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Abstract: Here, we present the synthesis of a series of chemical homopolymeric and copolymeric
injectable hydrogels based on polyethylene glycol methyl ether methacrylate (PEGMEM) alone or
with 2-dimethylamino ethyl methacrylate (DMAEM). The objective of this study was to investigate
how the modification of hydrogel components influences the swelling, rheological attributes, and
in vitro biocompatibility of the hydrogels. The hydrogels’ networks were formed via free radical
polymerization, as assured by 1H nuclear magnetic resonance spectroscopy (1H NMR). The swelling
of the hydrogels directly correlated with the monomer and the catalyst amounts, in addition to
the molecular weight of the monomer. Rheological analysis revealed that most of the synthesized
hydrogels had viscoelastic and shear-thinning properties. The storage modulus and the viscosity
increased by increasing the monomer and the crosslinker fraction but decreased by increasing the
catalyst. MTT analysis showed no potential toxicity of the homopolymeric hydrogels, whereas the
copolymeric hydrogels were toxic only at high DMEAM concentrations. The crosslinker polyethylene
glycol dimethacrylate (PEGDMA) induced inflammation in ATDC5 cells, as detected by the significant
increase in nitric oxide synthase type II activity. The results suggest a range of highly tunable
homopolymeric and copolymeric hydrogels as candidates for cartilage regeneration.

Keywords: biopolymers; injectable hydrogels; PEGMEM; DMAEM; biocompatibility

1. Introduction

Hydrogels are three-dimensional polymeric networks of mainly hydrophilic macro-
molecules that can retain a large amount of water without dissolving [1]. The polymeric
network can be formed through covalent bonding (chemical hydrogels) or through weaker
and typically reversible linkage (physical hydrogels). Hydrogels are being studied and
employed for a wide variety of biomedical applications, including insulin, gene, and drug
delivery [2–5], tissue engineering [6], biosensor membranes [7], wound healing [8–10],
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and contact lenses [11,12]. One of the major advantages of hydrogels, which locates them
at the center of scientific interest, is that they can be molecularly engineered to obtain
desired physical properties. These properties mainly include swelling behavior, mechanical
performance, and biocompatibility. This fine control of the hydrogels’ final properties can
be achieved more easily along with less batch-to-batch variability with synthetic hydrogels
rather than those of natural origin.

Injectable hydrogels, characterized by their tuned physicochemical properties for in
situ injection, have gained growing interest as biomaterials that can be administrated with
minimally invasive procedures [8]. These hydrogels are engineered to be administered in
a liquid state, subsequently undergoing in situ formation of a 3D hydrogel network [13].
However, certain injectable hydrogels, especially those with shear-thinning properties, can
be directly injected in gel state [14]. The pliable nature of injectable hydrogels mitigates
the risk of mechanical damage to the surrounding tissue and enables them to fit and fill
irregular cavities in the administration site. These features make for more convenient and
comfortable treatment and reduce surgical complications, infection risk, recovery times,
and overall treatment costs [15].

Injectable hydrogels can be used for wound healing, tissue engineering, and local and
sustained delivery of drugs, cells, genes, growth factors, and other bioactive molecules [16–18].
They are extremely promising for cartilage tissue engineering and regeneration, particularly in
musculoskeletal inflammatory diseases like osteoarthritis, rheumatoid arthritis, and interverte-
bral disk degeneration [19,20]. In these pathologies, tissues undergo progressive degeneration
and loss of function over time, leading to persistent pain and physical disability. Injectable
hydrogels can serve as a vehicle for the locally sustained release of anti-inflammatory drugs
and/or growth factors, potentially alleviating symptoms and promoting tissue healing [21].
In addition, the lubrication properties of such materials can also help to restore, although
temporarily, the cartilage rheological properties of the synovial fluid [19]. An example of
enhancing the viscous properties of the synovia fluid using hydrogels is viscosupplementation,
which is the intra-articular injection of hyaluronic acid in different formulations and molecular
weights. It has been approved as a therapeutic alternative for the symptomatic management
of osteoarthritis [22]. Researchers have explored different materials for their use as injectable
hydrogels in the last few years, including both natural and synthetic hydrogels. Hyaluronic
acid, chitosan, gelatin, alginate, silk fibroin, and carrageenan are examples of natural polymers
used as injectable hydrogels, whereas PEG and poly(lactic-co-glycolic acid) (PLGA) are the
most used polymers for synthetic hydrogels [8,23–25].

