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Abstract: Polyethylene Terephthalate Glycol (PETG) is a fused deposition modeling (FDM)-compatible
material gaining popularity due to its high strength and durability, lower shrinkage with less warp-
ing, better recyclability and safer and easier printing. FDM, however, suffers from the drawbacks
of limited dimensional accuracy and a poor surface finish. This study describes a first effort to
identify printing settings that will overcome these limitations for PETG printing. It aims to un-
derstand the influence of print speed, layer thickness, extrusion temperature and raster width on
the dimensional errors and surface finish of FDM-printed PETG parts and perform multi-objective
parametric optimization to identify optimal settings for high-quality printing. The experiments were
performed as per the central composite rotatable design and statistical models were developed using
response surface methodology (RSM), whose adequacy was verified using the analysis of variance
(ANOVA) technique. Adaptive neuro fuzzy inference system (ANFIS) models were also developed
for response prediction, having a root mean square error of not more than 0.83. For the minimization
of surface roughness and dimensional errors, multi-objective optimization using a hybrid RSM and
NSGA-II algorithm suggested the following optimal input parameters: print speed = 50 mm/s, layer
thickness = 0.1 mm, extrusion temperature = 230 ◦C and raster width = 0.6 mm. After experimental
validation, the predictive performance of the ANFIS (mean percentage error of 9.33%) was found to
be superior to that of RSM (mean percentage error of 12.31%).

Keywords: PETG; FDM; dimensional accuracy; surface roughness; RSM; ANFIS; NSGA-II

1. Introduction

In recent years, additive manufacturing has grown rapidly to produce a variety of func-
tional parts involving complex geometries with specific functionalities made from a wide
range of materials. In contrast to traditional machining, where material is carved out from
a block using suitable cutting tools to obtain the desired geometry [1,2], fused deposition
modeling (FDM) is an extrusion-based AM process involving the layer-wise deposition of
thermoplastic filaments in a semi-liquid state [3–5] using a computer-controlled deposition
nozzle [6]. FDM allows researchers to obtain complex yet flexible and functional parts from
a standard tessellation language (STL) file quickly, with high quality and a wide range of
engineering thermoplastic materials [1], along with offering reduced assembly costs [7]. It
is finding applications in the production of conceptual models/prototypes of functional
parts for use in aerospace engineering [8], telecommunications [9] and automotive and
biomedical implants. However, certain drawbacks, such as its lower dimensional accuracy,
irregular surface finish and poor mechanical properties [7], limit its application. In recent
years, numerous research endeavours have been performed that aimed to improve the
quality and strength-related variables, including surface roughness, dimensional errors,
strength and stiffness [10].

Dimensional accuracy is a measure of the variation in the size and specifications of
the designed and the as-built parts [1,11] and improved dimensional accuracy is essential
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for ensuring a higher magnitude of stability and repeatability of the fabricated parts. For
functional parts, dimensional accuracy is often accounted for by measuring the dimensional
errors along different directions or features [7]. The dimensional errors introduced in
the part have been found to depend on the printer parameters [11,12], part shape [13]
and support material requirements. Surface roughness is another widely used index for
assessing part quality and is often a technical requirement for mechanical products used in
conjunction with customized product applications [14] such as automobile friction plates
and sealing shafts. Good surface quality is important for reducing the overall lead time and
improving the cost-effectiveness of the build process [15]. A pronounced staircase effect, a
limited STL file resolution due to the limitations of the slicing procedure utilized and an
improper selection of process parameters led to the FDM-built parts having a relatively
poor surface finish.

The printing parameters affect the bonding between and within the deposited lay-
ers, and hence exercise a considerable influence on the production efficiency [7], energy
consumption, manufacturing cost and time, and part build characteristics, such as the
dimensional deviations, part finish and strength [1,16,17]. Hence, a study on the influence
of these parameters and their optimization is of paramount importance while tackling the
problem of reducing the dimensional errors and obtaining high surface quality.

Previous research has been performed to understand the influence of various FDM
process parameters on dimensional accuracy in an attempt to minimize the dimensional
deviations. Sood et al. [18] studied the influence of printing parameters on dimensional
deviations along the length, width and thickness of acrylonitrile butadiene styrene (ABS)
build parts based on Taguchi’s experimental design. The authors developed an artificial
neural network model for the prediction of the deviations and further combined grey
relational analysis and the Taguchi method to simultaneously minimize the dimensional
deviations after expressing the three responses as a single response called the grey relational
grade. Their results revealed that layer thickness was the most significant parameter
affecting the width and thickness deviations; however, build orientation was the most
influential on the deviation in the length. ABS-built parts were also studied for dimensional
accuracy, build time and warp deformation by Peng et al. [19] with line width compensation,
extrusion velocity, filling velocity and layer thickness as the input parameters. The authors
converted the three output responses into a single comprehensive response (CR) using
a fuzzy inference system (FIS) and then used response surface methodology (RSM) to
develop models relating the CR to controllable factors. Their experiment revealed that
lower layer thickness was desirable for improving dimensional accuracy. Alafaghani
and Qattawi [20] studied the influence of infill percentage, infill pattern, layer thickness
and extrusion temperature on the dimensional accuracy of poly-lactic acid (PLA)-based
parts using Taguchi’s (L9) design of the experiments. They found better dimensional
accuracy at a lower extrusion temperature and infill percentage, coupled with smaller layer
thickness and hexagonal infill pattern. Tontowi et al. [21] compared the performance of the
Taguchi orthogonal array and RSM in predicting the dimensional accuracy of PLA-based
parts and concluded that RSM gave a better prediction. They observed that the raster
orientation was more significant than the layer thickness for dimensional accuracy, unlike
the other available literature. Alafaghani et al. [12] studied the impact of printing settings
on mechanical properties, dimensional accuracy and repeatability of the FDM-built parts
using PLA as the filament and considered four numerical parameters, including print
speed, extrusion temperature, layer height and infill percentage, along with two categorical
parameters: build orientation and infill pattern. They recommended lower values of the
extrusion temperature and layer height for obtaining improved dimensional accuracy.

Process optimization for reducing dimensional errors has also been performed for
certain ABS blends and nylon. A PC-ABS blend made with a cuboidal-shaped part, built
with the help of a soluble support material, was analysed for dimensional accuracy along
with the length, width and thickness by Mohamed et al. [11]. They considered six process
parameters, including the layer thickness, air gap, raster angle, build orientation, road



Polymers 2023, 15, 546 3 of 26

width and number of contours, and used the I-optimal design approach to determine the
optimal combination of process printing settings for the three-dimensional deviations. It
was concluded that lower layer height and number of contours values led to reduced
deviations across the three dimensions. Additionally, the other parameters were significant
and affected the different dimensional deviations differently. An increase in air gap and
road width along with a reduction in the raster angle reduced the dimensional deviations
along the width and thickness but deteriorated dimensional accuracy along the length.
Vishwas et al. [22] used the Taguchi (L9) orthogonal array and analysis of variance (ANOVA)
for analysing the effects of varying the orientation angle, layer and shell thickness on the
dimensional accuracy, ultimate tensile strength and manufacturing time of ABS and nylon-
built parts. The optimal printing settings were different for the two materials, with layer
thickness being the most significant input parameter, with a share of 84.84%, followed by
shell thickness (12.66%).

