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Abstract: Polymers with crystallizable side chains have numerous applications, and their properties
depend on their crystal morphologies and phase separation. Structural analysis on a wide spatial
scale plays an important role in controlling the thermal properties and higher-order structures of these
polymers. In this study, we elucidated the melting and crystallization processes of copolymers with
varying crystallizable side-chain fractions over a wide spatial range. Differential scanning calorimetry
revealed that the enthalpies of melting and crystallization increased linearly with increasing crys-
tallizable side-chain fraction. The results of wide-angle X-ray scattering indicated that the crystal
lattice was hexagonal. Conversely, spherulite-like higher-order architectures with linear structures
and radial spreading were observed in the highly crystallizable components, but no micrometer-scale
structures were observed in the less crystallizable components. In situ small-angle X-ray scattering
was used to elucidate the phase separation and mixing processes. Lamellar crystallites were observed
at crystallizable side-chain fractions of >55 wt.%, whereas small crystallites were observed at fractions
of <45 wt.%. At temperatures above the order-disorder transition temperature, density fluctuations
caused by correlation holes were observed. These properties have a strong effect on the crystallizable
side-chain fraction.

Keywords: grafted copolymer; crystal morphology; structural analysis

1. Introduction

Comb-like polymers, which comprise polymer main chains and pendant side chains,
exhibit characteristic crystalline structures, self-assembly morphologies, and melt prop-
erties [1–4]. Accordingly, their crystallization and segmental packing differ from those
of typical linear polymers because of the influences of their structural compositions and
side-chain lengths [5–10]. Consequently, the manipulation of comb-like polymers, which
exhibit different behaviors in terms of side-chain crystallization, is useful in understanding
their local chain-packing modes [6,11–15]. In addition, the polymer backbone, side-chain
length, and chemical linkages significantly influence the characteristic chain packing and
side-chain crystallization of a comb-like polymer. When longer side chains are introduced
along the polymer backbone, an ordered packing structure is typically formed because of
the increased number of crystallizable CH2 units [16,17].

The attachment of appropriate side chains to their polymeric backbones may result in
materials with remarkable structures and advanced functionalities, such as charge transport,
in addition to optical properties and responsive performance [12,18]. Understanding the
aggregated structures of comb-like polymers is advantageous in designing responsive
materials with novel architectures. Furthermore, the pendant side chains do not fully
participate in crystallization, and only the C atoms that are positioned away from the main
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chain enter the crystalline phase [4,16]. Thus, the minimum requirement or critical number
of crystallizable C atoms varies with the stiffness of the polymer backbone [19,20]. In
addition, the lengths of the side alkyl groups determine the crystal domains of the comb-
like polymers, which exhibit distinct structural and packing patterns. Previous research
regarding n-alkylated poly(p-benzamide) [21], polyethyleneimine [22], chitosan [23], and
polyvinyl alcohol [24] comb-like polymers with side-chain lengths ranging from 12 to
22 carbon atoms showed that the melting temperatures (Tm) and enthalpies (∆Hm) of the
paraffin-like crystallites depend strongly on the sizes of the alkyl domains.

The comb-like polymer used in this study exhibits the same chemical structure as
IntellimerTM, which is an acrylic adhesive [25,26]. IntellimerTM is under development for
use as a thermosensitive adhesive based on the significant changes in its various properties
with temperature. It is also under consideration for use as a film whose transparency and
opacity may be controlled with temperature. Its physical properties have been summarized
in several studies [26,27]. In this study, we used a semi-crystalline graft copolymer of
short- and long-chain esters of polyacrylic acid, with polyacrylic acid as the main-chain
backbone. The long-chain ester, which behaves as a side chain, contains the linear alkyl
group CnH(2n + 1), which crystallizes at low temperatures. Heating to the melting point of
the linear alkyl moiety causes a transition from a semi-crystalline to an amorphous state.
This transition may modulate properties such as the thermosensitive viscosity, permeability,
and adhesion.