We have previously reported the preparation of composite biomaterials based on
a copolymeric hydrogel synthesized of polyethylene glycol methyl ether methacrylate
(PEGMEM) and 2-dimethylamino ethyl methacrylate (DMAEM) as monomers and N,N′-
methylenebis(acrylamide) (BIS) as crosslinker [26]. These hydrogels were mineralized with
calcium phosphate and had high mechanical properties as they were intended for bone
regeneration. These hydrogels were further reinforced mechanically with different natural
polymers forming different IPN hydrogels [27]. The current study investigates the synthesis
of a series of homopolymeric and copolymeric injectable hydrogels based on PEGMEM and
DMAEM for their use in cartilage regeneration. Both monomers have been reported to be
used for several biomedical applications [27–30]; however, the safety of polymers based on
DMAEM is still controversial [31–33]. The previously described synthesis procedure [26]
was modified to obtain more flowable hydrogel to fulfill the injectability requirement.
Through systematic alterations in the synthetic components, we aim to investigate the
impact on crucial properties such as swelling behavior, rheological attributes, and in vitro
biocompatibility. The ATDC5 cell lineage was used to assess the biocompatibility assays as
a well-known, excellent chondrogenic in vitro model for evaluating any possible hydrogel-
induced cytotoxicity or nitric oxide (NO) production [34,35].
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2. Materials and Methods
2.1. Materials and Reagents

The monomers polyethylene glycol methyl ether methacrylate (PEGMEM), Mw: 300,
500, and 950 g·mol−1 and 2-dimethylamino ethyl methacrylate (DMAEM), the crosslinkers
N,N′-methylenebis(acrylamide) (BIS) and polyethylene glycol dimethacrylate (PEGDMA),
Mw: 550, and the catalyst N,N,N′,N′-Tetramethylethylenediamine (TMED) were purchased
from Sigma Aldrich, Darmstadt, Germany. The initiator ammonium persulfate (APS)
was purchased from Bio-Rad, Tokyo, Japan. All chemicals were used without further
purification. The water used in the preparation and dialysis was purified on a Milli-Q
ultrapure system (Millipore, Molsheim, France).

2.2. Synthesis of the Hydrogels

The hydrogels were prepared according to the method described before with modi-
fications [26]. The measured quantity of the monomers or oligomers was added to 4 mL
of deionized water at room temperature. Subsequently, the catalyst and the crosslinker
were added in the appropriate amounts. The APS was dissolved in deionized water and
then 1 mL of its solution was added dropwise under stirring to initiate the free radical
polymerization. The mixture was allowed to polymerize overnight, and the temperature of
the solution was recorded every 30 s during the first hour. After preparation, the hydrogels
were dialyzed against milli-Q water at room temperature for 10 days to remove the unre-
acted monomers and oligomers [29]. The hydrogels were subsequently sterilized using
UV for 1 h with a UV lamp with an average irradiance of 0.1 mW/cm2. All subsequent
experiments were performed on the sterilized samples.

The amounts of monomers or oligomers, crosslinkers, catalysts, and the initiator
were varied to obtain gels with adequate rheological properties and to explore the effect
of varying each component on the properties and biocompatibility of the final hydrogel
product. The compositions of all prepared hydrogels are detailed in Table 1.

Table 1. Composition of the different synthetic hydrogels.

