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Abstract: Optical fiber sensors incorporating luminescent materials are useful for detecting physical
parameters and biochemical species. Fluorescent materials integrated on the tips of optical fibers,
for example, provide a means to perform fluorescence thermometry while monitoring the intensity
or the spectral variations of the fluorescence signal. Similarly, certain molecules can be tracked by
monitoring their characteristic emission in the UV wavelength range. A key element for these sensing
approaches is the luminescent composite, which may be obtained upon allocating luminescent
nanomaterials in glass or polymer hosts. In this work, we explore the fluorescence features of two
composites incorporating lanthanide-doped fluorescent powders using polydimethylsiloxane (PDMS)
as a host. The composites are obtained by a simple mixing procedure and can be subsequently
deposited onto the end faces of optical fibers via dip coating or molding. Whereas one of the
composites has shown to be useful for the fabrication of fiber optic temperature sensors, the other
shows promising result for detection of UV radiation. The performance of both composites is first
evaluated for the fabrication of membranes by examining features such as fluorescent stability.
We further explore the influence of parameters such as particle concentration and density on the
fluorescence features of the polymer blends. Finally, we demonstrate the incorporation of these PDMS
fluorescent composites onto optical fibers and evaluate their sensing capabilities.

Keywords: PDMS fluorescent composites; optical fiber sensors; up-conversion; down-conversion

1. Introduction

Detection and quantification of biological and chemical species are required in several
areas, such as environmental science, clinical diagnostics, biology and chemistry. Among
the available options for performing these tasks, optical methods offer several advantages
over other sensing approaches, the most important of which are their high sensitivity and
selectivity, both of which are highly desired features in biochemical sensing systems [1,2].
Although several techniques for optical sensing have been demonstrated, fluorescence-
based measurements are recognized as among the most powerful tools for biochemical
sensing [1–3]. Aside from providing remote monitoring capabilities, fluorescence signals
can be analyzed in different ways, allowing for the realization of a wide variety of sensing
schemes. Spectral features, lifetime and intensity are perhaps the most common examples
of the different aspects that can be analyzed from a fluorescent signal. The advent of
compact and rugged optical instruments such as solid-state spectrometers, as well as the
availability of optical fibers, light sources and detectors, has enabled the development of
compact and portable fluorescent sensing platforms, exploiting the versatility offered by
fluorescence sensing.

Although some analytes provide suitable fluorescence emission for sensing, external
fluorescent indicators (i.e., exogenous fluorophores) may be added to the samples if the
target molecule lacks endogenous fluorophores [3]. Nanoparticles of different kinds, gold
surfaces, carbon and quantum dots have been combined with chemical receptors, yield-
ing fluorescent materials and enabling fluorescence detection [4]. Fluorescent polymers
obtained either by incorporation of fluorophores in the polymer chain or by aggregation
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(so-called aggregation-induced emission polymers) have attracted a considerable amount
of attention, owing to their viscoelastic and mechanical properties that render them useful
for device fabrication [3,4]. Alternatively, fluorescent polymer composites may be realized
upon incorporation of fluorescent dyes or nanoparticles into nominally transparent poly-
mer matrices, either by adsorption, covalent binding or encapsulation [5]. These fluorescent
composites have been widely used to obtain thin films and microspheres for sensing ap-
plications [3–6]. Aside from being simple to obtain, these materials can be conveniently
incorporated onto optical fibers and waveguides for sensor fabrication. Both planar waveg-
uides and optical fibers are key components in compact fluorescence sensing platforms;
fibers, in particular, allow for spectroscopic measurements to be performed at remote
locations and over a wide spectral range. When coated with adequate fluorescent polymers,
they also allow for the detection of molecules that are otherwise imperceptible with optical
spectroscopy [7,8]. Moreover, the availability of fiber bundles and microstructured fibers
(e.g., photonic crystal fibers) has offered novel means for the development of devices for
fluorescence imaging, as well as sensor arrays [7–11]. The combination of novel fiber optic
structures and fluorescent polymer composites has thus increased the potential of fiber
optic sensors in biochemical and biomedical applications.

