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Abstract: Muscles are capable of modulating the body and adapting to environmental changes with
a highly integrated sensing and actuation. Inspired by biological muscles, coiled/twisted fibers
are adopted that can convert volume expansion into axial contraction and offer the advantages of
flexibility and light weight. However, the sensing-actuation integrated fish line/yarn-based artificial
muscles are still barely reported due to the poor actuation-sensing interface with off-the-shelf fibers.
We report herein artificial coiled yarn muscles with self-sensing and actuation functions using the
commercially available yarns. Via a two-step process, the artificial coiled yarn muscles are proved to
obtain enhanced electrical conductivity and durability, which facilitates the long-term application
in human-robot interfaces. The resistivity is successfully reduced from 172.39 Ω·cm (first step) to
1.27 Ω·cm (second step). The multimode sense of stretch strain, pressure, and actuation-sensing are
analyzed and proved to have good linearity, stability and durability. The muscles could achieve a
sensitivity (gauge factor, GF) of the contraction strain perception up to 1.5. We further demonstrate
this self-aware artificial coiled yarn muscles could empower non-active objects with actuation and
real-time monitoring capabilities without causing damage to the objects. Overall, this work provides
a facile and versatile tool in improving the actuation-sensing performances of the artificial coiled
yarn muscles and has the potential in building smart and interactive soft actuation systems.

Keywords: artificial muscle; self-aware; coiled yarn; soft actuation; integration

1. Introduction

Twisting is a genius invention of nature that imparts enhanced mechanical proper-
ties to non-functional fibers by increasing their compactness, which could be found in
widespread molecules (DNA, protein) [1,2], plants (vine) [3,4] and animals (snail) [5,6].
Inspired by the twisting structures, numerous artificial muscles with twisted or coiled
structures have been proposed with fish line/yarn fibers [7–9]. The commonly employed
fish line/yarn fibers are thermal-responsive materials that could generate reversible trans-
formation by altering their long highly oriented polymer molecules. For instance, the
thermal contraction of nylon 6,6 fibers can reach values similar to those of NiTi shape
memory wire [10], but this contraction does not meet the requirements of the majority of
practical applications. The introducing of twisting into those fibers greatly enhances the
contraction effect, and the actuation properties of the resulted muscles could be regulated
via the degree of twisting and the tightness of the resulting coil [11]. In comparison to other
artificial muscles e.g., dielectric elastomers, conductive polymers, hydrogels and shape
memory polymers, artificial coiled yarn muscles offer unparalleled advantages regarding
low voltage, reversibility, high specific energy density and economy [12–14]. In particular,
with the optimization of materials, structures and stimuli, recent artificially curled muscles
have shown higher performance in terms of actuation stroke, speed, response time, specific
energy density and specific work output [15,16].

With the developing trend of miniaturization, light weight and intelligence of soft
robots and artificial muscles, actuation-sensing integration is increasingly emerging as
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a focus of the artificial muscles [17–19]. Currently, the actuation-sensing integration of
artificial muscles is mainly divided into two categories. The first category is integrating
flexible sensors into artificial muscles, where the actuation and sensing rely on independent
modules and usually generate unsatisfied material interface [20,21]. One typical investi-
gation was reported by Zhao’s group, which employed a stretchable optical waveguide
as a strain-sensing component of a prosthetic hand to perceive the shape and softness of
an object [21]. The second approach is employing the intrinsic sensing properties from the
active materials, which can significantly reduce complexity of the integrated systems and
provide better sensing-actuation interfaces [22–24]. Shi’s group proposed an integrated
sensor-actuator by combining nanocarbon black/polylactic acid composites with bioin-
spired gradient micro-gap structures with 4D printing method [23]. Under the stimulation
of heat, the integrated sensor-actuator can actively touch objects and self-sense the touching
state through the resistance changes.

For fiber-based artificial muscles, the primary approach is to adopt core-shell struc-
ture [25,26], coating [27,28] and electrostatic spinning method [29,30]. For instance, Liu’s
group presented twisted elastomer fiber artificial muscles by using twisted natural rubber
fiber coated with a buckled carbon nanotube sheet, in which the twisted natural rubber
fiber can be electrothermally actuated by entropic elasticity and the buckled carbon nan-
otube sheet can transmit electric current by thermo-piezoresistive effect [31]. Di’s group
reported nanofiber-interfaced triple-layered coaxial structures by wrapping MXene/CNT
thin sensing sheath around CNT/elastomer actuation core, which builds a dielectric ca-
pacitor and enables sensitive touchless perception [26]. However, there are barely reports
on fish line/yarn-based sensor-actuator so far. The main reason is that the raw material
for fishing line/yarn is often off the shelf filament, and traditional post-treatment methods
often suffer from low conductivity and durability problems.

