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Highlights:

What are the main findings?
• In this study, we apply the Latin hypercube sampling method for sampling and combine the CGIDN

and response surface modeling methods, which can effectively optimize the injection process.
• The CGIDN method allows a small number of initial data points to be considered and uses a

method of continuously updating the sampling points to guide the search for the optimal process
parameters that minimize the residual stress values and volume shrinkage.

What is the implication of the main finding?
• The Latin hypercube sampling method allows uniform, random and orthogonal sampling within

the planned spatial area of the experimental factor design and allows artificial control of the
number of trials. The method yields sample data with high spatial coverage of the ex-perimental
design can improve the accuracy of modeling.

• The method proposed in this study can effectively optimize the process parameters in the injection
molding process, thus improving the reliability and quality output of the injection molded
products and providing guidance to the plant engineers in adjusting the machines.

Abstract: Injection molding process parameters have a great impact on plastic production quality,
manufacturing cost, and molding efficiency. This study proposes to apply the method of Latin
hypercube sampling, and to combine the response surface model and “Constraint Generation
Inverse Design Network (CGIDN)” to achieve multi-objective optimization of the injection
process, shorten the time to find the optimal process parameters, and improve the production
efficiency of plastic parts. Taking the LSR lens array of automotive LED lights as the research
object, the residual stress and volume shrinkage were taken as the optimization objectives, and
the filling time, melt temperature, maturation time, and maturation pressure were taken as the
influencing factors to obtain the optimization target values, and the response surface models
between the volume shrinkage rate and the influencing factors were established. Based on the
“Constraint-Generated Inverse Design Network”, the optimization was independently sought
within the set parameters to obtain the optimal combination of process parameters to meet the
injection molding quality of plastic parts. The results showed that the optimal residual stress
value and volume shrinkage rate were 11.96 MPa and 4.88%, respectively, in the data set of
20 Latin test samples obtained based on Latin hypercube sampling, and the optimal residual
stress value and volume shrinkage rate were 8.47 MPa and 2.83%, respectively, after optimization
by the CGIDN method. The optimal process parameters obtained by CGIDN optimization were a
melt temperature of 30 ◦C, filling time of 2.5 s, maturation pressure of 40 MPa, and maturation
time of 15 s. The optimization results were obvious and showed the feasibility of the data-driven
injection molding process optimization method based on the combination of Latin hypercube
sampling and CGIDN.
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1. Introduction

In the auto lamp industry, the main considerations for choosing lens materials are light
transmission, high-temperature resistance, aging resistance, life cycle, etc. The traditional
glass lens has an excellent quality of high transmittance and high-temperature resistance,
but has the disadvantage of high density, so the use of a glass lens will increase the weight
of the lamp lens module, which is seriously inconsistent with the current development
trend of the automotive industry toward lightweight parts. In addition, it is not easy to
achieve large-scale production of the glass softened glass body of this particular state,
there is a high cost of the mold, a long processing cycle, precision is not easy to control,
and it is brittle, especially for the thickness of the relatively large changes in the lens, and
accidental bursting can not be predicted or solved. Now this can be achieved by improving
the process, only through the coating or toughening treatment to enhance the strength
of the glass, but after these treatments, the glass lens light transmission will be reduced,
which also increases the cost. So, at this stage plastic lenses are generally used instead
of glass lenses. Commonly used optical grade plastic lenses for headlights generally use
optical grade PMMA, optical grade PC, and other materials. The advantage of optical
grade plastic is simple technology and low production costs, but the disadvantage is that
high temperature and aging resistance is relatively low; PMMA temperature resistance
is generally not more than 90 ◦C (heat deflection temperature 105 ◦C), PC temperature
resistance is not more than 120 ◦C (heat deflection temperature 135 ◦C).

Compared with the traditional glass lens and plastic lens, the optical liquid silicone
lens combines the advantages of the above-mentioned lenses. The new generation of optical
liquid silicone lens temperature range is usually −40–250 ◦C, and it has the advantages
of: resistance to sudden cold and heat shock, a flexible texture, being not easy to burst,
excellent explosion-proof performance, non-toxicity, a low density, a stable performance,
and a light transmission rate of up to 92%.