Among the different polymer hosts reported for fluorescent dyes and nanoparticles,
polydimethylsiloxane (PDMS) offers attractive features for fluorescence sensing. This
silicone elastomer has been widely used in several areas, owing to its remarkable thermal,
rheological, mechanical and biological properties [12,13]. Because the fabrication process
of microfluidic chips is commonly based on soft lithography in PDMS, it is also sought as
the building block for microfluidic platforms [13], and because it is optically transparent
(240–1100 nm), it has also been used for the fabrication of planar waveguides and optical
fibers [14,15]. Furthermore, PDMS can host fluorophores, thereby enabling the fabrication
of microfluidic arrangements with fluorescence sensing capabilities [2]. In this paper, we
explore the use of PDMS fluorescent composites for the fabrication of optical fiber sensors.
We focus on two composites incorporating lanthanide-doped fluorescent powders using
PDMS as a host. Whereas one of the composites has been shown to be useful for fabricating
fiber optic temperature sensors, the other shows promising results for detection of UV
emission. Temperature sensing is relevant for a myriad of applications, and UV-fluorescence
detection is relevant for biosensing and biochemical applications. We first describe the
procedure for obtaining the composites based on simple mixing of fluorescent powders with
PDMS. The performance of both composites is first evaluated for fabrication of membranes
and tested for features such as fluorescent stability under different conditions. Finally, we
demonstrate the incorporation of these PDMS fluorescent composites onto optical fibers
and evaluate their sensing capabilities. In contrast to previous reports using a custom-made
dual-tip optical fiber device for temperature sensing [16,17], we deposit the temperature-
sensitive composite on the tip of a fiber with a double-cladding structure, yielding a simpler
sensor tip. In addition, the obtention of a UV-fluorescence-sensitive composite and its
subsequent incorporation on the tips of conventional optical fibers provide a simple means
to realize compact fluorescence sensors for this wavelength range.

2. Materials and Methods

Polymer composites with lanthanide-doped fluorescent powders were obtained follow-
ing a mixing procedure first reported for the fabrication of photothermal membranes [18].
The composites are based on the use of Dow Corning Sylgard 184 PDMS as a host for the
fluorescent materials. For our experiments, two polymer composites were prepared: one
using an up-conversion (UC) phosphor (NaY0.77Yb0.20Er0.03F4, Sigma Aldrich 756555-25G,
Saint Louis, MO, USA) and a second one using europium-activated oxysulphide down-
conversion phosphor (Gd2O2S:Eu, Phosphors Technology, Stevenage, UK, UKL63/F-U1).
UC ytterbium- and erbium-doped sodium yttrium fluoride powder has a particle size of
1–5 µm and is optimized to absorb in the wavelength range of 940–980 nm; the resulting
PDMS-YbEr composite has been previously demonstrated in fiber optic temperature sen-
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sors [16]. Oxysulphide powder (GOS:Eu) has a mean particle size of 2–3 µm, exhibits a
wide excitation band located in the UV region with a maximum absorption peak around
345 nm and has been shown to be useful for coatings in sensing and imaging applica-
tions [19,20]. As described elsewhere [21] and as shown in the following sections, the
resulting PDMS-GOS:Eu composite provides attractive features such as a UV-fluorescence
sensing material for fiber optic sensors.

The composites were fabricated following the same process, adding chloroform into
the mix in order to reduce the viscosity of the silicone oil of the PDMS. The methodology is
illustrated in Figure 1 and involves the following steps:

(a) Weigh the phosphors and place them in a beaker;
(b) Pour the base materials of the PDMS elastomer (silicone oil) and the chloroform

(CHCl3) into the beaker (1 g/1.5 mL of PDMS/CHCl3 ratio);
(c) Place the beaker in a combined hot-plate/magnetic-stirrer device for 60 min at 80 rpm

and 90 ◦C to obtain a homogenous mix and to evaporate the chloroform;
(d) Remove the beaker from the hot plate/magnetic stirrer and leave it to rest until

reaching room temperature (approximately 10 min). Then, add the PDMS curing
agent (10:1 ratio) and mix manually for 1 min;

(e) Place the mixture in a vacuum chamber for degassing for 60 min;
(f) Pour the PDMS-phosphor mixture in the desired substrate (either molds or glass

slides (see below)) to obtain membranes;
(g) Finally, place the substrate with the PDMS-phosphor composite in an oven at 80 ◦C

for 4 h for solidification.
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Figure 1. Mixing methodology to obtain the fluorescent polymer composites (PDMS-phosphor; see
text for further details).