Therefore, by manipulating the primary structures of the crystallizable side chains, it
is possible to vary the temperature at which the phase transition between crystallization
and melting occurs, i.e., to change the adhesion and release properties. Additionally,
the melting point and viscoelastic properties may be altered by varying the side-chain
density. Such adhesives find numerous applications in the field of electronics, including
in lithography [28] and the fabrication of indium gallium zinc oxide panels [29–31]. In
addition, as their viscoelasticities vary with temperature, they are used in microcapsule
coatings for seeds, with an emphasis on sustainability [32,33], and in films to control
permeability to air [34]. Additionally, graft polymerization of materials such as IntellimerTM

onto the surfaces of microparticles to generate temperature-dependent microparticles has
been studied [35]. The relationship between the crystal structure of a comb polymer and its
adhesive properties has been elucidated via detailed analysis of the crystal structure, of
changes in the higher-order crystal structure with temperature, and of the adhesion and
release properties of the material [36]. In this study, thermal measurements and spatially
extended structural analyses were used to evaluate the crystallization and melting processes
of comb polymers with different weight percents of crystallizable side-chain components.
The fraction dependences of the crystalline components are the focus of this study. In
situ wide-angle X-ray scattering (WAXS) and synchrotron radiation were used to evaluate
crystal growth and melting, and we evaluated their sub-micrometer structures using in
situ small-angle X-ray scattering (SAXS). Depolarized light scattering and polarized light
and atomic force microscopy (AFM) were used to study the micrometer-scale structure of
the material. Accordingly, the degree of crystallinity, crystal size, density fluctuation, and
higher-order structure as functions of temperature were elucidated and summarized.

2. Materials and Methods
2.1. Materials

Figure 1 shows a simplified chemical structure of the graft copolymer consisting of
acrylic acid, methyl acrylate, and monomers randomly grafted with acrylic acid-linked
alkyl side chains. The main chains, which consist of polyacrylic acid, poly(methyl acrylate),
and 1-docosanol (C22H45OH)-linked polyacrylic acid, were supplied by Nitta, Osaka, Japan.
n-Alkyl C22H45, as shown in Figure 1, crystallizes. The graft copolymer IntellimerTM is a
trademark of Landec (Menlo Park, CA, USA), which has a commercial licensing partnership
with Nitta. The ratio of acrylic acid monomers to side-chain C22H45/CH3/H was controlled
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by mass. Table 1 shows the proportions of 1-docosanol acrylate, methyl acrylate, and acrylic
acid employed. The weight-averaged molecular weight for all samples is about 500,000.
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crystallizable side-chain components.

Table 1. Ratios (wt.%) of the monomers with side chains of C22H45/CH3/H and ratio of the crystal-
lizable side chain (mol%).

Sample Monomer (wt.%) with
Side-Chain C22H45/CH3/H

Crystallizable Side Chain
(mol%)

0 wt.% 0/95/5 0

20 wt.% 20/75/5 5.3

30 wt.% 30/65/5 8.7

45 wt.% 45/50/5 15

55 wt.% 55/40/5 21

70 wt.% 70/25/5 34

90 wt.% 90/5/5 65

100 wt.% 100/0/0 100

2.2. Measurements

Differential scanning calorimetry (DSC) was performed using a DSC Q200 (TA In-
struments, New Castle, DE, USA), which was calibrated using the Tm values of In and
cyclohexane standards. Samples of ~5 mg were heated in Al pans from 0 to 100 ◦C at
a rate of 10 ◦C/min. The melting or crystallization temperature (Tm or Tx) is the onset
temperature of endothermy or exothermy.