Hydrogel ID
Water PEGMEM MW

and Amount
DMAEM
Amount Crosslinker TMED

Amount

(mL) MW (mL) (mmol) (mL) (mmol) Type Molar Ratio
(M %) (mg) (µL)

P1 4 300 0.3 1.00 -- -- -- 0.00 0.00 20.0
P2 0.6 2.00 20.0
P3 0.9 3.00 20.0
P4 1.2 4.00 20.0
P5 1.5 5.00 20.0

PTEM5 1 3.33 5.0
PTEM10 1 3.33 10.0
PTEM20 1 3.33 20.0
PTEM40 1 3.33 40.0
PTEM50 1 3.33 50.0

P3MW500 3.33 500 1.67 3.34 5.0
P3MW900 1 900 3 3.33 5.0
P3BIS025 4 300 1 3.33 BIS 0.25 1.3 5.0
P3BIS05 1 3.33 0.5 2.6 5.0
P3BIS1 1 3.33 1 5.1 5.0

P3PDM025 1 3.33 PEGDMA 0.25 4.6 5.0
P3PDM05 1 3.33 0.5 9.2 5.0
P3PDM1 1 3.33 1 18.3 5.0
P3D024 1 3.33 0.038 0.24 -- 0.00 0.00 50.0
P3D048 1 3.33 0.075 0.48 50.0
P3D127 1 3.33 0.2 1.27 50.0
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Table 1. Cont.

Hydrogel ID
Water PEGMEM MW

and Amount
DMAEM
Amount Crosslinker TMED

Amount

(mL) MW (mL) (mmol) (mL) (mmol) Type Molar Ratio
(M %) (mg) (µL)

P3D191 1 3.33 0.3 1.91 50.0
P13D3TEM5 1 3.33 0.5 3.18 5.0
P3D3TEM10 1 3.33 0.5 3.18 10.0
P3D3TEM20 1 3.33 0.5 3.18 20.0
P3D3TEM40 1 3.33 0.5 3.18 40.0
P3D3TEM50 1 3.33 0.5 3.18 50.0
P2.5D2.4BIS1 0.75 2.50 0.375 2.39 BIS 1 7.5 --
P2.5D2.4BIS2 0.75 2.50 0.375 2.39 2 15.1
P2.5D2.4BIS4 0.75 2.50 0.375 2.39 4 30.1

P2.5D2.4PDM1 0.75 2.50 0.375 2.39 PEGDMA 1 26.9
P2.5D2.4PDM2 0.75 2.50 0.375 2.39 2 53.7
P2.5D2.4PDM4 0.75 2.50 0.375 2.39 4 107.5

2.3. 1H Nuclear Magnetic Resonance (1H NMR)

Hydrogels were freeze-dried (LyoQuest, Telstar, Terrassa, Spain), dispersed in deuterated
water, and then analyzed in a Bruker Avance 500 spectrometer (frequency of 1H, 500.13 MHz)
(Bremen, Germany). 1H spectra (sequence zg) were obtained, and chemical shifts were
reported in parts per million (ppm) downfield relative to tetra-methylsilane (TMS, 0.0 ppm).
The spectra were analyzed and plotted using TopSpin software (Bruker, Billerica, MD, USA).

2.4. Hydrogel Swelling Behavior

After polymerization, 5 mL of the prepared hydrogels was inserted in a dialysis tubing
cellulose membrane (Sigma Aldrich, Taufkirchen, Germany) with a 14,000 Da molecular
weight cut-off. The dialysis then was performed in 200 mL of deionized water at room
temperature for 10 days with continuous stirring. The resulting swelled hydrogel was then
collected in a graduated cylinder to determine the final volume.

The hydration of the hydrogels was calculated according to Equation (1).

H =
Vf −Vi

Vi
(1)

where Vi and Vf are the volumes of the gels before and after the dialysis, respectively.

2.5. Rheological Properties of the Hydrogels

For each rheological test, approximately 1 mL of the hydrogel was loaded into the
rheometer (AR 1000-N, TA Instruments, New Castle, DE, USA) equipped with a cone plate
geometry (4 cm diameter, 1.58◦ angle, 50 µm gap). First, the storage “elastic” (G′) and the
loss “viscous” (G′′) moduli were monitored at 25 ◦C during a frequency sweep at angular
frequencies from 0.05 to 50 rad/s. The temperature was then elevated to 37 ◦C at a rate of
2 ◦C/min, and the frequency sweep was repeated within the same angular frequencies. All
measurements were conducted at a strain of 0.1%, which was within the linear viscoelastic range
of the material, as confirmed by a strain sweep and the absence of a third harmonic response.