To evaluate the fluorescence features of the polymer composites, two different fabrica-
tion methods were explored. The PDMS-YbEr membranes were obtained by pouring the
mix into molds fabricated from glass substrates and using height spacers approximately
150 µm thick. After pouring, the excess material was removed using the doctor blade
technique. With this procedure, we obtained membranes with three different phosphor
concentrations (1.5, 2.0 and 2.5% wt./wt.) and two different thicknesses (150 and 300 µm).
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In contrast, the PDMS-GOS:Eu mix was poured onto glass substrates, and membranes were
obtained by means of a conventional spin coater. Upon adjusting the settings of the spin
coating process, we were able to obtain membranes with thicknesses up to 350 µm and
phosphor concentrations of 0.1, 0.5, 2.5, 12.5 and 62.5% wt./wt. The fabrication method
used to obtain the membranes (i.e., molding or spin coating) was chosen in view of the
approach followed to incorporate the composites onto the optical fiber devices, whereas
for the PDMS-YbEr, we used a molding process, and the PDMS-GOS:Eu was incorporated
through dip coating (see the following sections). Note that both methods can be used
interchangeably for any of the polymer blends, and this choice should not affect their
fluorescence features nor their sensing performance.

3. Polymer Composite Membrane Characterization

The fluorescence features of PDMS-phosphor composites with different concentrations
and membrane thickness were evaluated. Aside from the spectral features, parameters such
as thermal stability and fluorescence intensity were analyzed prior to their incorporation
onto optical fibers.

3.1. PDMS-YbEr Composite

Optical microscopy images of the PDMS-YbEr membranes are shown in Figure 2.
Although clusters of ytterbium- and erbium-doped sodium yttrium fluoride particles are
evident from the images, the concentrations and thicknesses used to obtain the membranes
do not seem to be increased. The fluorescence emission from PDMS-YbEr composites
varies with temperature, and owing to its ease of processing, it is a suitable material for
temperature sensing [16,17]. Using the setup shown in Figure 3, we evaluated the changes
in fluorescence from the membranes as a function of temperature. This characterization is
based on analysis of images from the PDMS-YbEr membranes acquired at different temper-
atures under fixed irradiation conditions. As depicted in the figure, the setup includes a
fiber-coupled laser diode (LD, 975 nm, 330 mW maximum output power), a temperature
controller to adjust the temperature of a ceramic heater through a thermoelectric cooler
(TEC) and a CCD camera with an infrared (IR) filter to obtain fluorescence images from
specific zones of the samples (i.e., the membranes).
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row) and 300 µm (lower row) and phosphor concentration of (a) 1.5%, (b) 2.0 and (c) 2.5%.
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Figure 3. Schematic representation of the experimental setup used to analyze the fluorescence from
the PDMS-YbEr membranes as a function of temperature: light from a laser diode (LD) coupled
to an optical fiber (OF) is collimated (C) and used to irradiate the sample. The fluorescence from
the membrane is captured by a CCD camera after filtering the residual IR radiation. Temperature
adjustments are made by a TEC controller connected to a personal computer (PC), which is also for
image acquisition.

Typical images obtained when irradiating one of the membranes (300 µm thickness,
2.5% concentration) with 140 mW of optical power and for different temperatures are
included in Figure 4a–c. Clearly, the fluorescence from the membranes decreases with
temperature. A direct relation between the temperature and the intensity of the fluorescence
emitted by the PDMS-YbEr membranes can be obtained by means of image analysis.
For this task, we used a technique originally developed for laser-induced fluorescence
thermometry (LIFT) to acquire temperature maps with micron-scale spatial resolution [22].
Briefly, images were acquired at different temperatures using the setup shown in Figure 3;
these were subsequently analyzed through direct comparison between a reference image
and images obtained at prescribed temperatures. In our case, the reference image was
obtained at room temperature, and its average intensity was used to normalize the average
intensities acquired at specific temperatures set with the TEC (see [22] for details). This
procedure allows for the obtention of a calibration curve for each membrane, yielding a
plot of normalized intensity as a function of temperature. A typical curve showing the
average changes in intensity as a function of temperature is included in Figure 4d. The
plot was obtained from three sets of experiments (labelled Exp 1 to Exp 3 in the plot) and
clearly shows a linear decrease in intensity as a function of temperature. A linear fit of the
experimental points provides information regarding the sensitivity and the linearity of the
registered variations in fluorescence intensity; the results obtained for all the fabricated
membranes of PDMS-YbEr composites are summarized in Table 1. Whereas the linearity
is very similar for all the tested samples, an increase in concentration seemingly yields
a decrease in sensitivity. At a fixed concentration, the sensitivities decrease slightly for
thicker membranes. Because the membranes were irradiated using the same optical powers,
this behavior could be attributed to an increase in optical absorption associated with a
larger optical path for thicker membranes. In addition, the temperature gradient might also
change slightly when increasing the membrane thickness. Nonetheless, the performance of
the PDMS-YbEr composites is practically sustained for the experimental conditions used
for this characterization.
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Figure 4. Typical fluorescence images obtained from a 300 µm thick membrane with 2.5% concentra-
tion (140 mW LD optical power) at temperatures of (a) 25 ◦C, (b) 50 ◦C and (c) 100 ◦C. (d) Changes
in normalized intensity for the same membranes as a function of temperature; the dots indicate the
experimental measurements obtained by image analysis, and the solid line represents the linear fit of
the experimental points.