SAXS and WAXS were performed using the BL-6A beamline (Photon Factory, High
Energy Accelerator Research Organization, Tsukuba, Japan) at a wavelength of 0.15 nm [37,38].
The respective camera lengths used in SAXS and WAXS were 931 and 243 mm, and the
respective detectors used in SAXS and WAXS were PILATUS 1M and PILATUS 100K
(DECTRIS, Baden, Switzerland). The ranges of the scattering vector q (=4πsinθ/λ, 2θ:
scattering angle, λ: wavelengths used in SAXS and WAXS) were from 6.0 × 10−2 to 2.5 and
8 to 19 nm−1, and the thickness of each sample was approximately 200 µm. During in situ
SAXS and WAXS, the sample film was sandwiched between two polyether ether ketone
films and mounted on a Linkam 10002L hot stage (Linkam Scientific Instruments, Redhill,
UK) for temperature control. FIT2D software (version 12.077, European Synchrotron
Radiation Facility, Grenoble, France) was used for data processing, including contrast
control of the 2D patterns and the creation of 1D profiles of the obtained 2D patterns.

AFM was performed to observe the internal structure on the sub-micrometer scale
using an Agilent 5500 (Agilent Technologies, Santa Clara, CA, USA). The tapping mode was
used to measure the topography, and the phase contrast was measured. The probes used
were PPP-NCL probes (NANOSENSORS, Neuchatel, Switzerland) with respective spring
constants and resonance frequencies of ~50 N/m and ~190 kHz, yielding a respective scan
size and image resolution of 20 × 20 nm and 256 × 256. After the samples were bonded to
Si substrates, Kapton films were applied to their surfaces.
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Depolarized small-angle light scattering using a PP-1000 system (Otsuka Electronics,
Osaka, Japan) was performed to observe the micrometer-scale higher-order structures.
The camera length was 50 mm, and the light source was a He-Ne laser (λ = 654 nm). The
range of the scattering vector q was 0.30–2.0 µm−1, and the sample, with a thickness of
~40 µm, was sandwiched between two cover glasses. The temperature was controlled using
the Linkam 10002 L hot stage [39]. Optical microscopy was performed using a VW-5000
microscope (Keyence, Osaka, Japan) equipped with high-speed charge-coupled device
(CCD) camera attachments [40].

Raman spectra were measured in the 400–100 cm−1 range using a LabRAM HR
Evolution (HORIBA, Kyoto, Japan) equipped with a Syncerity CCD detector at an excitation
wavelength of 532 nm. The respective spectral resolution, laser power, exposure time,
and number of scans used in Raman spectroscopy were 0.5 cm−1, 100 mW, 15 s, and 5.
Temperature-dependent Raman spectroscopy was performed using a T95-HS temperature
controller (Linkam Scientific Instruments) [41].

3. Results and Discussion
3.1. Thermodynamic Phenomena

Figure 2a shows the DSC thermograms obtained at cooling and heating rates of
10 ◦C/min. In the thermogram of the 0 wt.% sample, Tm and the crystallization temperature
Tx are not observed; thus, no crystallization occurs in this sample. In contrast, Tx and Tm
increase as the fraction of crystallizable side-chain components increases above 20 wt.%.
Figure 2b shows that the glass transition temperature of the 0 wt.% sample is approximately
24.2 ◦C. Figure S1 and Table S1 shows DSC thermograms of 55 wt.% for the definition of Tm
and Tx and the peak temperature and finishing temperature for melting and crystallization.
The correlations between the content of the crystallizable side-chain component and Tm
and Tx are shown in Figure 2c. Even at 45 wt.%, the Tm exceeds that of 1-docosane (C22H46)
crystals (43.9 ◦C) [42]. The higher melting point may be due to the attachment of the
crystallizable side chains to the main chain, which hinders molecular motion. The enthalpy
(∆H) and the crystallization enthalpy increase as the weight percent of the crystallizable
side-chain component increases [43].
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Figure 2. Effects of fraction on the thermal properties. The DSC thermograms reveal crystallization
during cooling from the molten state and melting due to heating of the crystalline/amorphous mate-
rial between 0 and 100 ◦C (heating and cooling rates = 10 ◦C/min (a). Magnified DSC thermogram of
the 0 wt.% sample (b). Melting (Tm; solid squares) and crystallization temperatures (Tx; solid circles)
and melting enthalpies (solid triangles) at different fractions (c).