2.6. Biocompatibility Assays
2.6.1. Cell Culture

The murine chondrogenic cell line ATDC5 (RIKEN Cell Bank, Tsukuba, Japan) was
cultured in DMEM/Ham’s F12 (Lonza Group Ltd., Basel, Switzerland) supplemented with
5% FBS (Merck KGaA, Darmstadt, Germany), 10 µg mL−1 human transferrin, 3 × 10−8 M
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sodium selenite, 4 mM L-glutamine, 50 units mL−1 penicillin, and 50 µg mL−1 streptomycin
(Sigma-Aldrich, St. Louis, MI, USA) at 37 ◦C with 5% CO2 humidified atmosphere.

2.6.2. MTT Viability Assay

The toxicity of the hydrogels was determined using the 3-(4,5-di- methylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich, USA) cell viability assay. MTT is
a yellow compound that when reduced by living mitochondria, produces purple formazan
crystals that, once solubilized, can be measured spectrophotometrically. The quantity of
formazan is directly proportional to the number of viable cells and their metabolic activity.
For this purpose, 8000 ATDC5 cells/well were seeded in a 96-well plate and left in culture
media overnight. The culture media was then replaced by 100 µL of a mixture of 25%
dialyzed hydrogel and 75% serum-free medium, and the cells were incubated for another
24 h. To assess cell viability, 10 µL of 0.5 mg mL−1 of MTT solution was added into each
well, 4 h prior to completing the incubation period. At the end of the incubation, the
formazan crystals were dissolved with 100 µL of a solution of 10% SDS solution in 0.01 M
HCl. After overnight incubation at 37 ◦C, the absorbance at 550 nm was measured in a
microplate reader (MultiscanEX, Thermo Fisher Scientific, Waltham, MA, USA). Data are
represented as percentage of control (untreated cells).

2.6.3. Nitrite Assay

The activity of nitric oxide synthase type II, a master enzyme involved in the inflamma-
tory response, can be monitored in vitro by evaluating the amount nitrite stable metabolites
of NO. Nitrite accumulation was measured in the culture medium by Griess reaction. Briefly,
The ATDC5 cells were seeded in a 24-well plate at a density of 125,000 cells/well. After
overnight starvation, the cells were exposed to a mixture of 25% dialyzed hydrogel and 75%
serum-free culture media for 24 and 48 h. Following these periods, 50 µL of the supernatant
culture medium was mixed with 50 µL of Griess reagent (equal volumes of 1% sulfanilamide
in 5% phosphoric acid and 0.1% naphtylethylenediamine HCl). An absorbance at 550 nm
was measured in a microplate reader (MultiscanEX, Thermo Fisher Scientific, USA). Fresh
culture medium was used as blank. The amount of nitrite production was calculated from a
sodium nitrite standard curve freshly prepared in culture medium. Lipopolysaccharide (LPS)
100 ng mL−1 (E. coli serotype O26:B6, Sigma-Aldrich, USA) was used as the positive control
and culture medium from untreated cells as the negative control.

2.6.4. Statistical Analysis

All experimental data were obtained from at least 3 independent experiments. Data are
expressed as mean ± standard error of the mean (SEM). Statistical analysis was performed
using the Wilcoxon signed-rank test, as implemented in Prism 8 (GraphPad Software Inc.,
San Diego, CA, USA). Values with p < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Synthesis of the Hydrogel Network

Hydrogels were synthesized by free radical polymerization in water, employing a
redox initiation system involving APS as initiator and TEMED as a catalyst. Initially, APS
dissociates into sulfate ions (SO4

2−), while the catalytic action of TEMED then accelerates
the formation of sulfate free radicals (SO4

•−) from APS. These sulfate free radicals convert
the methacrylate monomers to free radicals that in turn react with unreacted monomer
molecules, starting the polymerization reaction. The ongoing reactions lead to the random
elongation of polymeric chains of the hydrogels [36,37]. This redox reaction is exothermic,
and the control of the temperature during the gel formation is important, particularly if the
gel is intended for the encapsulation of thermolabile active molecules. The evolution of
the temperature was followed during the polymerization of the hydrogels prepared with
the maximum concentration of each component to determine the maximum temperature
during polymerization (Tp). The homopolymeric hydrogel synthesized with 3.33 mmol of