In early work, researchers attempted to improve plastic product quality by adjusting
injection molding parameters and structural geometry. In 2017, a study by Chao-Ming
Lin et al. [1] showed that Taguchi and CAE integrated methods can effectively optimize the
optical properties of plastic Fresnel lenses, and it was shown that melt temperature, filling
time, holding time, and mold temperature can affect the residual stresses within the Fresnel
lens. In addition, setting optimal process parameters can optimize the lens quality and
reduce the average residual stress by 75.1% and the relative average birefringence by 74.1%.
In 2018, Mehdi Moayyedian et al. [2] optimized three common defects of injection molding,
namely short shot, shrinkage, and warpage, and proposed a multi-objective optimization
method based on the Taguchi method and fuzzy hierarchical analysis (FAHP). In 2017,
Marcel Roeder et al. [3] found that three process parameters, melt temperature, mold
temperature, and compression force, had a significant effect on the molding accuracy during
the manufacturing of diffractive optical elements using injection compression molding.
The experimental results showed that only precise control of each step of the molding
process could produce complex polymer optical elements. However, these methods all
share a common limitation, in that the optimal combination of process parameters is
strongly dependent on the sampling interval or the level of parameters used in the DOE.
In other words, the optimal result obtained by the DOE method may not be the global
optimal solution.

The combination of sample points obtained based on DOE tests cannot cover the
whole variable design space, which is prone to the problem of sample point stacking, and
the accuracy of establishing an approximate model based on sample points is sometimes
difficult to meet the analysis requirements; while uniform, random, orthogonal sampling
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within the design space region of the test factors obtained based on Latin hypercube
sampling can obtain a large amount of model information with fewer data points.

Injection molding technology has many outstanding advantages: the ability to produce
plastic parts with very small dimensions or with very complex surface structures, and
a significant increase in production efficiency compared to grinding and polishing. To
perfectly reproduce the high-precision microstructure of optical products, injection molding
requires excellent mold design and processing and optimal process parameters. In the
case of the basic replication rate of the shape, the imaging quality, and the optical index of
the molded optical products, are not all satisfactory due to microstructure replication or
internal stress, that is, the immaturity of the existing lens injection molding technology will
further increase the cost of silicone lenses. Therefore, from the perspective of parameter
optimization, the use of CAE analysis software and machine learning techniques to improve
the injection molding quality of optical components can reduce the product scrap rate and
improve economic efficiency, thus serving as a reference for actual production.

2. Literature and Review

In recent years, polymers have experienced tremendous growth in use in the produc-
tion of optical components in special optical lenses such as, Fresnel lenses, free-form lenses,
aspheric lenses, micro-lenses or micro-lens arrays, and diffractive optical elements. Optical
polymers allow complex optical designs with multiple surfaces and various assembly
features, and so far they have been widely used in various fields such as automotive [4],
lighting [5], photovoltaic [6], electronics, and medical [7]. Among them, lens arrays are
often used in compact and lightweight optical systems. Previously, lenses were made of
glass. Nowadays, plastic materials (e.g., LSR, PMMA, PC, etc.) are used instead of glass to
reduce manufacturing costs. The successful production of high-quality lens arrays requires
not only good optical design, and precision mold-making, but also effective control of
residual stresses during molding. Residual stresses have a great influence on the mechani-
cal, thermal, and optical anisotropy of injection molded lenses, so an accurate analysis of
them is essential. Although the effect of stress on the properties of molded parts is often
discussed, the available methods and tools are not fully understood. Currently, there are
two main types of evaluation of residual stresses in optical plastics: destructive tests and
non-destructive tests.

In 2019, Yue, P. [8] analyzed the residual stress distribution in polycarbonate products
during the molding process by birefringence experiments. The results showed that the
birefringence in the thickness direction was influenced by the holding pressure and temper-
ature. Annealing has little effect on birefringence and molecular orientation distribution.
In 2009, Weng, C. et al. [9] evaluated the residual stresses after microchip forming using
the birefringence method, and analyzed them using finite element numerical simulations.
The experimental and simulated results were compared. The results showed that the most
dominant process parameter was the temperature of the mold. As the mold temperature
increased, the maximum residual stress value became smaller. In addition, micro-lens
arrays are the core components of LED displays, which are generally produced using
micro-injection molding technology. Due to the small size of micro-lens arrays, it is difficult
to detect and characterize the residual stresses in the lens arrays. And the birefringence
method remains a better method to measure the residual stresses in injection-molded optical
parts. In 2007, Kim, C.H. et al. [10] used the incremental drilling method to determine resid-
ual stresses in polymer parts with complex geometries, and used the finite element method
to determine the relaxation factor required for residual stress determination. The commer-
cial software Moldflow predicts the residual stress distribution in polystyrene sheets. The
results showed that the experimental results agreed with the predicted results. Thus, the
incremental drilling method can be applied to the residual stress measurement of polymer
materials, especially for the residual stress measurement of complex geometric parts.