Table 1. Temperature sensitivities (ST, ◦C−1) and linearity (R2) of the normalized fluorescence
intensities obtained for the PDMS-YbEr composite membranes.

Sample d = 150 µm d = 300 µm

C = 1.5% ST = −5.2 × 10−3, R2 = 0.996 ST = −5.0 × 10−3, R2 = 0.995
C = 2.0% ST = −4.8 × 10−3, R2 = 0.995 ST = −4.4 × 10−3, R2 = 0.991
C = 2.5% ST = −4.8 × 10−3, R2 = 0.991 ST = −3.9 × 10−3, R2 = 0.998

We further explored the thermal stability of the membranes when exposed to a fixed
temperature for time periods of up to one hour. The membranes were irradiated with
a fixed optical power (140 mW), and the temperature was set at a fixed value by means
of the TEC. As shown in Figure 5, the average intensities registered at the prescribed
temperatures remain stable throughout the full duration of the tests (similar trends were
observed for the other fabricated membranes). Furthermore, in agreement with the results
shown in Figure 4, the registered fluorescence intensities are lower at higher temperatures.
We also performed the same test after storing the membranes for several months with
similar results, suggesting that the fluorescence features of the PDMS-YbEr composites
are maintained over long periods of time. Thus, the membranes do not show evidence of
thermal bleaching, nor is photobleaching evident, at least under our experimental condi-
tions. These features are of interest for fluorescent thermometry, which typically relies on
fluorescent dyes such as Rhodamine B (RhB) as the temperature-sensitive material (see [22]
and references therein). Photobleaching and thermal bleaching hinder the performance
of RhB in fluorescent thermometry applications, requiring recalibration procedures over
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time. UC phosphors thus provide improved thermal stability compared to fluorescent dyes.
For the temperature ranges used in our experiments (up to 100 ◦C, limited by the TEC)
the PDMS-YbEr membranes perform well, although thermal degradation occurs at higher
temperatures. The temperature limit is set by the polymer host, i.e., the PDMS, which
is known to degrade at approximately 300 ◦C [13]. Moreover, UC phosphors have been
incorporated in glass matrices and have been shown to withstand temperatures within the
same range [23]. In general, glass matrices are preferred over their polymer counterparts
for temperature sensors, but as discussed earlier, polymers offer ease of processing and
molding capabilities, making them attractive for the rapid fabrication of devices.
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It is clear that PDMS-YbEr membranes can provide a means to obtain fluorescence
temperature measurements based on intensity. However, the most attractive features of
these composites for temperature sensing are related to their spectral characteristics. They
have been shown to be suitable for incorporation in optical fiber-based devices in which
temperature measurements are obtained through spectral analysis [16,17], details of which
will be discussed in the Applications and Discussion section.

3.2. PDMS-GOS:Eu Composites

The luminescence response of these composites is of great interest because they have
shown great potential for monitoring UV emissions from biochemical species [20,21]. Be-
cause cluster formation and bulkiness can lead to a decrease in luminescence for these
powders [19,24], we explored the performance of PDMS-GOS:Eu composites by fabricating
membranes with different thicknesses. This was achieved through adjustments of the
velocity (vc) and the spinning time (tvc) of the spin coater [21,25]; the thicknesses of the
membranes were subsequently measured with a micrometer (IP65, 293-348-30, Mitutoyo).
As shown in Figure 6, the thickness of the membranes decreases as vc and tvc increase.
Furthermore, in general, increasing the concentration of the powder leads to a decrease
in membrane thickness. However, an increase in thickness is noticeable when the con-
centration is changed from 2.5 to 12.5% wt./wt., followed by a subsequent decrease for a
concentration of 62.5% wt./wt. Because the volume of the mix used to obtain the membrane
should not affect the resulting thickness [26], this effect is attributed to the density of the
blend. The densities for each mix obtained from calculations are included in Table 2, which
show that a change in concentration from 2.5 to 12.5% wt./wt. yields an increase in density
of 0.084 g/cm3—much greater than those obtained at other concentrations.
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included in Figure 7 obtained from membranes with a concentration of 2.5% wt./wt. with 
tvc ranging from 5 to 80 s, as well as for vc from 1000 to 4000 rpm. In contrast, an increase 
in particle concentration per area was observed upon increasing the phosphor concentra-
tion in the mix, as shown in Figure 8 for the thicker membranes (vc = 1000 rpm, tvc = 5 s), as 
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the mix on the substrate is directly proportional to its density, it is reasonable to expect 
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Figure 6. Membrane thicknesses obtained for membranes fabricated with different concentra-
tions of PDMS-GOS:Eu powder. Results are presented for three different spin-coating velocities
((a) 1000 rpm, (b) 2000 rpm and (c) 4000 rpm) and for the indicated spinning times (tvc).

