2 and a residue of 114 Da (named as dAnGal). Then, the oligosaccharide
of Peak 1 was elucidated as AnGal→Gal→AnGal→Gal→dAnGal. Some fragments of
Peak 1 were also observed in the MS2 of Peak 2 (Figure 6B), including m/z 769 [M-AnGal-
Gal+H]+, m/z 625 [M-AnGal-Gal-AnGal+H]+, and m/z 463 [M-AnGal-Gal-AnGal-Gal+H]+.
Therefore, Peak 2 was inferred as a derivative of Peak 1 losing an AnGal, so it was identified
as Gal→AnGal→Gal→dAnGal.

Figure 6. HPLC-MSn analysis results of carrageenan oligosaccharides in DC-6. The identified peaks
are numbered.
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As presented in Figure 6C, the pseudo-molecular ion of Peak 3 was at m/z 1411 [M+H]+,
which gave product ions at m/z 1267 [M-AnGal+H]+, m/z 1105 [M-AnGal-Gal+H]+,
m/z 961 [M-AnGal-Gal-AnGal+H]+, m/z 799 [M-AnGal-Gal-AnGal-Gal+H]+, m/z 655
[M-AnGal-Gal-AnGal-Gal-AnGal+H]+, and m/z 493 [M-AnGal-Gal-AnGal-Gal-AnGal-
Gal+H]+ in MS2. Thus, Peak 3 was speculated as a PMP-labeled heptasaccharide,
AnGal→Gal→AnGal→Gal→AnGal→Gal→AnGal. Similarly, oligosaccharides from dis-
accharide to hexasaccharide constructed with the alternate AnGal and Gal residues were
found according to Figure 6D–J.

In the present study, a total of 20 oligosaccharides in the photocatalytic degradation
products were identified, including di-, tri-, tetra-, penta-, hexa-, and hepta-saccharides
(Table 2), and their relative yields could be reflected by their chromatogram peak areas.
It is worth noting that sulfate content in the identified oligosaccharides is not as high as
it has been determined in Section 3.2. This is due to the fragmentation through loss of
sulfate groups and sensitivity problems of mass spectroscopy detection, particularly when
analyzing oligosaccharides substituted with many sulfate groups [46,47].

Table 2. Relative contents of κ-carrageenan oligosaccharides detected in DC-6.

No. Retention Time (min) m/z Oligosaccharide Chain Area Ratio (%)

1 5.68 655 AnGal→Gal 13.50
2 29.27 735 AnGal→Gal→SO3 0.45
3 5.53/30.22 799 AnGal→Gal→AnGal 10.54
4 21.63/29 817 Gal→AnGal→Gal 21.05
5 17.31 849 dAnGal→Gal→AnGal→SO3 3.74
6 22.45 931 dAnGal→Gal→AnGal→Gal 9.38
7 21.63/29.13 962 AnGal→Gal→AnGal→Gal 19.57
8 22.45/29.62 1011 dAnGal→Gal→AnGal→Gal→SO3 1.63
9 21.63/29.13 1041 AnGal→Gal→AnGal→Gal→SO3 4.05
10 29.62 1075 dAnGal→Gal→AnGal→Gal→AnGal 2.26
11 40.01 1123 Gal→AnGal→Gal→AnGal→Gal 2.60
12 29.62 1155 dAnGal→Gal→AnGal→Gal→AnGal→SO3 0.52
13 29.23 1185 AnGal→Gal→AnGal→Gal→AnGal→SO3 1.40
14 39.93 1203 Gal→AnGal→Gal→AnGal→Gal→3SO3 0.73
15 40.18 1267 AnGal→Gal→AnGal→Gal→AnGal→Gal 4.28
16 40.18 1347 AnGal→Gal→AnGal→Gal→AnGal→Gal→SO3 1.31
17 40.24 1363 Gal→AnGal→Gal→AnGal→Gal→SO3 0.64
18 41.3 1411 AnGal→Gal→AnGal→Gal→AnGal→Gal→AnGal 1.52
19 41.3 1491 AnGal→Gal→AnGal→Gal→AnGal→Gal→AnGal→SO3 0.46
20 41.3 1507 AnGal→Gal→AnGal→Gal→AnGal→Gal→3SO3 0.37

The possible formation process of dAnGal was proposed in Figure 7. After the break of
glycosidic bond of AnGal, the hexatomic ring of AnGal is opened. Then the new reducing
end is subjected to a rapid oxidation to form the carboxyl group. Next, the decarbonation
and oxidation reactions occur subsequently to generate dAnGal.
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Moreover, the photocatalytic depolymerization rule was proposed in Figure 8 accord-
ing to the degradation products. The major proportion (57.4%) of the degradation products
demonstrated AnGal at their reducing end, and 17.5% was its decarbonylated derivative,
dAnGal, at the reducing end. This suggests that AnGal’s glycosidic bond is more ready
to be attacked by free radicals. Notably, the rule of photocatalytic depolymerization was
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different from those of other depolymerization methods. Carrageenase could degrade
κ-carrageenan to yield even-numbered oligosaccharides with AnGal at the non-reducing
end and Gal at the reducing end [48], while acid hydrolysis could produce odd-numbered
oligosaccharides with Gal at both the reducing and non-reducing ends [49]. In the present
study, similar amounts of odd and even numbers of κ-carrageenan oligosaccharides were
obtained by photocatalytic degradation, and more AnGal or its derivative were observed
at the reducing ends. Thus, the degradation result of photocatalytic reaction was different
from those of enzymatic degradation and acid hydrolysis.
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3.4. Rheological Properties of Carrageenan Degradation Products