ABS-printed parts were also analysed for surface roughness by Horvath et al. [23]
using a full factorial experimental design taking model temperature, layer thickness and
visible surface as input parameters. It was inferred that, while model temperature was
insignificant, layer thickness had a higher influence on surface roughness. Their study
also suggested that a finer raster width was beneficial for improving the surface finish.
A full factorial experimental plan was employed by Galantucci et al. [24] to study the
influence of process parameters, namely, tip dimension, raster width and slice height, on
the surface roughness of ABS-built parts. It was observed that slice height and raster
width were important factors; the tip diameter, however, had little significance for surfaces
running either parallel or perpendicular to the build direction. Saad et al. [14] used RSM
to develop a regression model to establish a relationship between surface roughness and
the input responses, including layer height, print speed, print temperature and outer shell
speed. The group then coupled the model with particle swarm optimization and symbiotic
organism search to optimize the input parameters. The experimental results highlighted an
improvement of 8.5% and 8.8% in the obtained part finish using particle swarm optimization
and symbiotic organism search, respectively, as compared to RSM. The authors concluded
that metaheuristic methods can improve the FDM part finish. Experiments have been
performed involving the multi-objective optimization of surface roughness and other
important measurable parameters for ABS-built parts. Thrimurthulu et al. [25] solved the
problem of simultaneously optimizing the part surface finish while reducing the build
time using a genetic algorithm. The study recommended a lower layer thickness for a
high surface finish and it was revealed that the developed model could be utilized to
anticipate the optimal part orientation for any complex freeform surface. Another work
aimed at improving the surface roughness, hardness, tensile strength and flexural modulus
of ABS-built parts was performed by Raju et al. [26] using the Taguchi (L18) orthogonal
array. Different empirical models were developed based on linear multiple regression
and ANOVA analysis for studying the relationships of the responses with parameters
including layer thickness, support material, model interior and build orientation. It was
concluded that layer thickness and build orientation were two significant parameters for
surface quality. The multi-objective optimization of the said responses was implemented
using particle swarm optimization, bacterial foraging optimization and a hybrid of the
two algorithms.

Similar to ABS, PLA-built parts have also received attention with regards to improving
the obtained part finish. Peng and Yan [27] attempted to characterize the surface roughness
and energy consumption of PLA parts during printing in their study based on a full factorial
design involving layer thickness, infill ratio and the printing speed as the input parameters.
It was observed that layer thickness was a contradictory parameter amongst the two output
responses. Smaller layer thickness was found to give a smoother surface finish, aligning
with the study by Perez et al. [28] in which the influence of layer thickness, shell thickness,
extrusion temperature and print speed on the surface roughness of PLA-built cylindrical-
shaped specimens was analysed using graphical and statistical tools including ANOVA,
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Spearman’s ρ and Kendall’s τ correlation coefficient. The surface roughness and tensile
strength of PLA parts were studied by Altan et al. [29] in a study based on the Taguchi
(L16) orthogonal array with layer thickness, deposition head velocity, nozzle temperature
and cooling effect on the samples as the input parameters. ANOVA analysis revealed the
former three parameters to be significant, with the effect of layer thickness being similar
to the previous work. Nozzle temperature or the use of cooling fans were found to be the
least effective parameters for controlling surface roughness.

Apart from these works, attempts focussing on the multi-objective optimization of
the two output responses of interest were also reviewed. Anusree et al. [30] conducted a
study investigating the influence of layer thickness, raster width, print speed and support
material density on the dimensional accuracy, tensile strength and surface finish of ABS
build helical parts. The study was unique, as the surfaces selected for experiment were
helical instead of flat or circular, as opted for in the majority of the works in this field.
Similar to Sood et al. [18], the three responses were converted into grey relational grade,
which was further maximized using the Taguchi method. For the optimal parameter config-
uration, a smaller layer thickness value, higher raster width and intermediate print speed
in conjunction with a rough support material density was recommended. The same three
output responses were considered by Chung Wang et al. [31] with the input parameters
being layer thickness, deposition style, support style, deposition orientation in the Z and
X direction, and build location for ABS-built parts. The experimental methodology was
similar to Anusree et al. [30], but with an extension of the verification of the results using
a technique for ordering performance by similarity to the ideal solution. The findings of
the study based on ANOVA revealed that deposition orientation in the Z direction and
layer thickness were the most influential factors on dimensional accuracy and surface
roughness, respectively. Bakar et al. [32] studied the variation in dimensional error and
surface roughness with changing part shapes by considering different shapes, including
slot, cube, ring and cylinder. The dimensional accuracy and surface roughness were found
to depend on the specimen shape, with the cylindrical shape generally leading to higher
dimensional deviation, whereas a complex curvy surface was found to give a deteriorated
surface finish. A wider raster width was recommended for an improved surface finish while
layer thickness was found to have a similar influence as reported in the reviewed literature.

It can be inferred from the literature review that the problem of minimizing the
dimensional errors and surface roughness of FDM-built parts using parametric optimization
is well known and studied by numerous research groups. For dimensional accuracy, lower
levels of layer thickness and extrusion temperature are desired. Out of the several input
parameters considered, the effects of varying the raster width and print speed have not
been comprehensively reviewed and understood. For surface roughness, layer thickness
has been determined to be the most significant parameter, followed by raster width, with
lower levels of both recommended for obtaining an improved surface finish. Print speed is
also a significant parameter influencing the surface finish of the built part. Moreover, the
dimensional deviations were found to have different behaviour along the length, width and
height of the samples and a different combination of parameters is desirable for minimizing
these deviations. The dependence of surface roughness on the specimen shape has also been
highlighted, with its magnitude being influenced by the flat or curvy nature of surfaces, as
well as their orientation, i.e., flat or vertical.

Therefore, in the present work, the influence of selected input parameters on the
dimensional deviations along the length, width and thickness, along with the surface
finish of both flat as well as complex curvy surfaces, was investigated with an aim to
achieve combinations of parameters that would lead to high dimensional accuracy and
part finish for varying directions and differently oriented surfaces. Also, as both of these
quality objectives are often concurrently desired and are differently influenced by different
parameters [10], a need for the simultaneous optimization of the objectives was felt. Since
the FDM process involves numerous conflicting parameters, the conventional optimization
methods, such as the Taguchi and grey relational analysis [1] which have been used by
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majority of researchers, are less suitable due to their limited proficiency in describing a
complex functional relationship for a non-linear process involving a number of interacting
parameters [18,33]. The present investigation hence utilizes the non-dominated sorting
genetic algorithm II (NSGA-II), an evolutionary algorithm that generates a set of non-
dominated solutions called the pareto front and allows the user to select the most fit
solution from a given set of solutions.

It is inferred that most of the research work undertaken in the field of parametric
optimization for the improvement of mechanical and physical parameters of FDM-built
parts is dedicated to ABS and PLA material. In recent times, attempts have been made to in-
vestigate the applicability of previously unexplored FDM materials for various applications.
Rahmatabadi et al. [34] explored the mechanical properties of food-grade, unmodified
polyvinyl chloride for potential biomedical applications. The authors considered numerous
tension modes, including compression, bending and tension, and studied the variation
in strength with varying printing parameters. The study revealed the raster angle and
print speed to be significant parameters, while the layer thickness and nozzle diameter had
little effect on the said responses. Another FDM-compatible material, polyethylene tereph-
thalate glycol (PETG), is gaining popularity in recent times. PETG is a glycol-modified
version of polyethylene terephthalate (PET) [35] having high toughness, chemical resis-
tance, durability, low forming temperature and, hence, proving to be a good material
for thermoforming [36], extrusion, injection molding and FDM [36–40]. In recent times,
PETG has found applications in medical industries, food packaging industries, electronics,
etc. [41,42]. In FDM, the important benefits of printing with PETG over ABS include higher
durability and strength, lower shrinkage with little or no warping, better recyclability [43],
lower particle and volatile organic compound (VOC) emissions, and improved chemical
resistance to alkali, acid and water [44]. Expanding on its application, Soleyman et al. [45]
investigated the 4D printing capability and shape memory effect of PETG as a novel shape
memory thermoplastic. The authors studied the appearance of a curved third shape sam-
ple as a function of printing temperature and speed and observed pronounced shape
memory-affecting behaviour, with the total shape recovery exceeding 96%. These advan-
tages have led researchers to perform investigative works to explore the potential of PETG
as an alternative to ABS and PLA, as a filament material [46]. However, the majority of
research efforts dedicated to the FDM printing of PETG parts aimed to analyse the relation
between the process parameters and mechanical behaviour of the test specimens [47–50].
An eminent research gap was felt in studies aiming to understand the influence of FDM
process parameters on dimensional errors in different directions and surface roughness on
varied part surfaces and features along with the subsequent parametric optimization of
the parameters. Additionally, no work has been reported performing the multi-objective
optimization of PETG parts to minimize dimensional deviations while simultaneously
obtaining improved part finishes.