3.2. High-Ordered Structures at the Submicron and Micron Scales

Figure 3a,b shows the depolarized small-angle light-scattering profiles and polarized
optical micrographs of the 45 and 70 wt.% samples at 25 ◦C. Below 45 wt.%, a very
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low scattering intensity was observed, indicating that the microscale structure forms
slowly, whereas at 70 wt.%, a peak was observed at about qp = 0.7 µm−1. Figure 3c shows
10 µm-scaled spherulite-like structures under 70 wt. % conditions, as observed via AFM
with linear structures. From the depolarized small-angle scattering pattern, an average
spherulite size, Rs, was calculated from the peak position, qp, using Equation (1) [44,45].

Rs =
4.09
qp

, (1)

1 
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Figure 3. Micrometer-scale structures of the samples at different fractions. (a) Depolarized light-
scattering profiles of the 70 and 45 wt.% samples and 2D scattering profiles of 70 wt.% sample.
(b) Polarized optical micrographs of the 70 and 45 wt.% samples. (c) AFM images of the 70 wt.%
sample at different magnifications, showing the spherulite-like structure and a magnified view of the
linear structure. (d) Temperature dependence of the integrated scattering intensity of the depolarized
light.

Here, qp is the magnitude of the scattering vector at the peak position in the four-leaf
clover patterns in the inset of Figure 3a. Therefore, the Rs was 5.8 µm. Figure 3d shows
the temperature dependence of the total integrated scattering intensity during heating.
Scattering is no longer observed upon melting. The temperature at which scattering
completely disappears coincides with the melting point measured using DSC, indicating
that these higher-order architectures display crystalline-derived oriented structures.

3.3. Crystal Lattice Determined via WAXS

Figure 4a–c shows the results of WAXS of copolymers with different side-chain frac-
tions following heating of their crystalline states. In the profiles of all samples, we observed
that the diffraction peak at q = 15.3 nm−1 starts to decrease above Tm because the crystals
are melting. Therefore, these peaks were considered with respect to the crystal structure of
the crystallizable side-chain component.
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Figure 4. Temperature dependences of the in situ WAXS profiles of the 30 (a), 55 (b), and 70 wt.% (c)
samples at a heating rate of 10 ◦C/min during heating of their crystalline/amorphous states from
0 ◦C. The baseline of each profile is shifted up or down to avoid overlap.

Figure S2 shows the results of WAXS of the copolymers at 0 ◦C. We could find no crys-
talline peak for the crystallizable side-chain component of 0 wt.%, with only an amorphous
halo observed; thus, the main chain may not crystallize above 0 ◦C. If the alkyl portion
of the side chain exhibits the same orthorhombic structure as the polyethylene crystal,
crystal-diffraction peaks should be present, in addition to the amorphous halo. However,
only one amorphous halo and one diffraction peak were observed in this study. For a
detailed analysis, we calculated the correlation length d based on the peak position using
Equation (2).

d =
2π

qpeak
, (2)

where qpeak is the peak position in the scattering profile. Spacing values dWAXS of 0.42 nm
were observed in the hexagonal structures of the alkyl chains [11,46,47]. During heating,
the diffraction peak representing the hexagonal crystalline structure decreases and shifts
based on the smaller angle, and only an amorphous halo at q ≈ 14.0 nm−1 is observed
when the material is melted. We compared the crystallinities at different temperatures. The
ratio of the crystalline regions in the WAXS profiles, Rc(T), is defined in Equation (3).

Rc(T) =
Icry(T)

Icry(T) + Iamo(T)
, (3)

where Icry(T) and Iamo(T) are the respective areas of the crystalline and amorphous portions
of the WAXS profiles. Figure S3 shows the decomposition of the 70 wt.% sample at
0 ◦C based on the WAXS profile. Rc(T) depends on the crystallinity, and we evaluated the
crystalline size, Lhkl, using the Scherrer equation (Equation (4)).