The presence of residual stress directly affects the mechanical and optical properties of
the part and can cause warpage and cracking in severe cases. In addition, it can greatly
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affect the replication quality of microstructures. Therefore, it is important to explore the
molding mechanism and the influence mechanism of residual stress in the injection molding
process for high-quality molding of polymers. Usually, high residual stresses cause optical
distortion and deterioration of optical properties, so researchers usually measure and
characterize residual stresses in lenses using birefringence techniques and incremental
drilling methods and analyze residual stresses in polymer lenses using finite element
numerical simulations and commercial software such as Moldflow.

Han-Jui Chang [11] used an identifiable method of photoelastic stress for measure-
ment and compensation, combined with fuzzy theory, to reorganize a process that can be
used to evaluate product re-residual stresses, resulting in an effective quantification and
compensation measurement of residual stresses in products with the corresponding theo-
retical formulation. In 2015, Macías et al. [12] found that the quality of optical components
made of transparent thermoplastic polymers depends on the presence of residual stresses,
and that the wrong choice of process parameters can lead to the generation of residual
stresses in plastic lenses, while residual stresses in the components can significantly affect
the structural dimensions of the lenses and their dimensional accuracy. In 2021, Wei-T ai
Huang et al. [13] optimized the design for the influencing factors such as injection time,
base material temperature, mold temperature, injection pressure, holding pressure, hold-
ing time, coolant, and cooling temperature. Warpage and temperature distribution were
analyzed as performance indicators. Then the signal-to-noise ratio (S/N ratio) was calcu-
lated. Based on the Gray correlation analysis, multiple performance characteristics indexes
were obtained and the maximum multiple performance characteristics index was used to
find out the multiple quality characteristics to optimize the process parameters. In 2022,
Xiaoyu Zhang et al. [14] used molecular dynamics software to develop a simulation model
for injection molding of micro-pillar arrays, and showed that increasing the crystallizer
temperature and melt temperature would reduce the thermal residual stress and molecular
orientation stress, which would result in a more uniform distribution of residual stresses,
while on the contrary, increasing the packing pressure would result in a stronger flow shear
field and increase the molecular orientation. The increase of packing pressure will make the
flow shear field stronger and increase the molecular orientation stress, which will further
aggravate the residual stress. In 2018, Salmoria, G.V. et al. [15] used morphological and
mechanical properties of poly(L-co-D, l -lactic acid) (PLDLA) specimens injection molded
at different melt temperatures and stress concentrators. The results showed that at lower
melt injection temperatures, the specimens underwent birefringence along the surface, i.e.,
the presence of residual stresses due to the filling phase and rapid solidification. On the
other hand, high-temperature injected specimens showed residual stress concentrations
near the gate due to the filling effect of the packing pressure.

Optical lenses have high-quality requirements, and the difficulty lies in the precise
control of lens geometric precision, optical properties, and molding precision of optical
surface microstructure. Due to the inherent characteristics of polymer materials, such as
large thermal expansion and contraction effects, the existence of molecular orientation,
birefringence phenomenon, etc., it is difficult to meet the high-quality requirements of opti-
cal lenses by adopting an ordinary injection molding process. And the residual stress will
affect the physical properties of reproduction quality, size, and microstructure. Therefore,
studying the influence of process parameters on the residual stress of injection molded
parts can be of great help in the production of micro structured parts. The results of the
above study show that melt temperature, mold temperature, and holding pressure are
important factors affecting the residual stresses within the lens.

With the wide application of computer-aided engineering, there are more and more
optimization methods based on fitting techniques. In 2021, Jinsu Gim et al. [16] proposed a
method to analyze the effect of cavity pressure distribution on part quality using neural
networks. The process state points extracted from the cavity pressure profile were used as
input features to the model, while the relationship between the cavity pressure distribution
and the part weight was output as a quality indicator. The influencing features and impacts
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were analyzed to allow the target points and boundaries of the monitoring window to be
determined, and the contribution of each feature was used to optimize the injection molding
process. In 2022, Han-Jui Chang et al. [17] proposed a non-explicit genetic algorithm for
the multi-objective optimal design of UAV shells, in which process parameters such as
melt temperature, filling time, pressure, and pressure time were investigated as model
variables, and kriging response surface analysis was used to analyze the sampled point
data to obtain the warpage values, die stamping indices, and mathematical relationship,
and then the multi-objective optimization procedure of the genetic algorithm was used
instead of analyzing the experiments. The results showed that the optimization rate of the
die index reached 96.2% through the optimization nodes of the genetic algorithm and the
experimental verification, and the average optimization rate of the four main optimization
nodes was 91.2%, and the error rate with the actual situation was only 8.48%, which met
the needs of the actual production.