Here, we propose a two-step method for fabricating self-aware artificial coiled yarn
muscles. By leveraging the difference in morphology between the planar structure of carbon
black and the fibrous form of carbon nanotubes, we achieve superior penetration into the
surface and interior to improve the electrical conductivity and durability of the yarn. The
artificial coiled yarn muscles can perceive multi-somatosensory tactile signals including
stretching strains and pressure and can monitor the electrothermal actuation process in real
time. We provide a facile and versatile method in fabricating self-aware artificial coiled yarn
muscles, and intrinsic actuation-sensing properties from the active materials can reduce
the complexity of intelligent structures and systems, thereby facilitating the development
of the field of flexible wearable devices, soft robotics, etc.

2. Materials and Methods
2.1. Fabrication of the Self-Aware Artificial Coiled Yarn Muscles

The fabrication process of the self-aware artificial coiled yarn muscles is shown in
Figure 1a. The commercially available nylon yarn fiber is first dip coated in diluted carbon
grease with acetone, and oven drying in 50 ◦C for 12 h to make the carbon black uniformly
adhere to the fiber surface or penetrate into the interior. Then, apply a torque to the dip-
coated yarn fiber to form coiled muscles. It is worth noting here that the twisting process
caused some of the carbon black to fall off due to the friction of the fibers, resulting in
uneven conductivity of the resulting artificial muscle. Therefore, we adopted the second
step, ink-jetting carbon nanotubes (CNTs) dispersion solution on the yarn fibers during
the twisting process. Then, the obtained self-aware artificial muscles are heated to 80 ◦C
to fix the coiled shape. This method not only fills the carbon black particles that fall off
during the twisting process, but also provides a secondary filling of the original conductive
particles relying on the morphology differences to enhance the overall conductivity and
stability. During the curling process, the weight of the balance weights and the speed of
curling have a closely related effect on the curling uniformity of the artificial muscle. In our
experiments, we select the optimized processing parameters to achieve the best curl effect.
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Figure 1. Fabrication and characterization of the artificial coiled yarn muscles via the two-step
method. (a) The fabrication process of the self-aware artificial coiled yarn muscles; (b) The picture of
the artificial coiled yarn muscles after the two-step process; (c) The microscopic optical images of
muscle after the first step (left) and second steps (right); (d) The resistivity of the muscle after the first
step and second steps.

2.2. Characterization

In Figure 1b, the picture of the artificial coiled yarn muscles after the two-step process is
taken by Nikon Camera (Nikon D5300, Tokyo, Japan). The microscopic optical images after
the first and second steps of processing were characterized by using an optical microscope
(Nikon LV 100NPOL, Tokyo, Japan) (Figure 1c). The images show that the diameter of
the fibers after the second processing step is larger than that after the first processing
step, proving that the second treatment brings a thicker coated conductive layer. High
precision digital multimeter (ADCMT 7351E, Saitama, Japan) and vernier calipers are used
for resistance measurement. Their resistivity results are shown in the Figure 1d, which
demonstrates that after the second treatment step, there are more uniform adhesion of
conductive particles and higher conductivity on the fiber surface. In addition, we found
that after the secondary treatment, the phenomenon of particle shedding was significantly
improved. The weight of the artificial muscle after actuation for ten cycles was basically
no change.

2.3. Development of the Real-Time Signal Detection System in the Muscle Actuation Process

The controlling system including three power supplies, a current transducer and a
PLC control board is developed to detect the signals during the actuation process (Figure 2).
The current transducer is utilized to detect the current changes in the actuation process
of artificial muscle, and the self-developed software is utilized for transiting the current
changes to resistance changes under specific voltages. One of these three power supplies is
employed to actuate the artificial muscle through Joule heating, and the rest two power
supplies are used to power the current transducer and a PLC control board, respectively. In
this method, the real-time resistance changes in the actuation process could be monitored
through intuitive curve display on the computer.
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Figure 2. Real-time signal detection system. (a) Experimental setups of the signal detection system;
(b) Schematic diagram of the signal detection system.

2.4. Statistical Analysis

Each test of lifting experiments was repeated 10 valid times under same conditions for
further analysis and comparison. The results are showed as mean ± standard deviation.
Statistical significance was tested using ANOVA (single factor) by SPSS 25.0 software (IBM,
Armonk, NY, USA). Probability values of p < 0.05 were considered statistically significant,
and all data are presented at a p < 0.05 significance level unless otherwise stated.