The present research work aims at studying the effect of FDM process parameters,
namely, print speed, layer thickness, extrusion temperature and raster width, on the di-
mensional accuracy and surface roughness of FDM-printed PETG parts. Since dimensional
errors along the three directions behave differently, this work aims to understand these vari-
ations and how these are governed with the varying printing parameters. As an extension,
the influence of the parameters on the dimensional errors introduced in a hole incorporated
in the geometry is also considered. In the study, the specimen geometry and shape were
selected to allow for the analysis of the significant parameters and their influence on the
surface roughness of flat, inclined and curved surfaces. A four-factor, five-level central
composite rotatable design was employed for performing a series of experiments. The
recorded experimental data were statistically modelled using RSM and the adequacy of
the developed models was verified using ANOVA. The significant parameters and their
manner of influence on each of the seven output responses, including four dimensional
deviations (X, Y, Z directions and hole) and three surface roughness responses (flat, inclined
and curved), were considered. A Sugeno-type ANFIS model was also developed for the
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prediction of output response parameters and multi-objective optimization was conducted
using an integrated RSM and NSGA-II algorithm approach. A phase-wise multi-objective
optimization was performed to identify the combination of the input parameters that
minimizes the dimensional errors as a whole, the combination that improves the overall
surface finish and finally the combination that yields a parameter setting that will enable the
printing of complicated PETG parts with the overall best quality. To validate the obtained
results and compare the predictive performance of the developed models, the required
validatory experiments were performed.

2. Materials and Methods
2.1. Experimental Plan and Procedure

Different process parameters influence the induced dimensional errors and the ob-
tained surface finish on FDM-built parts to a lesser or greater extent [7,11,51–53]. In the
present study, the input parameters selected for assessing the dimensional accuracy and
surface roughness included print speed (A), layer thickness (B), extrusion temperature (C)
and raster width (D), as shown in Figure 1. The printing parameters can be briefly defined
as follows:
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Figure 1. The selected input and output parameters for the FDM printing of PETG parts.

Print Speed is referred to the travel speed of the print head along the XY plane (parallel
to the build platform) while extruding.

Layer Thickness is the height (or thickness) of layers deposited after extrusion from
nozzle tip measured along Z-direction (perpendicular to the build platform).

Extrusion Temperature is referred to as the temperature at which the filament material
is heated in the liquefier before extrusion [52]. It depends on properties of thermoplastic
material being used.

Raster Width is the width of the molten filament which is deposited on the FDM
printer bed [54]. It depends on the diameter of the extruder nozzle tip.

The working ranges of the four selected process parameters were divided into five
levels, as shown in Table 1. They were chosen on the basis of literature survey, hardware
and printer specification restrictions, Ultimaker Cura 15.04.6 building simulation and trial
experiments. The trial experiments were conducted in such a manner that only one of the
FDM process variables was varied keeping the rest of them fixed. The upper and lower
limits were decided based on part quality obtained between them.

Table 1. Working levels of input parameters.

S. No. Input Parameters Units Coded Levels of Input Parameters

−2 −1 0 +1 +2

1 Print Speed (A) mm/s 20 35 50 65 80
2 Layer Thickness (B) mm 0.1 0.15 0.2 0.25 0.3
3 Extrusion Temperature (C) ◦C 200 215 230 245 260
4 Raster Width (D) mm 0.2 0.3 0.4 0.5 0.6

Based on the process parameters and their working levels, design of experiment’s
technique was employed to generate a design matrix using Design Expert v13. To develop
the empirical models for dimensional accuracy and surface roughness, four-factor central



Polymers 2023, 15, 546 7 of 26

composite technique of rotatable configuration was employed, consisting of a total of
30 runs. The 30 runs comprised of 24 = 16 runs using half factorial, 6 runs representing
center points and 2 × 4 = 8 runs representing star points [55].

With an aim of understanding the distinct manner of influence of the process parame-
ters and arriving at parameter settings to enable optimal printing of complex FDM-printed
PETG parts, the specimen geometry was designed such that it had varying surfaces and
contours to measure the desired responses. The part was designed using SolidWorks 2021
and had a dimension of 50 × 50 × 25 mm with a hole of 20 mm diameter as shown in
Figure 2a. The dimensional errors were measured along the three cartesian axes (X, Y
and Z direction) to understand the extent of influence of the dynamic effect of the nozzle
(controlling the X and Y direction) and the printer bed drive system (controlling the Z
direction), along with the tendency of material expansion and shrinkage across different
directions. The hole geometry was studied to further investigate the proneness of material
spreading when unconstrained by surrounding extruded filament as a function of vary-
ing printing settings. Since the nature of material deposition varies for different surface
profiles and features, the printing parameters influence the surface finish of these surfaces
differently, as also observed by Khan and Mishra [56]. In line with the objective of the
study, the specimen geometry incorporated flat, inclined and curved surfaces (Figure 2b),
to enable the recording and analysis of effects of selected printing parameters on the surface
roughness of the as printed profiles.
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The STL file of the CAD drawing was loaded into Ultimaker Cura to slice the model file
into layers, set process parameters and generate a printer-specific g-code for each specimen.
The parts were printed as per the instruction code using ShaperJet SJ200 based on FDM
technology, having a build size of 200 × 200 × 200 mm, printing speed ranging from 10 to
100 mm/s, extruder temperature 180–270 ◦C and a blower for cooling printed parts. All the
samples were prepared with the raster angle of 45◦ and printer bed temperature fixed at
70 ◦C to ensure sufficient bonding of the first layer and avoid warpage of samples. In order
to vary the raster width, five different diameter nozzles (0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm,
and 0.6 mm) were used. 3DXTech PETG filament wire having a diameter of 1.75 ± 0.05 mm
and density of 1.24 g/cm3 was employed for the experiment.

Once the parts were printed, the dimensional error and surface roughness measure-
ment was done. To measure the dimensional error along the cartesian axis (X, Y and Z) and
cylindrical hole, a Mitutoyo manufactured vernier calliper having a least count of 0.02 mm
was used. Three readings of dimensional error were taken along each of the cartesian axes
and four readings were taken for the dimensional error of the hole. The mean values of the
recorded responses are as shown in Table 2. For surface roughness measurement of the flat,
inclined and curved profiles, SURFTEST SJ-210, a compact and portable surface roughness
tester, manufactured by Mitutoyo with the lowest count of 0.001 µm was used. The stylus
moves across the specimen surface with defined measuring speed and length to trace the
irregularities on the workpiece surface. The surface profile and surface roughness (Ra) are
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displayed as the output on the screen. For the purpose of this measurement, a Gaussian
filter was applied and ISO 1997 roughness standard was followed. The cut off wavelength
was set at 0.25 mm, measuring speed at 0.5 mm/s and number of sampling lengths at x5.
The direction of surface roughness measurement was perpendicular to the lay direction
and a sine bar was also used along with SJ-210 for measurement of inclined and curved
profiles. The setup used for measurement is shown in Figure 3 while, Figure 4 shows a
sample report for flat profile generated by SJ-210 for run 12. A total of five readings were
taken for the flat profile and four readings each for inclined and curved surfaces, and their
mean values are as shown in Table 2. The readings as shown in Table 2, were supplied
to the design of experiments and were used as the input data for making the predictive
models as explained further.