In summary, many scholars have used artificial intelligence techniques to predict the
quality of injection molded parts, achieving intelligent and automated results [18,19]. As
shown in Figure 1, this study conducts experiments on four key factors, namely filling
time, melt temperature, ripening time, and ripening pressure, to reduce the residual stress
value of the lens array to obtain the optimal process parameter settings and improve the
optical performance of the lens array. In addition, in order to predict the residual stress and
volume shrinkage in the molded lens and save the time cost of the experiment, this study
proposes a CGIDN-based, data-driven injection molding process optimization framework
based on the data obtained from the experiment based on the Python platform, which
can obtain the optimal process parameters for the lens residual stress value and volume
shrinkage up to the minimum.
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3. Methodology
3.1. Latin Hypercube Sampling (LSH)

Latin hypercube sampling was proposed by McKay et al. [20] in 1979. However,
the same sampling technique was independently proposed by Eglājs in 1977, and further
developed by Ronald L. Iman et al. [21] in 1981. Latin hypercube sampling (LHS) is a
method of approximate random sampling from a multivariate parameter distribution,
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which is a stratified sampling technique, often used in computer experiments or Monte
Carlo integration, etc.

Latin hypercube sampling (LHS), a stratified random sampling, can sample efficiently
from the distribution interval of variables. Assuming that there are now k variables
x1, x2, . . . . . . . xk−1, xk, and we now want to take N samples from their specified intervals,
then the cumulative distribution of each variable is divided into the same N small intervals,
and a value is randomly selected from each interval, and the N values of each variable
are randomly combined with the values of the other variables. Unlike random sampling,
this method is able to ensure full coverage of the range of variables by maximizing the
stratification of each marginal distribution.

In injection molding multi-objective optimization, most of the experimental anal-
ysis samples are obtained by orthogonal tests. The combinations of sample points ob-
tained based on orthogonal tests sometimes do not fill the entire design space of the
variables and are prone to the problem of sample point accumulation, and the accuracy
of the approximate model based on orthogonal tests is sometimes difficult to meet the
analysis requirements.

The Latin hypercube sampling method is a randomized multi-dimensional strati-
fied sampling method, in which the probability distribution function of the test factors
is divided into N non-overlapping subregions according to the value range of the test
factors, and then independent equal-probability sampling is performed in each subregion.
Compared with the orthogonal test, the Latin hypercubic design is more relaxed in the
hierarchy of level values, and the number of trials can be controlled artificially. However,
the distribution of test points may not be uniform enough, and the possibility of losing
some areas of the design space increases as the number of levels increases. The optimal
Latin hypercube sampling method improves on the Latin hypercube sampling method by
sampling uniformly, randomly, and orthogonally over the design space of the test factors,
which can obtain a large amount of model information with a relatively small number
of points.

3.2. Constrained Generative Inverse Design Networks

GIDN (Generative Inverse Design Networks) uses backpropagation with resolved
gradients, allowing for fast computation on a variety of inputs while avoiding getting
stuck in local optima. In addition, the amount of data required can be reduced as GIDN
is combined with active learning to reach the optimal solution step by step. The flow of
the GIDN method is as follows: firstly, as with traditional deep neural network (DNN)
training, the weights and deviations of the DNN are trained based on the relationship
between the inputs and outputs. Secondly, the weights and deviations of the trained DNN
are considered as fixed constants, and the input parameters of the minimum objective
function are obtained by backpropagation.

The output values of the recommended inputs are calculated by simulation or ex-
periment, and the newly generated data is combined with the previous data to update
the neural network. These processes are repeated until the optimum value is reached. A
detailed explanation of the GIDN method can be found in a previous study by Chen &
Gu [22]. Unfortunately, however, the original GIDN method has the disadvantage that the
range of input parameters is unbounded. The CGIDN method is depicted in Figure 2 and
consists of two DNNs: a “predictor” and a “designer”. Both DNNs have the same neural
network structure. Hyperparameters, including the number of hidden layers and neurons,
are tuned to balance prediction accuracy and computational cost. (Figure 2 shows the
structure of the network containing hyperparameters, where the number of hidden layers
and neurons will directly affect the actual performance of the model. Table 1 shows the
initial inputs for training the CGIDN. And Figure 6 shows the iterative results of CGIDN.)
The predictor is a forward prediction model that is trained to approximate a physics-based
model (or an arbitrary function). The learning variables in the predictor are the weights and
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biases of the neurons connecting adjacent layers. After training, the weights and deviation
values in the predictor are assigned to the designer.
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Table 1. Average Von-Mises thermal stress changes with melt temperature.