3. Results and Discussion
3.1. Multimode Sense of Stretching Strain and Pressure

The piezo-resistance properties of the artificial coiled yarn muscles by stretching and
pressing were investigated. The fiber was stretched with different strain ratio via a self-
made tensioning device, and the corresponding resistance changes was recorded via digital
multimeter software (Figure 3a). The sensitivity (gauge factor, GF) of the artificial muscle is
calculated as follows.

GF = (∆R/R0)/ε, (1)

where ∆R is the changed resistance in the stretching process, R0 is initial resistance, and
ε is the strain ratio of the artificial coiled yarn muscles. The resistance increases linearly
with the increase of pressure in both the low strain region (0 to 10%) and the high-pressure
region (10% to 30%) but with different slopes (Figure 3b). These results can be attributed to
the increasing distance between the conductive particles in the stretching process. However,
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when stretched to a certain threshold, the connection between particles gradually loses,
thus leading to a decrease in sensitivity or even failure. In addition, excessive stretching
ratios can lead to unwinding of the coiled structure. Thus, the maximum strain ratio was
settled at 30%. To test the sensing stability and durability of this artificial muscle, 50 cycles
of stretching-release tests were performed under a stretching ratio of 30%, indicating good
performance of the artificial muscle (Figure 3c).
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Figure 3. Stretching strain and Pressure perceptive properties. (a) Schematic illustration of the
working mechanism for the stretching perception; (b) The sensitivity of the stretching perception;
(c) Resistance variation of stretching cycle tests; (d) Schematic illustration of the working mechanism
for the pressure perception; (e) The sensitivity of the pressure perception; (f) Resistance variation of
pressing cycle tests.

In addition, the fiber was compressed with different pressures via a self-made pressing
device. The pressure perception of the artificial coiled yarn muscle was shown in Figure 3d.
The resistance change has a linear relationship in the pressure range from 0 to 20 kPa and
shows a plateau relationship with further increasing pressure. By replacing the strain in the
sensitivity Equation (1) with the pressure, the sensitivity under pressures could be obtained
(Figure 3e). Overall, the sensitivity of artificial muscles is much lower than the stretch
sensitivity, which may be due to the fact that the particles are already close enough to each
other in the cross-sectional direction. When a certain critical value is reached, the interface
between the particles achieves complete contact, resulting in a sensitivity of almost zero
at this point. Although its sensitivity is reduced compared to the stretching direction, it
still has good stability and durability. The results of 15 pressure-release cycles that were
tested at 200 kPa showed good stability and reliability of the artificial coiled yarn muscles
for pressure sensation by resistance change (Figure 3f).

3.2. Actuation-Sensing Integration via Artificial Coiled Yarn Muscles

We first investigated the actuation properties of artificial coiled yarn muscles. The
actuation of the artificial coiled yarn was enabled by Joule-heating the carbon black/CNT
coated layers (Figure 4a). The load from 10–50 g was applied to the muscle to stretch
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the muscle and separate the coils to provide space for contraction. In Figure 4b, it was
observed that the contraction velocity decreases with the rising of the lifting weights
and increasing with the applied voltages. In the meantime, the contraction ratio shows
a negative correlation with the lifting weights and positive correlation with the applied
voltages (Figure 4c). Then, we calculated the power density of different loaded weights
under the same driving voltage and selected the maximum value as the power density
value under this voltage (Figure 4d). As the applied voltage increases from 10 V to 20 V,
the maximum power density of the muscle fibers increases from 0.4 W/kg to 3.6 W/kg.
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Figure 4. Actuation and in-situ actuation-monitoring properties. (a) Schematic illustration of the
working mechanism for the actuation process; (b) The contraction velocity of the artificial muscle with
different lifting weights under increasing voltages; (c) The contraction ratio of the artificial muscle
with different lifting weights under increasing voltages; (d) The power density of the artificial muscle
under increasing voltages; (e) Schematic illustration of the in situ actuation-monitoring process;
(f) The resistance changes under different voltages with time; (g) The sensitivity of the contraction
strain perception; (h) Resistance variation of actuation cycle tests.