Table 2. Measured responses for dimensional accuracy for X, Y and Z axes and the hole geometry
along with surface roughness responses for flat, inclined and curved surfaces.

Std Run
Print Speed

(mm/s)
(A)

Layer Thickness
(mm)

(B)

Extrusion
Temperature (◦C)

(C)

Raster Width
(mm)
(D)

Dimensional Error (%) Surface Roughness (µm)

X Y Z Hole Flat Inclined Curved

24 1 0 0 0 2 0.8 0.387 0.684 1.975 7.659 29.37 26.98
4 2 1 1 −1 −1 0.613 0.516 0.338 1.925 10.938 31.686 23.53
20 3 0 2 0 0 0.787 0.493 0.853 2.3 13.25 33.97 25.297
16 4 1 1 1 1 1.24 0.427 1.04 2.35 10.957 30.928 26.672
1 5 −1 −1 −1 −1 0.427 0.067 0.4 1.775 6.695 22.891 20.046
22 6 0 0 2 0 0.953 0.464 0.373 2.59 12.807 28.915 29.576
26 7 0 0 0 0 0.827 0.427 0.338 2.14 7.638 27.934 24.105
14 8 1 −1 1 1 0.667 0.262 0.453 2.25 9.26 21.838 21.376
21 9 0 0 −2 0 0.64 0.28 0.453 2.125 12.584 31.222 24.885
7 10 −1 1 1 −1 0.56 0.16 0.373 1.89 15.78 28.087 20.305
18 11 2 0 0 0 0.973 0.433 0.453 2.375 9.62 28.617 19.778
28 12 0 0 0 0 0.813 0.507 0.347 2.525 8.685 27.170 23.793
11 13 −1 1 −1 1 0.48 0.245 0.56 2.175 10.48 32.59 24.111
30 14 0 0 0 0 0.867 0.4 0.453 2.14 8.935 28.554 21.911
29 15 0 0 0 0 0.733 0.373 0.32 2.125 7.671 29.970 22.265
3 16 −1 1 −1 −1 0.4 0.16 0.307 1.825 13.559 28.436 21.107
27 17 0 0 0 0 0.76 0.373 0.373 2.175 7.725 27.415 22.566
15 18 −1 1 1 1 0.72 0.36 0.48 2.22 15.255 32.896 25.422
2 19 1 −1 −1 −1 0.467 0.08 0.16 1.575 9.622 25.426 17.943
13 20 −1 −1 1 1 0.6 0.425 0.115 1.825 6.618 23.372 23.75
6 21 1 −1 1 −1 0.64 0.213 0.235 1.91 6.261 24.102 19.682
5 22 −1 −1 1 −1 0.413 0.107 0.258 1.6 6.141 24.469 23.052
12 23 1 1 −1 1 0.8 0.373 0.729 2.05 11.38 33.789 27.88
25 24 0 0 0 0 0.64 0.387 0.373 2.14 7.875 27.99 19.109
19 25 0 −2 0 0 0.453 0.147 0.293 2.01 4.357 18.399 16.357
10 26 1 −1 −1 1 0.613 0.2 0.507 2.125 11.745 22.445 22.596
8 27 1 1 1 −1 0.72 0.558 0.8 1.9 9.005 31.162 19.658
23 28 0 0 0 −2 0.467 0.126 0.435 1.4 6.589 26.606 17.517
9 29 −1 −1 −1 1 0.493 0.353 0.453 1.85 4.97 23.373 20.266
17 30 −2 0 0 0 0.613 0.293 0.267 2.261 9.619 27.484 21.066
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2.2. Statistical Modelling of Experimental Data

Response surface methodology (RSM) was used to develop statistical models for
different output parameters owing to its better predictive performance for low order non-
linear processes with a regular experimental domain, as reported by Benyounis et al. [55].
The factor contributions derived from the coefficients in the RSM developed regression
model allow for identifying the insignificant factors and interactions, thereby reducing
the complexity of the problem. In this study, Design Expert v13 software was used to
develop second order quadratic RSM models (shown in Equation (1)) on the input data
given in Table 2 to estimate linear, interaction and quadratic effects of the input factors and
to provide prediction models for response parameters.

Let Q denote the predicted response value dependent on the four input parameters
namely, print speed (A), layer thickness (B), extrusion temperature (C) and raster width
(D). Then, Q can be written as

Q = γ0 + ∑ γi pi + ∑ γii p2
i + ∑ γij pi pj (1)

where Q = predicted response value, pi, pj = coded values of the input parameters (A, B,
C, D), γ0 = regression equation constant, γi = linear coefficient, γii = square term of each
parameter, γij = first order interaction effect.

The regression equations for the response parameters are as given in Equations (2)–(8).
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Dimensional Error X − DEx (%)
= 0.7733 + 0.0994 × A + 0.0783 × B + 0.0789 × C + 0.0850 × D + 0.0475 × AB + 0.0175 × AC
+0.0242 × AD + 0.0392 × BC + 0.0325 × BD + 0.0258 × CD − 0.0108 × A2 − 0.0542 × B2

−0.01 × C2 − 0.0508 × D2

(2)

Dimensional Error Y − DEy (%)
= 0.411 + 0.0430 × A + 0.0744 × B + 0.0369 × C + 0.0544 × D + 0.0716 × AB − 0.0622 × AD
−0.0477 × BD − 0.0197 × A2 − 0.0305 × B2 − 0.0175 × C2 − 0.0464 × D2

(3)

Dimensional Error Z − DEz (%)
= 0.3674 + 0.0704 × A + 0.1319 × B + 0.0819 × D + 0.0806 × AC + 0.0578 × AD + 0.0761 × BC
+0.0322 × BD − 0.0389 × CD + 0.0471 × B2 + 0.0438 × D2

(4)

Dimensional Error Hole − DEhole (%)
= 2.21 + 0.0480 × A + 0.0835 × B + 0.0656 × C + 0.1498 × D − 0.0434 × AB + 0.0516 × AC
+0.0303 × AD + 0.0153 × CD − 0.0426 × B2

−0.1594 × D2

(5)

Sur f ace Roughness Flat − SR f lat (µm)
= 8.09 − 0.0137 × A + 2.24 × B + 0.0139 × C + 0.2002 × D − 1.58 × AB − 1.02 × AC
+0.7731 × AD + 0.5870 × BC − 0.3177 × BD + 0.4464 × CD + 0.4422 × A2 + 0.2381 × B2

+1.21 × C2 − 0.1817 × D2

(6)

Sur f ace Roughness Inclined − SRinclined (µm)
= 28.17 + 0.3136 × A + 3.87 × B − 0.3499 × C + 0.4374 × D + 0.3656 × AB − 0.4282 × AC
−0.7328 × AD − 0.1920 × BC + 1.04 × BD − 0.1590 × CD − 0.1519 × A2 − 0.6186 × B2

+0.3524 × C2 − 0.1677 × D2

(7)

Sur f ace Roughness Curved − SRcurved (µm)
= 22.29 − 0.0541 × A + 1.58 × B − 0.4925 × C + 1.90 × D + 0.7695 × AB − 0.7225 × AC
+0.5420 × AD − 0.7238 × BC + 0.7638 × BD + 0.1435 × CD − 0.5248 × A2 − 0.4236 × B2

+1.18 × C2 − 0.0682 × D2

(8)

The appropriacy of the models developed was confirmed using analysis of variance
(ANOVA) and the values obtained are as shown in Table 3. ANOVA was used to test the
significance of the developed models and identify the significant linear, quadratic and
interaction terms for all output responses. The details on working of ANOVA can be found
in Kaufmann et al. [57]. The p-value for developed models of all responses was found to be
<0.05, which implied that the models were significant at 95% confidence level. The terms
with p-value lower than 0.05 were considered significant and are mentioned in Table 4.
The high R2 values as given in Table 3 are desirable as it shows that a high percent of the
observed variation of the dependent variable can be explained based on the alterations in
the independent input printing parameters. Higher R2 values denote lesser influence of
external noise on the developed models. Adeq Precision is a measure of the signal-to-noise
ratio of the developed models and values greater than 4 verify the signal adequacy.