Polymers 2023, 15, 4635 6 of 16

PEGMEM of all used molecular weights and 5 µL of TMED (PTEM5) showed no increase
in temperature during polymerization. An increase in monomer amount to 5 mmol (P5)
increased Tp to 27.1 ◦C. It is worth noting that this Tp was reached 40 min after initiating the
polymerization. Increasing the TMED amount to 50 µL (PTEM50) accelerated the reaction
substantially, as a Tp of 26.2 ◦C was reached after 18.5 min. The copolymeric hydrogel
P3D3TEM50 reached a Tp of 27.6 ◦C after only 9 min. The presence of a strong basic tertiary
amino group in the DMAEM increases the reaction kinetics and can even eliminate the need
to use any catalyst during the reaction [26]. The maximum registered Tp was 29.2 ◦C and
corresponded to the copolymeric hydrogel P2.5D2.4PDM4 synthesized with 4% PEGDMA
as crosslinker. The temperature during the polymerization of the hydrogel prepared with
the crosslinker BIS at the same concentration (P2.5D2.4BIS4) reached only 26.4 ◦C. This
slight increase in temperature of a maximum of 5 ◦C can be considered adequate for the
entrapment of biomolecules or drugs.

1H NMR spectra were recorded for the individual monomers in addition to the
synthesized hydrogel polymers and copolymers. Figure 1a shows the typical spectrum
of the PEGMEM, and the triplet between 3.8 and 4.0 and the peak at 4.6 are associated
with the ethylene glycol units and the -OCO-CH2- attached to the methacrylate group,
respectively. The peaks at 5.9 and 6.4 are associated with the two protons of the C=CH2
of the methacrylate group. In the case of using a PEGMEM of Mw = 300, the areas of the
triplet at 3.8 to 4.0 and the peak at 4.6 are associated with a total of 18 hydrogens of the
ethylene glycol units, meaning an average of four to five units in each oligomer molecule.
The two peaks related to the -C=CH2 of the methacrylate group disappeared from the
spectra of all hydrogels, which confirms the successful polymerization and the absence of
methacrylate residues. The peaks corresponding to the -CH2- of the opened double bond
appeared upfield at 0.88 to 1.04 (Figure 1c–e).

The 1H NMR of the DMAEM also shows the typical spectra, including the peaks at 5.6
and 6.1 related to the protons of the C=CH2 of the methacrylate group (Figure 1b) [38]. These
two peaks also disappear from the spectra of the hydrogels synthesized by polymerizing
only the DMAEM (Figure 1d).

The spectrum of the copolymeric hydrogel formed by both PEGMEM (Mw. 300) and
DMAEM is presented in Figure 1e. The area of the peak at 2.29 is associated with six
hydrogens of the two -CH3 groups attached to the nitrogen of the DMAEM. The area of the
triplet at 3.59 and 3.75, which corresponds to 18 hydrogens, in addition to the area of the
peak at 4.14 corresponding to four hydrogens, together represent 22 hydrogens of the PEG
groups of the PEGMEM and the hydrogens of the -CH2-CH2-O of the DMAEM. These data
indicated the proportion of the initial monomers in the final copolymer to be 1:1, which is
the same equimolar ratio used in the synthesis [26].