In order to monitor the predominant elasticity and gel-like behavior of carrageenan
during the photocatalytic degradation, the elastic (G′) and viscous (G”) moduli of car-
rageenan, DC-2, DC-4, and DC-6 in the time range of 0–160 s and the frequency sweep of
0.1–10 Hz were depicted. As shown in Figure 9, κ-carrageenan at 0.5% (w/w) could form a
weak gel at 4 ◦C, and did not show obvious gel properties at 25 ◦C. At the same time, its
degradation products, including DC-2, DC-4, and DC-6 all failed in the gel formation at
both 4 ◦C and 25 ◦C. Moreover, their performance had not been improved with the change
of frequency. It has been revealed that 3,6-anhydro-D-galactose residues allow a helicoidal
secondary structure, which plays a crucial role in the formation of carrageenan gels [50].
Although the photocatalytic reaction did not break the structure blocks of carrageenan
obviously, its gel property was deprived with the decrease of molecular weight. This is
due to the length and the degree of entanglement of the molecular chain, which will be
decreased during the degradation, resulting in the failure of gel formation. It follows that a
sufficient molecular weight of polysaccharide is critical for the gel properties [51].



Polymers 2023, 15, 602 11 of 14

Polymers 2023, 15, 602 11 of 14 
 

 

decreased during the degradation, resulting in the failure of gel formation. It follows that 
a sufficient molecular weight of polysaccharide is critical for the gel properties [51]. 

 
Figure 9. The storage modulus (G′) (solid symbols), loss modulus (G″) (open symbols) of κ-carra-
geenan, DC-2, DC-4, and DC-6 under the time range of 0–160 s at (A) 4 °C and (B) 25 °C and under 
the frequency scope of 0.01–10% at (C) 4 °C and (D) 25 °C. 

3.5. Cryo-SEM Microstructure of Carrageenan Degradation Products 
Cryo-SEM has long been used for direct observation of the retained microstructure 

of the samples [52]. The microstructure of κ-carrageenan, DC-2, DC-4, and DC-6 were 
characterized by Cryo-SEM, and the results were shown in Figure 10. The gel pore wall 
thickness and pore area were determined with ImageJ; κ-carrageenan, DC-2, DC-4, and 
DC-6 had a pore wall thickness of 0.29 ± 0.06 μm, 0.16 ± 0.01 μm, 0.14 ± 0.02 μm, and 0.12 
± 0.01 μm, respectively. In addition, the pore area of κ-carrageenan was 21.50 ± 4.18 μm2 
while the pore structures of the degradation products were fragmented. 

 
Figure 10. Cryo-SEM images of the samples of κ-carrageenan, DC-2, DC-4, and DC-6. (Magnifica-
tions: × 1000, × 5000, and × 10,000). 

Figure 9. The storage modulus (G′) (solid symbols), loss modulus (G”) (open symbols) of κ-
carrageenan, DC-2, DC-4, and DC-6 under the time range of 0–160 s at (A) 4 ◦C and (B) 25 ◦C
and under the frequency scope of 0.01–10% at (C) 4 ◦C and (D) 25 ◦C.

3.5. Cryo-SEM Microstructure of Carrageenan Degradation Products

Cryo-SEM has long been used for direct observation of the retained microstructure of
the samples [52]. The microstructure of κ-carrageenan, DC-2, DC-4, and DC-6 were charac-
terized by Cryo-SEM, and the results were shown in Figure 10. The gel pore wall thickness
and pore area were determined with ImageJ; κ-carrageenan, DC-2, DC-4, and DC-6 had a
pore wall thickness of 0.29 ± 0.06 µm, 0.16 ± 0.01 µm, 0.14 ± 0.02 µm, and 0.12 ± 0.01 µm,
respectively. In addition, the pore area of κ-carrageenan was 21.50 ± 4.18 µm2 while the
pore structures of the degradation products were fragmented.
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Overall, κ-carrageenan showed a typical gel network structure, which had large
pores and thick and homogeneous pore walls. Notably, the pore walls of degradation
products became thinner, and imperfectly linked with some filamentous structures. It
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could be noticed that with the extension of photocatalytic time, the degradation products
became irregular and broken. The microstructure features are in line with the result
that the degradation products would lose their gel-like behavior with the increase of
degradation time.

4. Conclusions

The present study developed a photocatalytic method for carrageenan degradation
and by using TiO2 as the only catalyst, this method could decrease the average molecular
weight of κ-carrageenan to 4 kDa within 6 h. Notably, no significant loss of sulfate groups
in the reaction was observed, which is critical for its application in preparing sulfated
degradation products. Moreover, the degradation rules were proposed according to the
degradation product characterization, and the glycosidic bond of AnGal was found to be
more susceptible to break. In addition, the present study demonstrated the decreasing gel
property of carrageenan alone with the photocatalytic degradation. Thus, the present study
indicates the promising application of photocatalytic degradation with TiO2 to prepare
sulfated low-molecular-weight carrageenan, which may further broaden the application
of carrageenan.
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