Table 3. Analysis of variance for the quadratic models developed.

S. No. Output Parameter p-Value R2 Adeq
Precision

Adequacy of
the Model

1. Dimensional Error X 0.0001 0.8814 11.9315 Adequate
2. Dimensional Error Y <0.0001 0.9388 15.0776 Adequate
3. Dimensional Error Z <0.0001 0.9592 22.0652 Adequate
4. Dimensional Error Hole 0.0034 0.8061 9.8613 Adequate
5. Surface Roughness Flat <0.0001 0.9872 32.2411 Adequate
6. Surface Roughness Inclined <0.0001 0.9732 25.9217 Adequate
7. Surface Roughness Curved 0.0002 0.8756 10.3616 Adequate
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Table 4. Factors significantly affecting output parameters.

Output Parameter Significant Factors

Dimensional error X A, B, C, D, B2, D2

Dimensional error Y A, B, C, D, AB, AD, BD, B2, D2

Dimensional error Z A, B, D, AB, AC, AD, BC, BD, CD, B2, D2

Dimensional error hole B, D, D2

Surface Roughness Flat B, D, AB, AC, AD, BC, BD, CD, A2, B2, C2

Surface Roughness Inclined B, D, AD, BD, B2

Surface Roughness Curved B, D, C2

2.3. ANFIS Model for Prediction

Adaptive neuro fuzzy inference system (ANFIS) refers to a neuro-fuzzy system in-
heriting the advantages of both FIS network and artificial neural network by developing
a multilayer feed forward neural network [58]. An artificial neural network can enhance
the learning process but has limitation with regards to deduction and expression of the
knowledge acquired. The FIS on the other hand, has good knowledge learning capabilities
based on linguistic variables that are easy to comprehend and follow, but lacks the learning
capabilities of artificial neural network [59]. An ANFIS network integrates these advantages
and overcomes the individual drawbacks by employing the neural network architecture
for adjusting the FIS parameters including the membership functions and the IF-THEN
rules [60]. This working approach renders ANFIS effective in a broader range of real-world
applications including FDM process performance prediction [59].

An ANFIS network involves five network layers along with a learning algorithm. The
learning algorithm modifies the model as per the input and output dataset by adapting the
parameters including, the membership functions and the firing strength of the rule. A brief
working of the ANFIS architecture is described here, however, for deeper understanding
one can refer Rajpurohit and Dave [61]. Layer 1 as shown in Figure 5a, is the fuzzification
layer wherein, each input node is an adaptive node which is converted into linguistics
using the membership functions. In the product layer i.e., layer 2, each node is fixed and
gets multiplied by the incoming signals, and the firing strength of the rule is adjudged.
Normalization of the firing strength of each node from layer 2 is performed in layer 3 where
all the nodes are fixed. Layer 4 is the adaptive defuzzification layer where the normalized
firing strength of each rule is multiplied with the resulting output response. Layer 5 is the
final layer that yields the output modelled by ANFIS network.

In the present study, a Sugeno type ANFIS model was developed consisting of four
inputs (A, B, C, D) for each response variable. Moreover, the network used the hybrid
learning algorithm which employs the least square method in the forward passage to
identify the network parameters and the gradient descendent method while propagating
backwards. The hybrid learning approach is very efficient as it converges much faster
compared to back propagation algorithm and avoids the tendency of getting trapped at a
local minimum [58,60,61].

The Neuro Fuzzy Design tool of MATLAB MathWorks was used to model ANFIS
structure for predicting the values of the four responses for dimensional error and the three
responses accounting for the surface roughness for different surface profiles. The ANFIS
modelling workflow is summarized in Figure 5b.



Polymers 2023, 15, 546 12 of 26
Polymers 2023, 15, x FOR PEER REVIEW 12 of 27 
 

 

 

(a) 

 

(b) 

Figure 5. Cont.



Polymers 2023, 15, 546 13 of 26
Polymers 2023, 15, x FOR PEER REVIEW 13 of 27 
 

 

 

(c) 

Figure 5. (a) ANFIS structure (b) ANFIS workflow (c) representative ANFIS architecture generated 

in MATLAB. 

In the present study, a Sugeno type ANFIS model was developed consisting of four 

inputs (A, B, C, D) for each response variable. Moreover, the network used the hybrid 

learning algorithm which employs the least square method in the forward passage to 

identify the network parameters and the gradient descendent method while propagating 

backwards. The hybrid learning approach is very efficient as it converges much faster 

compared to back propagation algorithm and avoids the tendency of getting trapped at a 

local minimum [58,60,61]. 

The Neuro Fuzzy Design tool of MATLAB MathWorks was used to model ANFIS 

structure for predicting the values of the four responses for dimensional error and the 

three responses accounting for the surface roughness for different surface profiles. The 

ANFIS modelling workflow is summarized in Figure 5b. 

The ANFIS network is developed by training the algorithm on a training dataset con-

taining the input/output pairs needed to form the network. The supplied inputs and out-

puts in the training data set are adaptively mapped using different membership functions, 

rule bases, and associated parameters acquired from the loaded learning dataset. From 

the obtained experimental data approximately 85% of the observations were utilized for 

training the model and finding the premise parameters for the membership functions 

while the remainder data was reserved for testing purposes. After the training data was 

loaded in the neuro-fuzzy designer module, the next step involved the generation of FIS 

which entailed the selection of the membership function. For the study, three different 

membership functions, triangular membership function (trimf), trapezoidal membership 

function (trapmf) and gauss membership function (gaussmf) were used to develop three 

different ANFIS models for each response parameter.  

Further, the epochs value was set at 200 and the hybrid optimization method was 

selected as the learning algorithm with zero error tolerance. The model was then trained 

with the specified parameters and upon completion of training, dataset for testing was 

loaded in the ANFIS system. Subsequent testing was carried out for all three membership 

functions and the root mean square error (RMSE) was recorded for each test performed. 

Finally, the model with the least average testing error was selected as the final model for 

Figure 5. (a) ANFIS structure (b) ANFIS workflow (c) representative ANFIS architecture generated
in MATLAB.

The ANFIS network is developed by training the algorithm on a training dataset
containing the input/output pairs needed to form the network. The supplied inputs
and outputs in the training data set are adaptively mapped using different membership
functions, rule bases, and associated parameters acquired from the loaded learning dataset.
From the obtained experimental data approximately 85% of the observations were utilized
for training the model and finding the premise parameters for the membership functions
while the remainder data was reserved for testing purposes. After the training data was
loaded in the neuro-fuzzy designer module, the next step involved the generation of FIS
which entailed the selection of the membership function. For the study, three different
membership functions, triangular membership function (trimf), trapezoidal membership
function (trapmf) and gauss membership function (gaussmf) were used to develop three
different ANFIS models for each response parameter.