Table 2. Concentrations and densities of the PDMS-GOS:Eu composites.

Concentration (% wt./wt.) Density (g/cm3)

0.1 1.103
0.5 1.106
2.5 1.123

12.5 1.207
62.5 1.595

Adjustments to the fabrication parameters also affect the homogeneity of the phosphor
particles within the membranes. As vc and tvc increased, membranes with lower particle
concentrations per area were obtained. This is evidenced in the microscopy images included
in Figure 7 obtained from membranes with a concentration of 2.5% wt./wt. with tvc ranging
from 5 to 80 s, as well as for vc from 1000 to 4000 rpm. In contrast, an increase in particle
concentration per area was observed upon increasing the phosphor concentration in the
mix, as shown in Figure 8 for the thicker membranes (vc = 1000 rpm, tvc = 5 s), as well
as for thinner membranes (vc = 4000 rpm, tvc = 80 s). Because the pressure exerted by
the mix on the substrate is directly proportional to its density, it is reasonable to expect
that thinner membranes will be obtained for denser polymer blends [25,26]. As shown in
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Table 2, increasing the phosphor concentration yields higher densities, as reflected by the
trends observed in Figures 6 and 8.
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Fluorescence characterization was performed in a spectrofluorometer with a photo-
multiplier tube (Fluorolog-3, Horiba, FL3-22). Fluorescence signals from the membranes
were obtained by placing them in a sample holder oriented at 45◦ of the optical axes of



Polymers 2023, 15, 505 10 of 17

the instrument (i.e., the beam trajectory). The light source and the detector were further
oriented perpendicularly to each other in order to avoid straight incidence of the pump
source onto the detector; therefore, only the fluorescent signal from the membranes was
registered. The source was set at a wavelength of 340 nm in coincidence with the absorption
peak of the phosphor. Figure 9a shows a typical spectrum obtained from the PDMS-GOS:Eu
membranes; this spectrum, in particular, showed the largest peak intensity and was ob-
tained from the thicker membranes (vc = 1000 rpm) fabricated with the maximum particle
concentration (62.5% wt./wt.). In agreement with previous reports [19,20], the three main
fluorescence peaks were located at 595, 616 and 625 nm. The effects of the spin-coater
parameters (vc and tvc) on the peak intensities for each wavelength are shown in Figure 9a–c.
In general, an increase in velocity and spinning time yields a decrease in peak intensities,
which might be related to a decrease in membrane thickness. However, in all cases, for
the membranes fabricated using vc = 1000 rpm, the intensity seems to increase when tvc is
increased from 5 to 20 s.
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Concentration effects on the peak fluorescence intensity can be observed in the plots
included in Figure 10. Because all the peaks showed a similar trend, only the plots for the
main peak (625 nm) are shown. Clearly, the fluorescence peak increases with concentration
and, in general, decreases with higher velocities and longer spinning times. The maximum
peak intensity was obtained for vc = 1000 rpm and tvc = 20 s, which suggests that these spin-
coating parameters are optimum for membrane fabrication with PDMS-GOS:Eu composites.
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However, the trends observed in the rest of the plots show that, in general, a higher
concentrations of phosphors yield higher emissions, and increasing velocity and spinning
time decrease the emissions, owing to a reduction in membrane thickness.
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Figure 10. Variation in fluorescence peak intensity (625 nm) for different phosphor concentrations of
the PDMS-GOS:Eu membranes fabricated using spin-coating velocities of (a) 1000 rpm, (b) 2000 rpm
and (c) 4000 rpm.