Lhkl =
kλ

βcos θ
(4)

Figure 5a shows the Rc(T) and L110 of the side-chain crystalline component at 0 ◦C,
which is below the melting point. Rc(T) increases with increasing fraction. In particular, in
the case of 70 and 90 wt.%, Rc(T) increases slightly. These results are consistent with the
results for ∆H from DSC thermograms in Figure 2c. Similarly, L110 increases with increasing
fraction.
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Figure 5. (a) Ratio Rc(T) of Equation (2) and crystal size L110 of the Scherrer equation (Equation (3)),
as determined based on the in situ WAXS profiles of the samples with different side-chain fractions at
0 ◦C. (b) Rc(T) and (c) L110 at different temperatures during heating of the crystalline/amorphous
states of the samples from 0 ◦C.

Figure 5b,c shows the respective temperature dependences of Rc(T) and L110 during
heating. Rc(T) decreases with increasing temperature, becoming zero above the melting
point determined via DSC. At fractions above 45 wt.%, Lhkl increases with increasing
temperature, while Rc(T) decreases with temperature. These results suggest that the
increase in L110 is due to the aggregation and enlargement of small crystals with partially
melting side-chain crystals. However, at a low fraction (30 wt. %), L110 is independent of
temperature, even at temperatures close to the Tm. Linear long-chain organic molecules
are known to form lamellar intermediate phases (also called rotator phases) between their
fully ordered crystalline phases and their isotropic liquid phases. The review by Cholakova
and Denkov suggested that endothermic or exothermic peaks were observed during phase
transition of the rotator phase of n-alkane [48]. Even in graft copolymers, endothermic
peaks were observed [49]. We discuss the rotator phase between Tm and Tm_finish. From
the report by Cholakova and Denkov [50], the difference between the melting point and
the transition temperature of the rotator phase of C22H46 is 1.4 ◦C. On the other hand, the
difference between Tm and Tm_finish is between 10.4 and 16.3 ◦C in Table S1. These data
suggest that both the transition from fully crystalline to rotator phase and the transition
from the rotator phase to isotropic melt occur over a wide temperature range in the case
of comb-like copolymers, making it difficult to distinguish between these two translon
processes. Consequently, one endothermic peak was observed in Figure 2a.

3.4. Sub-Micrometer-Scale Structure Determined via In Situ SAXS

Figure 6a,b shows the SAXS profiles obtained at 0 and 100 ◦C, respectively. As shown
in Figure 6a, the peak at q ≈ 1.5 nm−1 shifts to a higher q as the fraction of the crystalline
alkyl side chain increases, and the profile of the 0 wt.% sample displays very weak peaks.
Therefore, the peak represents the ratio of the polyacrylic acid main chains to crystalline
alkyl side chains.

Meanwhile, as shown in Figure 6b, broad peaks were observed at q ≈ 1.5 nm−1 and the
secondary peaks are no longer observed. The correlation length d is calculated based on the
peak position qpeak of the SAXS profile using Equation (1), and Table 2 shows the correlation
lengths d at 0 and 100 ◦C. Above 30 wt.%, the correlation length at 100 ◦C is smaller than that
at 0 ◦C. The correlation length decreases with an increase in the content of the crystallizable
side-chain component. Based on the DSC thermograms, the crystallinity increases as the
content of the crystallizable side-chain component increases. The correlations calculated
from SAXS measurements are those between crystals and crystallites or between crystalline
and amorphous components. A low crystallizable side-chain component weight percentis
associated with a low a correlation length between crystals. In other words, the increase in
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the correlation length with a decreasing crystalline component weight percent is due to the
increase in the amorphous component, which increases the thickness of the amorphous
region between crystals and thus the distance between crystals.
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Figure 6. In situ SAXS profiles obtained at 0 (a) and 100 ◦C (b). The baseline of each profile is shifted
up or down to avoid overlap.

Table 2. Correlation lengths of the samples with different weight percents of the crystallizable
side-chain component annealed at 0 and 100 ◦C.