Further, the epochs value was set at 200 and the hybrid optimization method was
selected as the learning algorithm with zero error tolerance. The model was then trained
with the specified parameters and upon completion of training, dataset for testing was
loaded in the ANFIS system. Subsequent testing was carried out for all three membership
functions and the root mean square error (RMSE) was recorded for each test performed.
Finally, the model with the least average testing error was selected as the final model
for prediction purpose. Table 5 documents the average testing error for each of the three
selected membership functions for the different quality responses. The bold value highlights
least value of RMSE and hence, the model selected for response prediction.

Table 5. Average testing error for output responses with different membership functions.

S. No.
Membership

Functions
RMSE of Dimensional Error RMSE of Surface Roughness

X Y Z Hole Flat Inclined Curved

1 Triangular 0.12947 0.2583 0.20134 0.32513 0.73702 0.82783 0.70272
2 Trapezoid 0.12841 0.25678 0.2572 0.32513 0.73702 0.94533 0.70272
3 Gaussian 0.12896 0.25582 0.23218 0.33556 0.73702 1.0165 0.87578
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Figure 5c shows a representative ANFIS architecture as modelled in MATLAB. The
dynamic training error behaviour against the training dataset during the training of the
ANFIS model for dimensional error in X direction based on the trapezoidal membership
function is shown in Figure 6. After 200 epochs the error converged to a constant value of
0.048703 signifying adequate model training. Figure 7 gives the variation in the values of
dimensional error in X obtained after testing (red asterisks) from the original testing data
point values (blue data points) and it was observed that the maximum % error was less
than 0.4%. The low errors for all the seven quality responses confirmed that the values
predicted by the developed ANFIS models were in good proximity with the experimentally
measured values.
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2.4. Multi-Objective Optimization Using Integration of RSM and NSGA-II

Multi-objective optimization of the response parameters was performed by integration
of RSM and NSGA-II. NSGA-II, a widely used multi-objective evolutionary algorithm is an
improved version of NSGA and overcomes limitations such as computational complexity,
lack of elitism, and selection of optimal parameter value for sharing parameter [62]. NSGA-
II applies binary tournament selection, elitist preserving strategy, non-dominated sorting,
and crowding distance mechanism to obtain a good quality and uniformly spread non-
dominated solution set [63]. The algorithm begins by randomly generating an initial
population which is sorted based on non-domination, into fronts. Every individual in each
front is assigned rank (fitness) values based on the front it belongs to. In addition to this,
crowding distance which is a measure of how close an individual is to its neighbours is
also calculated. The parents for the next generation are selected using binary tournament
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based on rank and crowding distance. An individual with lower rank is preferred during
selection, however, in case the rank is same for the two individuals, higher crowding
distance is used as the selection criteria. To produce the new population, genetic operators
are applied and both the populations, initial and newly formed, are combined to perform
non-dominated sorting. The best individuals equal to the population size are then selected
and for the last front, selection is again based on the rank and crowding distance [64].

In the present work, multi-objective optimization was performed in three phases to
identify optimal parameter combinations for reducing all the dimensional errors (DEx, DEy,
DEz, DEhole), for minimization of surface roughness for different surface profiles (SRflat,
SRinclined and SRcurved) and for simultaneously minimizing the dimensional errors and
obtaining the best overall surface finish. The ‘gamultiobj’ algorithm in MATLAB’s opti-
mization toolbox was used whose elitism is controlled by two options, ParetoFraction and
DistanceMeasureFcn. The former option limits the elite members, i.e., the number of mem-
bers on the pareto front and the latter maintains the diversity of the population by preferring
the members which are relatively far away on the front. To perform the multi-objective
optimization, quadratic expressions furnished by RSM, expressed in Equations (2)–(8) were
used as the objective functions in the algorithm. The constraints for the optimization
problems included lower and upper bound of input parameters, non-negative constraints
and the upper bounds for the responses based on the obtained experimental data.

For all three multi-objective optimization problems, the ‘gamultiobj’ options were kept
uniform. The population size was defined as 500, the maximum generations was set at 200,
crossover fraction was fixed at 0.8 and elite count was taken to be 0.05 of population size.
The algorithm terminated with the message “Optimization terminated: average change
in the spread of Pareto solutions less than options. FunctionTolerance.” highlighting that
the relative improvement in the generated pareto solutions for successive iterations was
lower than the minimum threshold as specified in FunctionTolerance which was set at the
default value of 1 × 10−4. The “gamultiobj” algorithm returned a set of 175 non-dominated
or pareto solutions for each problem. Figure 8 summarizes the detailed workflow used in
the study for integrated RSM and NSGA-II approach.
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The solutions generated by NSGA-II are called non-dominated as they are all equally
optimal and there is no single solution that simultaneously optimizes all objectives [65,66].
For extracting a single solution, an additional decision-making process was implemented
keeping in view the optimization goals along with making necessary trade-offs. The best
solutions for the multi-objective optimization problems as recommended by the hybrid
approach are summarized in Table 6. Figure 9 shows the graphical depiction of the pareto
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front obtained for multi-objective optimization problem for simultaneous minimization of
surface roughness of all profiles.

Table 6. Parameter settings for optimization of quality responses as recommended by the hybrid
RSM and NSGA II approach.

Minimization of Dimensional Error

Print
Speed (A)

Layer
Thickness (B)

Extrusion
Temperature (C)

Raster
Width (D)

Dimensional Error (%)

X Y Z Hole

1.26 −0.47 −1.45 −1.97 0.34 0.09 0.05 1.14

Minimization of Surface Roughness

Surface Roughness (µm)
Flat Inclined Curved

−0.36 −1.99 −0.78 1.95 4.58 15.16 16.86

Minimization of all Quality Responses

Dimensional Error (%) Surface Roughness (µm)
X Y Z hole Flat Inclined Curved

−0.17 −1.91 −0.39 1.56 0.3 0.28 0.5 1.67 5.07 16.04 17.65
Polymers 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

 

Figure 9. The generated pareto front for minimizing the surface roughness. 

In practice, the printing parameters can only take certain discrete values at constant 

steps in almost all commercially available FDM printers due to limitations of the printer 

hardware and layer tessellation precision. Therefore, the optimal values of input parame-

ters as suggested by the algorithm were shifted to the nearest coded level for ensuring 

universal applicability of results. The shifted readings are as summarized in the Table 7. 

Table 7. Shifted parameter settings for optimizing dimensional error and surface roughness. 

Parameters Optimized 

Print Speed 

(mm/s) 

(A) 

Layer Thickness 

(mm) 

(B) 

Extrusion Temperature 

(°C) 

(C) 

Raster Width 

(mm) 

(D) 

Dimensional Error 1 0 −1 −2 

Surface Roughness 0 −2 −1 2 

Dimensional error and Surface 

Roughness 
0 −2 0 2 

3. Results and Discussion 

3.1. Discussion on Dimensional Error 

Figure 10a–d depicts the response plots of dimensional errors DEx, DEy, DEz and DE-

hole, showing the effect of various process parameters. ANOVA revealed the layer thick-

ness and raster width to be significant parameters for all the dimensional deviations, 

which is further supported by the responses’ noticeable fluctuation with varying levels of 

the said parameters. In the FDM process, the heat carried by the extruded material is dis-

sipated via modes of conduction and forced convection as the material cools down from 

the extrusion temperature to the glass transition temperature. The temperature reduction, 

as a consequence of this phenomenon, forces the material to rapidly solidify onto the pre-

viously deposited layers. The heat content of the just-extruded material, however, causes 

the localized remelting of the previously solidified material, leading to bonding amongst 

the deposited rasters [18]. This sequence of rapid cooling and heating cycles results in 

setting up non-uniform thermal gradients within the deposited material and in turn am-

plifying its tendency to undergo dimensional distortion or warping. The warping behav-

iour is restricted as the number of layers is increased, as observed by Wang et al. [67], 

owing to the lower thermal stress accumulation [11]. A similar trend was observed in the 

Figure 9. The generated pareto front for minimizing the surface roughness.