Factor Description (Unit) Minimum Value Maximum Value

A Filling time (s) 1.5 2.5
B Melt temperature (◦C) 20 30
D Curing pressure (MPa) 20 40
E Curing time (s) 15 30

As shown in Figure 3, the main steps of this study are roughly divided into two stages:
the first stage is to select the process parameters affecting lens forming (such as filling
time, melt temperature, maturation time, and maturation pressure), set up a reasonable
combination of tests and number of tests, according to the Latin hypercube sampling
method, build a response surface model according to the experimental results, and finally
confirm the best process parameters according to the response surface model. The second
stage is to divide the test results obtained in the first stage into a training set and a test set
to build and train the CGIDN model, and finally to use the trained model to search for the
best process parameters. This search process can be represented as the initial design, with
Gaussian distribution values as the initial values, which are input into the designer. The
output of the optimal design is then generated based on the resolved gradient calculated by
backpropagation. In a feedback loop, the optimized design is validated by the physically
based model, and can be added to the previous training data for the next iteration of
the training and design process until the desired optimized properties are maximized (or
minimized) and then stopped.
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4. Case Study

In this study, we take the produced automotive liquid optical silicone lens array as
the object of study. The automotive liquid optical silicone lens array as shown in Figure 4,
the maximum flesh thickness is about 22,483 mm, the minimum flesh thickness is about
0.101 mm, and the volume is 53,972.35 mm3. After the dimensional measurement of the
automotive liquid optical silicone lens array, the modeling of the lens array is carried out
using the SolidWorks software to model the lens array. Experiments were conducted using
the LSR material, model LSR-1, and from CAE, and the PVT curve of this material is shown
in Figure 5. In addition, experiments were conducted on an all-electric injection molding
machine (KM 50–250 PX, Krauss Maffei, Room 623, 6F, No.88 Taigu Road, China (Shanghai)
Pilot Free Trade Zone, Shanghai, China), while the prediction model was built on a Python
3.10 platform.
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Compared to PMMA and PC, liquid silicone rubber (LSR) has many advantages
due to its heat and weather resistance, non-toxicity, electrical insulation, biocompatibility,
non-color transparency, tear-resistance, etc., and is widely used in medical, electronic
and electrical, food, and mother and baby industries. LSR is an ideal material for very
demanding applications due to its unique properties. In the field of electronic packaging,
LSR is mainly used for the packaging of electronic products, which can be sealed, water-
resistant, dust-resistant, heat-conducting, shock-resistant, and insulated. In addition, LSR is
often used in the production of plastic lenses for LED lamps because of its high transparency
and high refractive index.

Optical lenses have high quality requirements, and the difficulty lies in the precise
control of lens geometric precision, optical properties, and molding precision of optical
surface microstructure, reducing processing costs and improving production efficiency.
Due to the inherent characteristics of polymer materials, such as thermal expansion and
contraction, molecular orientation, and birefringence, it is difficult to meet the high-quality
requirements of optical lenses by the common injection molding process. In addition, the
microstructures on the surface of polymer optical lenses are on the scale of microns or
even nanometers, and the uneven wall thickness of optical plastic lenses makes the density
and refractive index of the plastic lenses molded by common injection molding methods
unevenly distributed, and the lenses produce residual internal stress and birefringence,
and the surface shape accuracy cannot meet the requirements of use. The ultimate goal of
this study is to adjust reasonable process parameters to improve the quality and yield of
the lens.

5. Discussion

To determine the key control parameters affecting the optical properties of the lenses,
the filling time (A), melt temperature (B), maturation pressure (C) and maturation time
(D) were used as test factors, and the volume shrinkage (F) and residual stress values (G)
of the silicone lens arrays were used as optimization targets. The recommended range of
levels for the four test factors is shown in Table 1. 20. Latin test samples were obtained
for the four test factors based on the Latin hypercube sampling method, and the results of
the optimization objectives were obtained by testing as shown in Table 2, with the mean
values of residual stress and volume shrinkage shown in columns 6 and 7 respectively.
In contrast to the DOE test, the samples obtained from the Latin hypercube test are not
limited to the levels within the parameter settings, and the number of samples set can be
controlled artificially.
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Table 2. Results of 20 sets of Latin test samples and optimization targets.