Because composites are sought to be incorporated in optical fibers, we evaluated the
feasibility of capturing the fluorescence emission from the PDMS-GOS:Eu membranes
using a fiber bundle. Using the setup shown in Figure 11a, the membranes were irradiated
with an LED (M340F3, Thorlabs, 340 nm peak wavelength), whereas the fluorescence
features were analyzed by means of a solid-state spectrometer (CCS200, Thorlabs). The
setup included a bifurcated fiber bundle (RP20, Thorlabs) intended for back-reflection
spectroscopic measurements; this device incorporates seven fibers: one used to irradiate
the samples and the remaining fibers to capture the fluorescence emission of the samples
(see Figure 11a). Upon adjusting the current fed to the LED, the irradiation power was set
at different levels, and the fluorescence spectra were captured through the common branch
of the bifurcated fiber bundle. Figure 11b shows the normalized fluorescence spectra for
two excitation powers (i.e., 13.5 and 14.4 µW). With our setup, we can detect the principal
fluorescence peaks. Remarkably, in spite of the low optical power levels used to irradiate
the membranes, the fluorescence emission reaches adequate values to be registered by
the spectrometer.
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Figure 11. Typical spectral features of a PDMS-GOS:Eu membrane (62.5% wt./wt. concentration,
vc = 1000 rpm, tvc = 20 s) as a function of the excitation power. (a) The setup used for spectral
acquisition includes a bifurcated fiber bundle (BFB), an LED (340 nm) and a solid-state spectrometer
(SS). (b) Fluorescence peaks captured with the bundle for two excitation powers (i.e., 13.5 and
14.4 µW) registered with the BFB (see text for further details).

4. Applications and Discussion
4.1. Optical Fiber Temperature Sensors with PDMS-YbEr Composites

As shown in the previous section, PDMS-YbEr membranes offer attractive features
for fluorescence thermometry. The use of lanthanide (rare-earth) ions for fluorescence
thermometry has been widely studied [27,28], and their incorporation in polymer matrices
such as PDMS expands the possibilities for temperature sensor design. The fact that the
fluorescence intensity of PDMS-YbEr membranes is temperature-dependent suggests that
they may be useful in LIFT applications. For example, composites incorporating RhB
as a temperature-sensitive dye could be replaced by the rare-earth composites, thereby
avoiding fluorescence stability issues associated with photobleaching commonly encoun-
tered with fluorescent dyes [22]. However, the fluorescence spectrum of the PDMS-YbEr
composites is perhaps the most attractive feature for temperature sensing. Techniques such
as fluorescence intensity ratio (FIR) can be readily used for temperature measurements,
as demonstrated with fiber optic devices [16,17]. Because some energy levels of the UC
powder used in the composites are thermally coupled, changes in temperature differen-
tially affect the corresponding spectral bands. Therefore, the temperature can be obtained
according to the ratio of these emission bands, thereby minimizing spurious effects of the
excitation laser and intensity fluctuations (see [16] and references therein). As described
below, PDMS-YbEr composites can be readily incorporated in optical fibers with special
structures to yield FIR-based temperature sensors.

A double-cladding fiber (DCF) structure can be used to realize a fluorescence tempera-
ture sensor. DCFs incorporate two concentric claddings with different refractive indices,
effectively forming two waveguides in a single optical fiber. As depicted in the inset of
Figure 12, a single-mode waveguide structure comprises the core (Co, refractive index
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n1) and the first cladding (Cd1, refractive index n2), whereas a multimode waveguide is
formed by the first and second cladding (Cd2, refractive index n3). Each of these concentric
cylinders has a different refractive index (n1> n2 > n3); therefore, light is confined and
guided within the different structures. Because the multimode structure has a larger cross-
section, the fluorescence from the PDMS-YbEr composite can be effectively captured by this
waveguide, and the central core can be used to excite the fluorescent material. The sensor
is fabricated using a brass mold with a reservoir (10 mm length, 2 mm width and 2 mm
depth) for the composite, with a groove to accommodate the DCF. Once the fiber is placed
in the groove, the fluorescent composite is simply poured directly into the reservoir, and
after degassing, everything is placed in an oven for curing (see Section 2 for curing settings).
Once the PDMS-YbEr composite has solidified, the resulting sensor tip is demolded and
can be readily calibrated. All the results shown here were obtained with sensors fabricated
with PDMS-YbEr composite at a 2.5% concentration.
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The spectral features of the fluorescence signal from the sensors were obtained using 
the setup depicted in Figure 12. The single-mode fiber (SMF) of a double-cladding coupler 
(DCC) is used to excite the PDMS-YbEr sensor tip, whereas the fluorescence is captured 
and sent through the multimode fiber (MMF) to a solid-state spectrometer (SS) for analy-
sis. We used a fiber-coupled laser diode (LD) operating in the infrared range (λIR = 975 nm) 
to generate the green UC fluorescence signal (λF) from the polymer composite, and spectra 
at different temperatures were obtained by placing the sensor tip on the ceramic heater 
and TEC (not shown). Typical spectra obtained from a sensor are included in Figure 13a, 
showing the characteristic emission bands of the UC phosphor [16,17]. Because the spec-
tral bands labelled H11/2–I15/2 and S3/2–I15/2 are thermally coupled, they can be used to cal-
culate the fluorescence intensity ratio (FIR) as a function of temperature (see [16] and ref-
erences therein). Upon integrating both bands and measuring their ratios at different tem-
peratures, we obtained the plot presented in Figure 13b, showing that the FIR varies 