In practice, the printing parameters can only take certain discrete values at constant
steps in almost all commercially available FDM printers due to limitations of the printer
hardware and layer tessellation precision. Therefore, the optimal values of input parameters
as suggested by the algorithm were shifted to the nearest coded level for ensuring universal
applicability of results. The shifted readings are as summarized in the Table 7.
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Table 7. Shifted parameter settings for optimizing dimensional error and surface roughness.

Parameters Optimized Print Speed (mm/s)
(A)

Layer Thickness (mm)
(B)

Extrusion Temperature (◦C)
(C)

Raster Width (mm)
(D)

Dimensional Error 1 0 −1 −2

Surface Roughness 0 −2 −1 2

Dimensional error and
Surface Roughness 0 −2 0 2

3. Results and Discussion
3.1. Discussion on Dimensional Error

Figure 10a–d depicts the response plots of dimensional errors DEx, DEy, DEz and
DEhole, showing the effect of various process parameters. ANOVA revealed the layer
thickness and raster width to be significant parameters for all the dimensional deviations,
which is further supported by the responses’ noticeable fluctuation with varying levels
of the said parameters. In the FDM process, the heat carried by the extruded material is
dissipated via modes of conduction and forced convection as the material cools down from
the extrusion temperature to the glass transition temperature. The temperature reduction,
as a consequence of this phenomenon, forces the material to rapidly solidify onto the
previously deposited layers. The heat content of the just-extruded material, however,
causes the localized remelting of the previously solidified material, leading to bonding
amongst the deposited rasters [18]. This sequence of rapid cooling and heating cycles
results in setting up non-uniform thermal gradients within the deposited material and in
turn amplifying its tendency to undergo dimensional distortion or warping. The warping
behaviour is restricted as the number of layers is increased, as observed by Wang et al. [67],
owing to the lower thermal stress accumulation [11]. A similar trend was observed in the
present study, wherein the percentage increase in dimensional errors was reported to be
24%, 49%, 93% and 11% for DEx, DEy, DEz and DEhole as layer thickness increased from
0.1 mm to 0.3 mm. At lower layer thickness values, the number of layers deposited for part
fabrication increased and, as a consequence, the dimensional errors were minimized. The
high increase in DEz can be attributed to the height error observed along the Z direction,
as was also observed by Mohamed et al. [11]. The dimension of the designed part was
25 mm in the Z direction, resulting in the number of layers required to be deposited for
printing being 250 and 83.33, respectively, as the layer thickness varied from 0.1 mm to
0.3 mm. In the latter case, 83 layers were deposited normally; however, to account for the
left 0.33 layers, the printer deposited another layer (84th) at the layer height of 0.3 mm.
Hence, there was an increase in the fabricated part height with reference to the designed
height, leading to more pronounced dimensional deviations in the Z direction at a higher
layer thickness.

As observed in Figure 10a–d, the dimensional errors reduced as the raster width was
reduced from 0.6 mm to 0.2 mm. At finer raster widths, the material exiting the nozzle was
reduced, hence the heat content entering the system environment was also less. The lower
heat content restricted the localized remelting of the previously deposited material, thereby
limiting the thermal stress accumulation at the interface [18]. Moreover, a precise raster
width inhibited the radial expansion of the polymer melt exiting the nozzle [54] and hence
led to reduced dimensional errors.

For dimensional errors DEx, DEy and DEz, print speed was another significant param-
eter, as also summarized in Table 4. The increased dynamic effect of the nozzle drive system
at higher print speeds gave rise to a jerky motion [52] of the nozzle. The jerky movement
inhibited the ability of the nozzle to deposit precise rasters and hence contributed to high
dimensional errors in the XY plane. An increase of 27% and 35% was noted for DEx and
DEy as the print speed increased from 20 mm/s to 80 mm/s. The percentage increase,
however, was found to be even higher in DEz (approximately 50%), due to the combined
action of the dynamic drive effect and the drawing phenomenon [19]. The latter occurs at
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high print speeds, wherein the extruded filament does not adhere to previously fabricated
layers but rather moves with the nozzle due to there being insufficient time available for
fusing with deposited layers. Thus, for improved dimensional accuracy, lower print speeds
are recommended.
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The extrusion temperature was found to exercise a significant influence on DEx and
DEy. The increased material fluidity at higher extrusion temperatures led to excessive
material spreading post-deposition [12], posing another challenge for depositing precise
rasters. However, in the Z direction, the magnitude of the error remained nearly constant,
with varying extrusion temperature highlighting that the increased material fluidity exerted
a lesser pronounced effect in the Z-direction as compared to the XY movement plane of
the printer.

Moreover, the magnitudes of dimensional errors introduced for the internal feature,
i.e., the curved hole surface, were, on an average, four times higher than the dimensional
errors along the X, Y and Z directions. The explanation for the same can be based on the
higher tendency of the semi-molten material to spread, especially when unconstrained by
the surrounding material, as in the case of the hole geometry.

3.2. Discussion on Surface Roughness

The graphs obtained for the variation in surface roughness with the varying printing
parameters are shown in Figure 11a–c. For all the three surfaces considered, ANOVA
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returned layer thickness and raster width to be the significant parameters. It was observed
from the plots that lower layer thickness values led to an improved surface finish, aligning
with the majority of the literature reviewed [25,28]. This behaviour can be attributed to
the reduced staircase effect owing to the precise layer tessellation under such premises.
The trend for roughness magnitude variation was similar for raster width as well, with
finer raster widths leading to an improved surface finish by allowing for the deposition of
precise rasters. The precise rasters reduce the surface irregularities and roughness.
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The factors of print speed and extrusion temperature did not exercise a significant
influence on the surface roughness, as also seen in Figure 11a–c, where the magnitude of
surface roughness remained nearly the same while varying the said inputs. However, as
per ANOVA, the combined interaction effect of print speed and extrusion temperature
(AC) was observed to be a significant factor influencing the surface roughness of the flat
profile. The quadratic term AC being significant highlights that the simultaneous effect of
these parameters on surface roughness for the flat profile is significantly greater than the
individual effects they exercise.

Figure 12 gives the response plot for the combined interaction effect for AC. When
extrusion temperature was fixed at its lowest value, i.e., −2 coded level (200 ◦C), and
print speed was incremented, the surface roughness was observed to increase. This trend
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can be attributed to the vibrations induced in the nozzle system while depositing the
thermoplastic material at high speeds. However, when the print speed was fixed at the
−2 coded level (20 mm/s) and the extrusion temperature was increased, the part surface
finish first improved then deteriorated. At lower printing temperatures, the material tended
to stick to the nozzle during extrusion, leading to inconsistent deposition, which in turn
was responsible for surface unevenness post-printing. In the same configuration, when
temperature rises, surface finish improves slightly, however, beyond −1 coded level (i.e.,
215 ◦C), the material fluidity increases, causing the material to spread in an unconstrained
manner and solidifying unevenly, thereby introducing a poor surface finish. A similar
trend was observed as the extrusion temperature was decreased while keeping the print
speed fixed at a maximum coded level of +2 (80 mm/s).
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A poor surface finish was observed when print speed was reduced while keeping the
extrusion temperature constant at its maximum value. Although the lower print speed
ensured a reduced dynamic drive effect and vibration, it gave more time for the highly
fluid material (due to high extrusion temperature) to spread. Surface roughness was found
to be the maximum (10.75 µm) when the extrusion temperature was at the highest coded
level and the print speed was at its lowest value.