Group Filling Time (s)
Melt

Temperature
(◦C)

Curing
Pressure (MPa) Curing Time (s)

Average
Von-Mises Thermal

Stress (Mpa)

Volume
Shrinkage
Rate (%)

1 1.82 29.31 35.64 26.08 13.06 3.97
2 2.38 28.53 20.90 18.30 20.16 4.79
3 1.56 27.99 31.35 26.67 13.25 4.33
4 2.07 26.06 30.64 24.45 14.95 4.28
5 1.77 28.26 33.08 17.97 19.86 3.73
6 2.13 20.37 26.30 21.70 18.24 4.43
7 2.04 27.15 27.85 18.93 19.51 4.21
8 2.34 25.94 39.72 17.24 18.87 3.16
9 1.66 25.02 29.04 24.98 15.04 4.42

10 1.96 26.89 21.97 28.26 12.79 5.20
11 2.22 24.45 37.32 20.06 17.95 3.49
12 1.74 21.51 22.06 15.08 25.30 4.30
13 1.64 22.37 32.56 20.58 18.73 3.85
14 2.48 24.52 25.83 29.25 11.96 4.88
15 1.54 23.58 23.01 16.05 23.94 4.33
16 1.92 22.74 36.29 22.51 16.45 3.68
17 2.16 20.52 24.55 29.13 12.76 4.95
18 1.89 23.24 34.02 23.65 15.81 3.93
19 2.44 29.68 38.38 27.07 12.18 3.80
20 2.26 21.21 28.06 22.35 13.06 3.97

Mean 2.00 24.97 29.93 22.52 16.69 4.19
SD 0.290 2.903 5.714 4.305 3.793 0.503

The optical properties of injection molded optical products are mainly influenced
by the birefringence properties and surface geometry. According to the photometric
elastography theory, the birefringence of isotropic polymer chains is mainly related to
residual stresses. In the case of injection molded lenses, for example, the residual stresses
come from two parts of the molding fundamentals: those caused by the filling flow and
those caused by the thermal change process. In this paper, among the 20 combinations
of experiments obtained based on the LSH method, sampling as the evaluation index of
residual stress and volume shrinkage of automotive lamp lens arrays, the most favorable
combination for the average residual stress and volume shrinkage is experiment 14. The
optimal process parameters are melt temperature of 24,524 ◦C, filling time of 2.4841 s,
curing time of 29.25 s. The residual stress value in the lens was 11,963 MPa and the volume
shrinkage was 4.883% under the process parameters of 25,833 MPa.

CGIDN was applied to optimize the injection molding process of the lens. Twenty
randomly generated initial data points were considered. As shown in Figure 6, the CGIDN
results were plotted for every 30 iterations of the optimization cycle, forming the Pareto
front curve as optimized. Although the optimal process parameters were reached in the
88th cycle, 150 optimization cycles were executed to verify convergence. The obtained
process parameters minimized both the residual stress values and the volume shrinkage,
as shown in Figure 6. The point with the minimum volume shrinkage was selected as
the optimal point of the process among the points with the minimum residual stress. The
optimized residual stress and volume shrinkage were 8.47 MPa and 2.83%, respectively.
Compared with the initial data set, the optimized process conditions improved 29.18% and
42% in residual stress value and volume shrinkage, respectively, as shown in Table 3. The
optimal process parameters optimized by the CGIDN method were melt temperature of
30 ◦C, filling time of 2.5 s, maturation pressure of 40 MPa, and maturation time of 15 s.
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Table 3. Performance comparison between optimal parameters from CGIDN and best initial parameters.

Optimization Objectives Best among
Initial

Optimum by
CGIDN

Improvement
(%)

AverageVon-Mises thermal stress 11.96 MPa 8.47 MPa 29.18
Volume shrinkage rate 4.88% 2.83 % 42