Sample Correlation Length at 0 ◦C [nm] Correlation Length at 100 ◦C [nm]

20 wt.% 5.92 ± 0.05 6.16 ± 0.07

30 wt.% 5.58 ± 0.07 5.44 ± 0.08

45 wt.% 5.08 ± 0.01 4.83 ± 0.08

55 wt.% 4.62 ± 0.02 4.34 ± 0.07

70 wt.% 4.09 ± 0.02 3.85 ± 0.07

90 wt.% 3.59 ± 0.02 3.33 ± 0.07

Figure 7a–c shows the temperature dependences of the SAXS profiles of the samples
with crystalline alkane side-chain fractions of 30 (a), 55 (b), and 70 wt.% (c) during heating
from 0 to 100 ◦C. There is a sharp peak at q = 1.5 nm−1 due to the crystalline phase. As
shown in Figure 7b,c, a secondary peak is observed close to q = 3.0 nm−1 at temperatures
below that at which the crystals are completely melted, Tm_finish in Table S1. Figure 6a
shows the same secondary peaks in the profiles of the 45, 55, 70, and 90 wt.% samples.
These results suggest that these copolymers contain lamellar microdomains with sizes of
3.59–4.62 nm. The correlation length is 1.3~1.6-fold longer than the fully extended crystalliz-
able side-chain length of 2.8 nm. Thus, the SAXS profiles indicate that the polymer’s main
chains form a lamellar plane with the n-docosane side chains. We evaluated the crystal
thickness of the 100 wt.% sample using SAXS and DSC, and Figure S4 shows the Raman
spectra obtained during heating. The longitudinal acoustic vibrations of the molecular
alkyl chains were observed using low-frequency Raman spectroscopy.
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Figure 7. Temperature dependences of the in situ SAXS profiles of the samples with contents of the
crystallizable side-chain component of 30 (a), 55 (b), and 70 wt.% (c) at a heating rate of 10 ◦C/min
during heating from their crystalline/amorphous states from 0 ◦C. The baseline of each profile is
shifted up or down to avoid overlap.

Above Tm_finish or at a low crystalline alkane side-chain weight percent, only the
broader peak is observed, with no secondary peak, i.e., when the secondary peak is absent,
as shown in Figure 7a, the observation of one SAXS peak may be insufficient to support the
conclusion that a lamellar morphology has formed within the polymer complex [51–58].
Therefore, we observe small crystallites, even below Tm. At the Tm of the onset temperature
of melting, the peaks of SAXS profiles of the samples becomes weak. At the temperatures at
which the melting process finishes (Tm_finish; in Table S1), only single broad peaks are seen
due to the disordered states of the polymers. Thus, the complexes may exhibit characteristic
copolymer-like fraction fluctuations (correlation hole effects) [53–55]. For a more detailed
analysis, we focused on the order-disorder transition (ODT) and the melting process at
about Tm. The change in the scattering pattern across the ODT enables the determination
of the ODT temperature (TODT). There are several methods based on mean-field theory
of identifying TODT using the results of SAXS. Two of the most common methods used
are plots of (i) the reciprocal of the maximum scattering intensity (Im

−1 (qm)) against the
reciprocal of the absolute temperature (T−1) and (ii) the correlation length dSAXS (=2π/qm)
against T−1. According to Leibler’s mean-field theory, Im

−1 (qm) should decrease linearly
with T−1 in the disordered state:

I−1
m (qm) ∼ a − b

T
, (5)

where a and b are positive constants [56–58]. Equation (5) assumes the temperature depen-
dence of the Flory-Huggins segmental interaction parameter between the polyacrylic acid
main chain and crystallizable alkane side chains. Leibler’s theory predicts that dSAXS or qm
in the disordered state is essentially independent of the temperature if we omit the small
temperature variation due to the temperature dependences of the radii of gyration of the
copolymer chains Rg(T).

dSAXS/Rg(T) ∼ T0. (6)

Thus, in the context of mean-field theory, the deviations in the temperature depen-
dences of Im

−1 (qm) in Equation (5) and dSAXS in Equation (6) are attributed to the onset
of the disordering process upon heating, and they may thus be used to determine TODT.
Figure 8a–c show plots of Im