As stated in the above section, the two-step coating and spinning process empowers
the artificial muscle to be self-aware of its own actuation state. A self-developed feedback
circuit is utilized to enable online detection of actuation ratio in the Joule-heating contraction
process. We have built a controlling system composed of electric heating module and signal
analysis module, and a custom-made software was developed for signal detection and
providing feedback. Thus, the in situ monitoring of contraction ratio of the artificial coiled
yarn muscles was investigated (Figure 4e). The muscle was applied with various voltages
of 10 V, 15 V and 20 V, and the corresponding resistance change with time was recorded by
our self-made software (Figure 4f). As the voltage increases, the time required to achieve
the same change in resistance decreases. Meanwhile, larger resistance changes at higher
voltages can be obtained. By corresponding time with the muscle contraction ratio, we
obtained the curve of resistance change versus muscle contraction ratio. The resistance
increased linearly with the muscle contraction ratio in both the low-contraction ratio region
(0–20%, GF = 1.5) and the high-contraction ratio region (20–45%, GF = 0.5) but with different
slopes (Figure 4g). In addition, we heated the artificial muscle in the controlling system at
20 V and conducted actuation-release cycles six times. The results also show good stability
and reliability of the integrated actuation-sensing process (Figure 4h), demonstrating its
promising application in monitoring its own actuation state.
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3.3. Proof-of-Concept Demonstrations

In the above section, we demonstrate that the actuation strain-dependent piezoresis-
tance properties can be used to trace the actuation path of the artificial coiled yarn muscles.
Then, we fabricated smart textiles by weaving the coiled muscles into the cropped spandex,
and wrap around human finger for motion-sensing (Figure 5a). To better receive the motion
signal, the smart textile could generate self-tightening action when it is wrapped around
the finger due to the contraction properties of the coiled yarn muscles. The resistance
changes of the artificial muscle fiber in the self-tightening process under 20 V is shown in
Figure 5b, which infers that the degree of tightening can be regulated by applied voltage
and time to adapt to various surfaces. After the smart textile is firmly attached to the finger,
the bending motion of the finger can be perceived by the resistance changes. Figure 5c
shows the resistance changes from periodic finger flexion under the bending angle of 90◦

and demonstrates good stability and reliability of the in situ actuation sensation of the
smart textile.
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Figure 5. Application demonstrations of the smart textile. (a) The picture of the smart textile and the
process of self-tightening and motion-sensing; (b) The resistance changes of the artificial muscle fiber
in the self-tightening process under 20 V; (c) The resistance changes from periodic finger flexion.

We further employed artificial coiled yarn muscles to enabling non-active objects with
active motions and self-sensing capabilities. In Figure 6a, the artificial coiled yarn muscles
were entangled with the soft tube at 30◦ to the longitude direction. When actuated by
muscle fibers under the voltage of 20 V, torque will be generated to drive the soft tube
producing rotating and lifting behaviors. The resistance changes in the lifting process were
shown in Figure 6b. Meanwhile, we recorded the actuation process and corresponded to
the resistance changes of the artificial muscle. The variation of rotation angle θ and the
variation of lifting height h with resistance changes were obtained, as shown in Figure 6c,d,
respectively. The analysis results can potentially be used to monitor the lifting height and
rotation angle of the non-moving object in future.
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Figure 6. Application demonstrations of the yarn muscle entangled soft actuators. (a) The picture of
yarn muscle entangled soft actuators and the process of twisting (DoF1) and lifting (DoF2); (b) The
resistance changes of the artificial muscle fiber in the contraction process under 20 V; (c) The resistance
changes of the yarn muscle with the twisting angle; (d) The resistance of the yarn muscle the lifting
height ratio. DoF: degrees of freedom.

4. Conclusions

Here, we have successfully demonstrated a facile approach to integrate the sensing
and actuation function in one coiled muscle fiber. Through the two-step method, the
conductivity and durability of the self-aware artificial coiled yarn muscles have been
significantly enhanced. The resistivity is successfully reduced from 172.39 Ω·cm (first step)
to 1.27 Ω·cm (second step). This artificial coiled yarn muscles can perceive multimode
excitation signals (stretching strain, pressure) and then execute contractile commands in
response to electrothermal stimulation, accompanied by a real-time monitoring of the
actuation state. They can achieve a sensitivity (gauge factor, GF) of the contraction strain
perception up to 1.5. Finally, two applications including smart textiles and entangled soft
tube were conducted to demonstrate the ability to monitor and empower inactive objects
with execution capabilities. The introduction of the two-step method alleviates the particle
detachment problem caused by mismatched interfaces. This integrated design endows
lightweight and good interface to the artificial coiled yarn muscles without compromising
their flexibility, and provide promising alternatives towards the fields of wearable devices,
soft robots, etc.
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