Figure 7 shows the residual stress index points of the 10 lens surfaces before opti-
mization. The smaller the residual stress value, the smaller the lens birefringence, so they
represent the optical quality of the lens. The green area represents a larger index position
and a greater birefringence, and the blue area represents a smaller index, indicating a
better optical performance at that position. The residual stress values of the 10 test points
before optimization were 23.976, 24.416, 22.497, 17.744, 22.574, 27.695, 18.489, 23.627, 19.784,
29.423 MPa, and the average residual stress value before optimization was 23.0225 MPa.
Figure 8 shows the residual stress index points of the 10 optimized lens surfaces. The
residual stress values of the 10 optimized test points are 26.390, 15.869, 18.434, 15.226,
13.548, 14.781, 14.125, 17.275, 15.691, 21.744 MPa, and the average residual stress value after
optimization is 17.3083 MPa. The overall reduction of residual stress on the lens surface is
about 5.7142 MPa, which is 24.8% of the optimization rate.
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The injection molding industry is a high energy consumption and large carbon emis-
sion industry. According to statistics, the annual energy consumption of the global injection
molding industry is about 30 billion kilowatt hours, accounting for about 10% of the total
global energy consumption, and carbon emissions are also quite alarming. Among them,
the injection molding machine is the major energy consumer; its energy consumption per
unit of product is four times that of ordinary electrical equipment, if added with other
auxiliary systems, energy consumption will be even greater. There are two ways to improve
energy saving and emission reduction: one is to improve the injection molding machine,
and the other is to use better quality materials. For example, try to use a low energy
consumption, high efficiency injection molding machine. Use a high precision servo motor,
ball screw, lubrication system, pressure sensor, and insulation cover to keep the motor
performance stable all year round. Compared with hydraulic machines, the consumption
of electric and water energy can be greatly reduced. Usually, the injection temperature of
PC material is 250 ◦C to 330 ◦C, the injection temperature of PMMA material is 220 ◦C to
270 ◦C, while the injection temperature of LSR material is between 10 ◦C to 30 ◦C. The use
of LSR material can greatly reduce the power consumed by the injection molding machine
to heat the plastic, and realize the energy-saving and low-carbon production process. In
addition, due to the characteristics of LSR material, it is not easy to warp the injection
molded parts, so if the volume change of the products before and after V/P switching
is too large, it is necessary to increase the holding pressure and extend the holding time,
to increase the compensatory shrinkage, but this causes an increase in carbon emissions,
so the volume shrinkage rate can indirectly represent the amount of carbon emissions,
equivalent to the injection molding fingerprint. If the parameters of the process change
are not adjusted properly, there will be greater volume shrinkage, and carbon emissions
will be increased. From the test results in Table 2, it is seen that the maximum value of
volume shrinkage is 5.200% and the minimum value is 3.157% in 20 sets of tests, which is a
difference of 2.043%. For the all-weather, large-scale and high-production injection molding
industry, a 1% reduction in volume shrinkage per part is equivalent to a reduction in carbon
emissions of hundreds of thousands of tons per year. Therefore, in order to achieve the
goal of “carbon neutrality”, we need to control the injection molding process parameters.
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Therefore, we observe the influence between factors on the target by response surface
plots in order to analyze the interaction between factors more intuitively. Figure 9 shows
the three-dimensional surface of the response model, reflecting the effect of the interaction
of the four factors on the volumetric shrinkage of the plastic part. Figure 9a shows the melt
temperature and filling time_volume shrinkage response surface graphs. From Figure 9a,
the volume shrinkage of the lens is minimized when the melt temperature is between 25
and 30 ◦C and the filling time is between 2.2 and 2.4 s, and the volume shrinkage value
is around 3%. Figure 9b shows the graph of melt temperature and curing time_volume
shrinkage response surface. From Figure 9b, the volume shrinkage of the lens is minimized
when the melt temperature is between 25 and 29 ◦C and the curing time is between 14 and
18 s, and the volume shrinkage value remains below 3%. Figure 9c shows the response
surface graphs of melt temperature and curing pressure_volume shrinkage. From Figure 9c,
it can be seen that the volume shrinkage of the lens gradually decreases from 5% to less
than 3% as the curing pressure increases when the melt temperature is within 20 to 30 ◦C.
Figure 9d shows the response surface graph of curing pressure and curing time_volume
shrinkage. From Figure 9d, it can be seen that the volume shrinkage of the lens decreases
as the curing pressure increases and the curing time decreases, and the volume shrinkage
reaches the minimum value of 2.9% when the curing pressure is 40.66 MPa and the curing
time is 14.37 s. Figure 9e shows the response surface graph of curing pressure and filling
time_volume shrinkage rate. From Figure 9e, it can be seen that the volume shrinkage of
the lens is smaller with a value of 3% or less when the filling time is 2.0 s to 2.2 s and the
curing pressure is higher. Figure 9f shows the response surface graphs of curing pressure
and filling time_volume shrinkage. From Figure 9f, it can be seen that when the filling time
is 2.0 s to 2.2 s, the smaller the curing time is, the smaller the volume shrinkage of the lens
is, and the value is around 2.5%.