−1 (qm) and d for the different crystallized copolymer compo-
nents as functions of T−1. As shown in Figure 8a–c, Im

−1 (qm) and dSAXS are constant with
respect to T−1 at temperatures < Tm because the crystals in small crystallites (Figure 8a)
and the lamellar structure (Figure 8b,c) prevent an increase in density fluctuations during
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heating. The gray region in Figure 8 shows the temperature during melting process from
DSC measurements in Figure 2a. A linear decrease in Im

−1 (qm) is observed at temperatures
above the crystal melting temperature, which is a result consistent with the theoretical
predictions of Equation (5). Based on Equation (6), d is independent of T (or T−1) but
increases slightly with T−1, and Sakurai and Nandan also observed a slight increase in
d [51,54]. This increase occurs because the copolymer may exhibit an upper critical so-
lution temperature-type phase separation, and the components of the main chain and
crystallizable side chains should be mixed at the molecular level at temperatures > Tm. At
temperatures just above Tm, Im

−1 (qm) exhibits a peak, and d decreases abruptly when the
temperature increases, as shown in Figure 8b,c. This behavior is similar to the temperature
dependences of star polymers [59]. The respective TODT values of the 55 and 70 wt.%
samples are approximately 69 and 80 ◦C. Conversely, based on Figure 8a, TODT is 56 ◦C,
which exceeds the Tm values of the crystallites in the 30 wt.% sample.
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Figure 8. Dependences on the reciprocal of the absolute temperature of the reciprocals of the peak
intensities Im

−1 (qm) (filled circles) and correlation lengths d (open circles) of the samples with weight
percents of the crystallizable side-chain component of 30 (a), 55 (b), and 70 wt.% (c) at a heating rate
of 10 ◦C/min during heating of their crystalline/amorphous states from 0 ◦C. The arrows indicate
the melting points based on the DSC thermograms.

3.5. Modeling the Large-Scale Structures of the Grafted Copolymers with Crystallizable
Side-Chain Components

Based on these results, models of the crystallizable side-chain copolymers were de-
veloped. First, when the weight percent of the crystallizable side-chain component is
low (below 30 wt.%), very few crystals were observed, and the morphology depends on
the main chain, which is almost randomly coiled. Therefore, small crystallites with low
crystallinities were observed. As the crystallizable side-chain weight percent increases,
the crystallinities and widths of the crystals also increase. WAXS revealed crystals with
hexagonal structures, with correlation values of 0.42 nm. SAXS revealed lamellar structures
with sizes of several nanometers in the more crystallizable components, as the correlation
length of the lamellar structure is sufficiently smaller than that of the C22 extended chain.
Conversely, small crystallites were observed within the less crystallizable components.
Above Tm_finish, the crystallites are completely molten and an ODT occurs. Figure 9 shows
a schematic summary of the structure of the copolymer. However, when crystallizable side-
chain components were present below 20 wt.%, we could not analyze the small-crystallites
and phase separation because of very small crystallinity. When the weight percent of the
crystallizable side-chain components is above 90 wt.%, the sample amount is very small,
making it difficult to analyze the phase separation and crystal morphology for in-situ
SAXS/WAXS measurements.
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4. Conclusions

In situ observations were used to elucidate the melting and crystallization processes
of alkyl side-chain polymers with crystallizable side-chain fractions over a broad range of
spatial scales. As the weight percent of the crystallizable side-chain component increased,
Tm and Tx increased. The ∆H values of the crystals were also evaluated. In addition,
the results of WAXS revealed that the crystal lattice was hexagonal, and SAXS revealed a
several-nm-scale lamellar structure with highly crystalline components, as the correlation
length of the lamellar structure was sufficiently smaller than that of the C22 extended chain,
based partially on Raman spectroscopy below Tm. Between Tm and Tm_finish, it is difficult
to distinguish the processes of transition from crystalline to the rotator phase and melting
by DSC. Above Tm, the crystallites were molten. Further, above Tm_finish, an ODT occurred.
At a larger scale, a spherulite-like higher-order architecture with a linear structure and
radial spreading was observed.
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