Figure 12. (a) Schematic representation of the experimental setup used to test an optical fiber
temperature sensor. The sensing tip comprises PDMS-YbEr composite deposited on a double-
cladding fiber (DCF). Using a double-cladding coupler (DCC), the fluorescent material is excited with
the laser diode (LD, λIR), and the fluorescence signal (λF) is analyzed with a solid-state spectrometer
(SS). The inset shows the structure of the DCF formed by a central core (Co) and two concentric
claddings (Cd1 and Cd2). See text for further details. (b) Image of the sensor tip showing the green
UC fluorescence from the PDMS-YbEr composite.

The spectral features of the fluorescence signal from the sensors were obtained using
the setup depicted in Figure 12. The single-mode fiber (SMF) of a double-cladding coupler
(DCC) is used to excite the PDMS-YbEr sensor tip, whereas the fluorescence is captured
and sent through the multimode fiber (MMF) to a solid-state spectrometer (SS) for analysis.
We used a fiber-coupled laser diode (LD) operating in the infrared range (λIR = 975 nm) to
generate the green UC fluorescence signal (λF) from the polymer composite, and spectra
at different temperatures were obtained by placing the sensor tip on the ceramic heater
and TEC (not shown). Typical spectra obtained from a sensor are included in Figure 13a,
showing the characteristic emission bands of the UC phosphor [16,17]. Because the spectral
bands labelled H11/2–I15/2 and S3/2–I15/2 are thermally coupled, they can be used to
calculate the fluorescence intensity ratio (FIR) as a function of temperature (see [16] and
references therein). Upon integrating both bands and measuring their ratios at different
temperatures, we obtained the plot presented in Figure 13b, showing that the FIR varies
linearly with temperature. The plot includes results from three different experiments;
evidently, the calculated FIR for each temperature is repeatable, with an error within 0.2%.
Furthermore, FIR varies linearly with temperature, and both the linearity and sensitivity
(ST = 2.77 × 10−3 ◦C−1, R2 = 0.999) are consistent with previous results obtained using
multimode fiber sensors [16]. Similar results were obtained for different pump powers and
for different probes fabricated following the same procedure, thereby validating the use of
the FIR technique to eliminate noise and other spurious effects for fluorescence temperature
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measurements. Finally, we evaluated the ability of the sensors to track temperature changes
when immersed in a liquid. This test was performed by immersing the sensing tip in
water at room temperature (25 ◦C) and subsequently immersing the tip in a different
container with water at a higher temperature. Results of this test involving switching the
tip to containers with water at 50 ◦C and 70 ◦C are included in Figure 13c,d, respectively.
For comparison, a commercial thermocouple was immersed along with the fiber sensor.
The temperature readings from the two devices are very similar, providing evidence
that the response time of the fluorescence fiber optic sensor is comparable to that of
commercial thermocouples.
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Figure 13. (a) Fluorescence spectra obtained from the PDMS-YbEr fiber tip (140 mW optical power);
the bands labelled H11/2–I15/2 and S3/2–I15/2 are thermally coupled, and their ratio is used to obtain
the temperature. (b) Fluorescence intensity ratio (FIR) as a function of temperature. (c,d) Readout of
the fluorescence temperature sensor compared with a thermocouple sensor.

4.2. Devices with PDMS-UKL Composites

As shown in the previous section, PDMS-GOS:Eu composites offer attractive features
for UV monitoring. The use of lanthanide ions for UV detection and monitoring through
the down-conversion process has been widely studied [29–32]. Incorporation of these ions
in polymer matrices such as PDMS provides a simple means to obtain a transducer that
can absorb UV emitted in the visible portion of the optical spectrum. Evidently, other
molecules with lanthanide ions could be used, but the emission of GOS:Eu allows for
its fluorescence to be easily transmitted by conventional optical fibers. The sensitivity of
these composite to UV further suggests that they may be useful in UV autofluorescence
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monitoring applications. For example, biological tests using external fluorescence labels,
which require attached molecules with UV autofluorescence, could be eliminated and
replaced by simple UV autofluorescence monitoring using these composites. This approach
would not require external fluorophores to be disseminated in the samples and may also
serve to eliminate the use of photomultipliers, which are required to register the generally
weak autofluorescence signals [33].