3.2. Swelling Behavior

One of the important properties of hydrogels is their ability to absorb large amounts
of water. During the swelling procedure, the synthesized hydrogels are also purified,
removing the excess of unreacted reagents and the small-molecular-weight polymeric
chains. The swelling behavior of the hydrogel has consequences on its properties and
functionality, including the optical, surface, and mechanical properties, as well as the
loading and release kinetics of nutrients, bioactive molecules, or cells, in addition to
biodegradation [39]. The hydrophilic polymer network of the hydrogel acts as an osmotic
membrane through which the osmotic pressure acts, leading to the swelling of the hydrogel
until it reaches equilibrium. At equilibrium, the elastic energy of the polymeric chains
balances the free energy of mixing the polymer chains with the solvent [40].
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The hydration of the hydrogels with different compositions was calculated by Equation
(1) and presented in Figure 2. The increase in the amount of the PEGMEM 300 in the
homopolymeric hydrogels from 1 mmol to 2 mmol almost doubled the swelling ratio from
1.5 to 2.8; however, higher oligomer amounts did not result in additional swelling. The
use of PEGMEM with higher molecular weights increased the swelling ratio to 3.8 and
19.3 at molecular weights 500 and 900, respectively, (Figure 2c) due to the formation of a
polymeric network with lower crosslinking density [41]. Regarding DMEAM hydrogels, a
swelling ratio of 6.1 was observed at 1 mmol of DMAEM, and the swelling ratio increased
by increasing the monomer amount, reaching 15.2 at 4 mmol. Given its cationic nature, the
DMAEM homopolymeric hydrogels’ polymeric network presented increased hydration
due to the charge repulsion among the polymer chains, thus augmenting the equilibrium
swelling volume [42].
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The swelling ratios of the PEGMEM homopolymeric hydrogels were higher when the
polymerization was carried out with a greater amount of the catalyst TMED (Figure 2b).
The higher catalyst amount resulted in the formation of shorter-length polymeric chains,
creating a more flexible network that could absorb more water. Conversely, in copolymeric
hydrogels, no noticeable change in swelling ratios was observed when increasing the
TMED amount. This may be attributed to the possibility that shorter polymeric chains
could decrease the repulsion forces between charged polymeric chains, potentially reduc-
ing the equilibrium swelling volume. The increase in PEGDMA crosslinker concentration
decreased, as expected, the swelling ratios from 12.6 at 1% to 2.45 at a 3% molar ratio
(Figure 2d). In contrast, the behavior of hydrogels crosslinked with BIS deviated from this
pattern. This might be attributed to the cationic nature of BIS, which increased the hydra-
tion due to the charge repulsion among the polymer chains, counteracting the increased
crosslinking density.

3.3. Rheological Characterization

The rheological measurements were performed to approach an understanding of the
effect of the different hydrogel components on the mechanical properties of the hydrogels.
The elastic (storage G′) modulus, the viscous (loss G′′) modulus, and the complex viscosity
(η*) recorded at different shearing rates at physiological temperature (37 ◦C) are shown
in Figures 3 and 4. The elastic modulus represents the behavior of the solid component
of the hydrogel (the energy stored during the application of the shear stress), while the
viscous modulus represents the liquid behavior (the energy dissipated during the shear
stress application) [43,44].
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Figure 3. Elastic (G′) and viscous (G′′) moduli of the hydrogels with different amounts of PEGMEM
in mmol (A), TMED in µL (B), DMAEM in mmol (C), different molecular weights of PEGMEM (D),
and crosslinkers in different concentrations in mole % to the monomers (E). Measurements were
conducted within the linear viscoelastic region (LVR) and at a strain of 0.1%.
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Figure 4. Complex viscosity (η*) of the hydrogels with different amounts of PEGMEM in mmol (A),
TMED in µL (B), DMAEM in mmol (C), different molecular weights of PEGMEM (D), and crosslinkers
in different concentrations in mole % to the monomers (E). Measurements were conducted within the
linear viscoelastic region (LVR) and at a strain of 0.1%.

The hydrogels synthesized with up to 2 mmol of PEGMEM showed liquid-like prop-
erties, where G′′ was dominating (Figure 3A). Moreover, these hydrogels showed shear-
thickening properties, where the viscosity increased along with the shear rate (Figure 4A).
However, at 3 mmol of PEGMEM and higher, the typical viscoelastic behavior of the hydro-
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gels was clear where the G′ values were stable at all shear frequencies and were dominating
over G′′. In addition, there was a considerable increase in the viscosity, accompanied by
shear-thinning characteristics. Both moduli, as well as the viscosity values, increased by
increasing the monomer amount. The increase in monomer concentration led to a higher
solid fraction in the synthesized hydrogels, thereby enhancing their elastic properties.