Finally, a comparison of the surface roughness of the three different profiles revealed
that the surface finish of the flat profile was considerably better than the other two profiles,
with the inclined surface having the highest Ra value. The observations can be attributed
to a pronounced staircase effect, especially for 3D-printed curvy surfaces. For the inclined
surface profile, the issue was further compounded due to the nature of material deposition
at the surface.

3.3. Validation of RSM, ANFIS and Hybrid RSM and NSGA-II Models

In the study, two predictive models, including RSM and ANFIS, were developed, and
multi-objective optimization was performed using the hybrid RSM and NSGA-II method.
As an attempt to validate the appropriacy of the developed models, the input parameter
settings of the best run identified for performing PETG printing with the least dimensional
deviations and high surface finish, as documented in Table 6, were supplied to the RSM and
ANFIS models. The consequent responses, as predicted by the models, are documented in
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Table 8. The values returned by the predictive techniques were in close proximity to those
suggested by the hybrid RSM-NSGA-II approach for the best run.

Table 8. Predicted responses for obtaining the best part quality.

Method
Dimensional Error (%) Surface Roughness (µm)

X Y Z Hole Flat Inclined Curved

RSM-NSGA-II 0.31 0.278 0.5 1.67 5.07 16.04 17.65
RSM 0.641 0.36 0.37 2.08 6.33 23.48 21.08

ANFIS 0.60 0.07 0.46 2.14 7.39 17.3 21.2

Moreover, for comparing the predictive performance of the developed ANFIS and
RSM models, a comparison between the predicted values of the output responses from these
models and the actual values after undergoing experimental validation was performed. The
shifted parameter settings, based on the hybrid optimization approach for simultaneously
optimizing all of the seven quality responses, as shown in Table 7, were chosen for the
experimental run for validation. Three parts were printed and the output responses were
measured using the predefined procedure. The mean values of the responses as measured
along with the predicted responses from the RSM and ANFIS models are shown in Table 9.

Table 9. Comparison of part quality between experimental validation and model prediction.

Quality Response Mean Experimental
Value

RSM ANFIS

Predicted Error (%) in Prediction Predicted Error (%) in Prediction

DEx (%) 0.28 0.2367 15.46 0.294 5
DEy (%) 0.24 0.2542 5.92 0.223 7.08
DEz (%) 0.435556 0.5022 15.3 0.487 11.81
DEhole (%) 1.775 1.5182 14.47 1.52 14.37
SRflat (µm) 6.558 5.5068 16.03 7.452 13.63
SRinclined (µm) 16.252 13.9996 13.86 15.216 6.37
SRcurved (µm) 18.879 17.9076 5.15 20.21 7.05

Mean Error in Prediction (%) 12.31 9.33

The experimental and the predicted value from the models were compared and
the deviation of the predictions from the actual values were represented in the form of
percentage error bars. Figure 13a,b highlight a higher deviation in the predicted values of
dimensional error and surface roughness responses for the RSM design than the ANFIS
predictive model. All the predicted values by the ANFIS model except for DEhole were in
±12% of the mean experimental values; however, for RSM, most of the values deviated
from the range of faults. As shown in Table 9, the average error in prediction from the
ANFIS model was computed to be 9.33%, in contrast to an average error of 12.31% for RSM.
Thus, ANFIS was found to have better predictive performance, which can be attributed to
its superior knowledge learning capabilities. The limited accuracy of RSM arises due to the
limitations in the polynomial estimation leading to a poor representation of the optimal
parameters [14].
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4. Conclusions

In the present study, an attempt was made to model the FDM process and conduct the
multi-objective optimization of FDM-printed PETG parts. A series of experiments were
performed using a four-factor central composite rotatable design to study and analyse
the effects of print speed, layer thickness, extrusion temperature and raster width on
dimensional error in different directions and for different surface roughness values of varied
profiles of the built specimen. The statistical models for the responses were developed using
RSM and their adequacy was verified using ANOVA. ANFIS models were also constructed
for the prediction of output responses and multi-objective optimization was conducted
using an integrated RSM and NSGA-II approach.

ANOVA revealed layer thickness and raster width to be significant parameters for all
the dimensional deviations. At lower values of layer thickness, the dimensional accuracy
improved as the number of layers required for printing the part increased, further limiting
the setup of non-uniform thermal gradients within the deposited material. Reduced raster
width enabled the deposition of precise rasters and hence resulted in high dimensional
accuracy in the built samples. The trend was attributed to two primary reasons. Firstly,
fine raster widths ensured that less heat content entered the system environment, leading
to reduced thermal stress accumulation at the interface during the solidification of the
newly deposited material on the previous layer. Moreover, the radial expansion of polymer
melt exiting the nozzle was also curtailed at a lower raster width, thereby reducing the
dimensional errors. Print speed was also found to be a significant parameter for dimen-
sional errors introduced along the length, width and thickness of the built parts. Lower
print speed values led to improved dimensional accuracy owing to the reduced dynamic
effect of the drive system. The effect of increased print speed was further pronounced in
the Z direction owing to the drawing phenomenon, wherein the extruded material melt
did not adhere to the previously deposited layers but moved with the extruder nozzle
because of there being insufficient time available for the bonding to occur. A rise in extru-
sion temperature was found to enhance the material fluidity, causing excessive material
spreading which led to marked dimensional errors along the X and Y directions. With the
same process parameters settings, the dimensional error introduced in the hole geometry
was found to be about four times higher than dimensional errors along the part’s length,
width and thickness. This can be attributed to the tendency of the deposited material to
spread, especially when unconstrained by surrounding geometry, as in the case of the hole.
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Layer thickness and raster width were also significant parameters for the obtained
surface roughness on the flat, inclined and curved surfaces. The direct trend plots showed
surface finish to be better at smaller values of layer height and raster width due to the re-
duced staircase effect owing to the precise layer tessellation and allowing for the deposition
of precise rasters, respectively. Moreover, the combined interaction effect of print speed
and extrusion temperature was also found to exercise a significant influence on the surface
roughness of the flat profile. The surface finish was found to be the poorest (10.75 µm)
when the extrusion temperature was at the highest coded level and the print speed was
at its lowest value. Furthermore, the surface finish obtained for the flat profile was best,
followed by that of the curved and inclined profiles. The staircase effect and the nature of
the material deposition are the chief contributors to this trend.

The hybrid RSM and NSGA-II multi-objective optimization approach was utilized to
obtain the optimal printing settings for different premises. For the minimization of dimen-
sional error, the optimal printing settings are a print speed of 65 mm/s, layer thickness of
0.2 mm, extrusion temperature of 215 ◦C and raster width of 0.2 mm. For printing PETG
parts with the highest surface quality, the optimal settings are a print speed of 50 mm/s,
layer thickness of 0.1 mm, extrusion temperature of 215 ◦C and raster width of 0.6 mm.
Finally, for printing parts with the least dimensional errors and a high surface finish, the
optimal settings as given by the approach are a print speed of 50 mm/s, layer thickness of
0.1 mm, extrusion temperature of 230 ◦C and raster width of 0.6 mm.

Upon validation with experimental runs, the predictive performance of the ANFIS
model and RSM were compared, with the mean experimental values and the deviations
being represented in the form of error bars. It was observed that, for the ANFIS models, all
the predicted values except for DEhole were in ±12% of the mean experimental values, but
in the case of RSM, most of the values deviated from the range of faults. The mean error
percentage for the predictions made by ANFIS was recorded to be 9.33%, which is lower
in comparison to that obtained for RSM (12.31%). The better predictive performance of
ANFIS can be attributed to its superior knowledge learning capabilities.
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