PDMS-GOS:Eu composites can be easily incorporated onto optical fibers. For example,
as shown for PDMS-YbEr composites, a mold can be used to attach the material onto
an optical fiber tip. However, to explore other possibilities for sensor fabrication, we
used a dip-coating technique to fabricate UV fiber optic sensors such as those included in
Figure 14a,b. Using the dip-coating technique, devices can be fabricated with small drops
of the polymer composites allocated on the tip of conventional fibers [34]. The size of the
deposited polymer drop (i.e., composite thickness) is relevant because thicker coatings
can lead to a decrease in the luminescence; Figure 14a shows a microscopy image of a
multimode optical fiber coated with PDMS-GOS:Eu at 62.5% wt./wt., whereas Figure 14b
shows the emission of the composite allocated on the fiber tip. The emission from the
coating guided by the multimode fiber was registered with the setup shown in Figure 14c;
the opposite end of the sensor tip was connected to a solid-state spectrometer (CCS200,
Thorlabs), and the composite was irradiated with a UV light source operating at 340 nm.
As shown in Figure 14d, the spectra showed features registered with the membranes
fabricated with the same composite. We further varied the optical power of the light source
from 55.84 to 661.28 µW, showing that the peak power of the main emission bands varies
accordingly. With a power of 55.84 µW, only the principal fluorescence peak (located at
625 nm) is barely registered with the spectrometer, and with increased excitation power, the
full spectrum can be readily observed. Again, the low excitation powers required to obtain
a spectral readout from this fiber probe represent a promising result for the development of
monitoring devices to track UV biological signals.
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sion. Given the ease of processing of PDMS, both materials can be readily incorporated 
onto optical fibers to obtain fiber optic sensors, the response of which can be analyzed 
using compact instruments commonly used with fiber sensing arrangements. Herein, we 
demonstrated two methods for fabricating fluorescence optical fiber sensors: a simple 
molding procedure and a dip-coating process. In both cases, the polymer composites were 
attached to the tips of optical fibers, yielding a fiber probe for fluorescent temperature 
sensing (PDMS-YbEr) and a fiber probe for UV detection (PDMS-GOS:Eu). We expect that 
these polymer composite devices will be useful in biochemical and biomedical applica-
tions for temperature sensing and for monitoring of UV emissions from biochemical spe-
cies. 
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Figure 14. Multimode optical fiber coated with GOS:Eu: (a) microscopy image of the coated fiber;
(b) coated tip showing the emission of the polymer coating; (c) setup used to obtain the fluorescence
emission from the sensor tip as a function of optical power; (d) emission spectra obtained with
irradiation from a UV light source (340 nm) using different powers (55.84 to 661.28 µW).

5. Conclusions

Polymer composites can be easily obtained by incorporating lanthanide-doped pow-
ders in PDMS, a material that has been widely used for various applications. In particu-
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lar, NaY0.77Yb0.20Er0.03F4 and Gd2O2S:Eu powders were incorporated into the PDMS via
mixing, and membranes of these composites (PDMS-YbEr and PDMS-GOS:Eu, respec-
tively) were used to evaluate their fluorescence features. Both materials showed excellent
thermal stability, and no evidence of photobleaching or thermal bleaching was apparent
under our experimental conditions. Whereas the PDMS-YbEr composite was verified as
an attractive material for temperature sensing applications by means of up-conversion
emission, the PDMS-GOS:Eu composite shows potential for monitoring UV emission via
down-conversion. Given the ease of processing of PDMS, both materials can be readily
incorporated onto optical fibers to obtain fiber optic sensors, the response of which can
be analyzed using compact instruments commonly used with fiber sensing arrangements.
Herein, we demonstrated two methods for fabricating fluorescence optical fiber sensors: a
simple molding procedure and a dip-coating process. In both cases, the polymer composites
were attached to the tips of optical fibers, yielding a fiber probe for fluorescent temperature
sensing (PDMS-YbEr) and a fiber probe for UV detection (PDMS-GOS:Eu). We expect that
these polymer composite devices will be useful in biochemical and biomedical applications
for temperature sensing and for monitoring of UV emissions from biochemical species.
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