Hydrogels containing 3 mmol of PEGMEM were synthesized using TMED volumes
ranging from 5 to 50 µL. The increase in the TMED amount led to a decrease in both G′

and G′′, accompanied by a decrease in viscosity values. At the highest TMED amount used
(50 µL), the obtained hydrogel exhibited liquid-like behavior, with dominating G′′ and
shear-thickening behavior (Figures 3B and 4B). The use of more TMED eventually speeded
up the polymerization, resulting in hydrogels characterized by shorter polymeric chains,
lower viscosity, and weaker mechanical properties, resembling a liquid-like consistency.

The addition of 0.48 mmol of DMAEM to this hydrogel formula resulted in regaining
the shear-thinning property (Figure 4C). On the other hand, the G′ was very slightly higher
than the G′′ at low frequencies until reaching the crossover point where G′ = G′′ (Figure 3C).
Passing the crossover point, the G′′ was gradually dominating over the G’, which indicates
liquid-like behavior. Moreover, G′ underwent a sharp decline beyond 3 rad/s. Increasing
the DMAEM amount increased the values of G′, G′′, and viscosity as well. It also shifted
the crossover point along with the sudden decline in G′ to higher frequencies.

The use of PEGMEM of 500 g·mol−1 instead of 300 g·mol−1 enhanced both moduli and
the viscosity of the hydrogel (Figure 3D). The small increase in PEG polymeric chain length
was eventually responsible for the stiffer hydrogel, which maintained the shear-thinning
property too. A further increase in the molecular weight to 900 g·mol−1 gave rise to a
softer hydrogel with liquid-like properties, dominating G′′ and shear-thickening properties,
which is coherent with the swelling data previously discussed. The long PEG chains gave
rise to a looser network, with a greater distance between adjacent crosslinking points, thus
with lower stiffness. The decrease in G′ and G′′ as a consequence of the greater swelling
was also reported for multiblock segmented copolymeric hydrogel based on the PEG of
different molecular weights and dimerized fatty acid [45].

The effect of the addition of different amounts of BIS or PEGDMA as crosslinkers on
the rheological properties of copolymeric hydrogels prepared with equimolar amounts of
PEGMEM and DMAEM is presented in Figures 3E and 4E. All hydrogels had a dominating
G′ with clear viscoelastic behavior and shear-thinning properties. Contrary to copolymeric
hydrogel without crosslinkers, both G′ and G′′ were independent on the applied shear
frequency with no apparent crossover points or further decline in G′. The values of G′ and
G′′, as well as the complex viscosity of the hydrogels prepared with PEGDMA, were several
orders of magnitude higher than those prepared with BIS. Increasing the concentration of
both crosslinkers also increased G′, G′′, and the viscosity values, with a more pronounced
effect with PEGDMA. The higher stiffness of the hydrogels crosslinked with PEGDMA
compared with those with BIS seems to also be related to their lower hydration and therefore
higher solid fraction. The higher crosslinking degree as a result of using higher crosslinking
concentration is expected to be accompanied by higher mechanical strength [46]. All
tested hydrogels, except those crosslinked with PEGDMA, had moduli and viscosity values
adequate for injectability through fine needles (more than 29 gauge) [47].

3.4. In Vitro Biocompatibility Assays

MTT assay was performed to evaluate any potential cytotoxic effects induced by the
synthesized hydrogels (Figure 5). During the MTT assays, the different hydrogels were
added to the ATDC5 culture medium at a concentration of 25% v/v. Given that most of the
hydrogel composition is actually water, a diluted culture medium that contains 25% v/v
water was used as the main control (C). When using PEGMEM as the only monomer, all
synthesized hydrogels demonstrated cell viability exceeding the established 70% threshold
(Figure 5a,b,d) [27,48]. When using the PEGDMA as crosslinker, there was a noticeable
decrease in the viability of the ATDC5 cells; however, these decreases were not statistically
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significant (Figure 5f). Hydrogels synthesized using both PEGMEM and DMAEM did
not exhibit any cytotoxic effect up to 1.2 mmol of DMAEM (Figure 5c). At 1.91 mmol
of DMAEM, there was a noticeable, although statistically nonsignificant, decrease in the
viability of the cells. Contrarily, hydrogels synthesized with 3.18 mmol of DMAEM were
highly cytotoxic for ATDC5 cells, leading to viability values below 40%. Different hydrogel
systems based on both monomers, even at higher concentrations, have been reported to
be biocompatible with other cell lines, such as mouse monocyte macrophages (J774A.1)
and murine preosteoblast cells (MC-3T3) [27,31]. DMAEM is a charged cationic monomer,
which can be the reason for its potential cytotoxicity at higher concentrations. For further
confirmation, a series of hydrogels were synthesized in a range of 1 to 4 mmol of DMAEM,
20 µL TMED, and 0.75 mg of APS, without any PEGMEM. All these hydrogels were
extremely cytotoxic for the ATDC5 cells, showing microscopical features of cell death after
only a few hours of incubation with the hydrogels.
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A nitrite assay was carried out to evaluate whether any of the components of the 
hydrogels have a potential proinflammatory effect (Figure 6). Inflammation is evaluated 
by the determination of the nitrite accumulation as a stable metabolite of NO, the endog-