Normally, the shrinkage of the product in the holding and cooling stage should
increase with the increase of the melt temperature, but LSR injection molding gets just the
opposite conclusion, which can be explained by the low viscosity of LSR. The melt viscosity
will become smaller after the increase of the material’s temperature, if the injection pressure
and curing pressure remain unchanged at this time, the the freezing speed of the gate will
be slowed down, which means that the holding time will be extended and the shrinkage
will be increased. The shrinkage rate decreases as the density increases. In addition, a
higher curing pressure and lower curing time can make the product in the cavity dense
and reduce shrinkage, especially the pressure in the curing stage has more influence on
the shrinkage of the product. This can be explained by the fact that the molten resin is
compressed under the action of molding pressure, and the higher the pressure, the greater
the compression that occurs, and the greater the elastic recovery after the pressure is lifted,
making the plastic part size closer to the cavity size, and therefore the shrinkage less. In
summary, the volume shrinkage of an LSR lens array reaches the minimum value (less
than 3%) when the filling time is 2.2 to 2.4 s, the melt temperature is 25 to 30 ◦C, the curing
pressure is close to 40 MPa, and the holding time is close to 15 s, which means that the
carbon emission is minimal under these parameters.
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6. Conclusions

Injection molding is one of the most important plastic molding methods today, and
the setting of its process parameters directly affects the molding quality of plastic parts, so
it is necessary to improve the molding quality of injection molded parts by optimizing the
process parameters of injection molded parts. Although process optimization is important
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to achieve high quality at low cost, field engineers usually find the process conditions by
heuristic methods. Therefore, in this paper, we take an automotive lamp lens array as an
example and use SolidWorks to build a product model of an automotive lamp lens array.
Based on the Latin hypercube sampling method, we obtain 20 sets of Latin test samples and
train the test data obtained from injection molding tests using machine learning algorithms
in artificial intelligence technology. and volume shrinkage to improve the quality of the
lens. These studies provide theoretical guidance and practical reference for improving the
molding quality of automotive plastic lenses. The main conclusions obtained from the
study findings are as follows.

1. For the four parameters of melt temperature, filling time, maturation time and matura-
tion pressure, 20 sets of Latin test samples were obtained based on the Latin hypercube
sampling method with the range of test factor levels in Table 1, and the results of
the optimization objectives were obtained through the tests. The optimal process
parameters were melt temperature of 24.52 ◦C, filling time of 2.48 s, maturation time
of 29.25 s and maturation pressure of 25.83 MPa, under which the residual stress value
in the lens was 11.96 MPa and the volume shrinkage was 4.88%.

2. The tests showed the relationship between the effect of the four process parameters on
the volume shrinkage and the average residual stress. The influencing factor is mainly
the melt temperature, followed by the curing time and curing pressure, and finally
the filling time. Therefore, the four influential factors are ranked as follows: melt
temperature > curing time > curing pressure > filling time. In addition, the average
residual stress value on the surface of the lens before optimization was 23.0225 MPa,
while the average residual stress value after optimization was 17.3083 MPa. The
overall reduction of residual stress on the lens surface was about 5.7142 MPa, and the
optimization rate was 24.8%.

3. Parameter optimization for injection molding is equivalent to a black-box optimization
problem, and CGIDN is a good choice for such problems, especially when rich data
are difficult to obtain due to high computational cost or time. In this study, CGIDN
is applied to optimize the injection molding process of lenses. Twenty randomly
generated initial data points were considered. The CGIDN results were plotted at
every 30 iterations of the optimization cycle, and although the optimal process param-
eters were reached in the 88th cycle, 150 optimization cycles were executed to verify
convergence. The obtained process parameters simultaneously minimize the residual
stress values. Among the points where the residual stresses were minimized, the
point with the lowest volume shrinkage was selected as the best point for the process.
The optimized residual stresses and volume shrinkage were 8.47 MPa and 2.83%,
respectively. Compared with the initial data set, the optimized process conditions
showed an improvement of 29.18% and 42% in residual stress values and volume
shrinkage, respectively. The optimal process parameters optimized by the CGIDN
method were a melt temperature of 30 ◦C, a filling time of 2.5 s, a maturation pressure
of 40 MPa, and a maturation time of 15 s.

4. Higher curing pressure and lower curing time can make the product in the cavity
dense, shrinkage is reduced, especially the pressure of the curing stage has a greater
impact on the shrinkage rate of the product. This can be explained by the fact that
the molten resin is compressed under the action of the molding pressure, and the
higher the pressure, the greater the compression that occurs, and the greater the
elastic recovery after the pressure is released, which makes the size of the molded part
closer to the cavity size, and therefore shrinkage is smaller. In this study, the volume
shrinkage of LSR lens arrays reached the minimum value (less than 3%) when the
filling time was 2.2 to 2.4 s, the melt temperature was 25 to 30 ◦C, the curing pressure
was close to 40 MPa, and the holding time was close to 15 s, which means that the
carbon emission was minimal under these parameters.
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