Figure 5. MTT assays showing the effect of PEGMEM amount (a) and MW (b), DMAEM amount (c),
TMED volume (d), and the molar ratios of the crosslinkers BIS (e) and PEGDMA (f) on the viability
of the ATDC5 cells. Results are expressed as mean ± SEM of at least three independent experiments.
*** p < 0.001 against the control (C). The control (C) is 75% FBS-free culture medium and 25% water.
The symbol (M) is for a second control of 100% FBS-free culture medium. Culture media with 5% FBS
was used as positive control (FBS). A solid black line highlights the cytotoxicity threshold, while a
dotted line highlights the 70% viability threshold calculated from M.

A nitrite assay was carried out to evaluate whether any of the components of the
hydrogels have a potential proinflammatory effect (Figure 6). Inflammation is evaluated by
the determination of the nitrite accumulation as a stable metabolite of NO, the endogenous
gaseous mediator produced predominantly by nitric oxide synthase type II in chondrocytes
in response to proinflammatory stimuli or injury. NO itself promotes cartilage damage by
inducing chondrocyte apoptosis, matrix metalloproteinase synthesis, and proinflammatory
cytokines expression [34]. Hydrogels synthesized with PEGMEM as the only monomer at
different concentrations, different TMED amounts, or different molecular weights did not
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induce a significant increase in nitrite production compared with the control at both 24 and
48 h (Figure 6a,b,d).
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Figure 6. Nitrite accumulation at 24 h and 48 h of incubating the ATDC5 cells with hydrogels with
different formulations showing the effect of PEGMEM amount (a) and MW (b), DMAEM amount (c),
TMED volume (d), and the molar ratios of the crosslinkers BIS (e) and PEGDMA (f) on the viability
of the ATDC5 cells. Results are expressed as mean ± SEM of at least three independent experiments.
** p < 0.01; *** p < 0.001. LPS 100 ng mL−1 was used as positive control and culture medium from
untreated cells as negative control.

Similarly, the copolymeric hydrogels did not significantly induce NO production,
suggesting biocompatibility in chondrocytes. While there was no noticeable inflammatory
response when using BIS as crosslinker, hydrogels crosslinked with PEGDMA had strong
proinflammatory activity (Figure 5e,f).

4. Conclusions

We synthesized a series of homopolymeric and copolymeric injectable hydrogels with
adjustable swelling and rheological properties. The incorporation of the neutral monomer
PEGMEM and the cationic DMAEM allowed for the fine-tuning of hydrogel characteristics,
affecting swelling, viscosity, shear-thinning behavior, and elasticity. The increased concen-
tration of the catalyst TMED increased the swelling of the homopolymeric hydrogels, which
in turn negatively affected their mechanical strength. The use of PEGDMA as a crosslinker
at the concentration tested so far limited the injectability of the copolymeric hydrogels as it
increased viscosity. The obtained results from the in vitro biocompatibility assays bring
into question the biocompatibility of the crosslinker PEGDMA for cartilage regeneration
applications as it induced the inflammation of ATDC5 cells at low concentrations. High
concentrations of DMAEM were cytotoxic to these cells too. Conversely, PEGMEM-based
homopolymeric hydrogels and copolymeric hydrogels with low DMEAM concentrations
are potentially suitable candidates as injectable hydrogels with adequate mechanical prop-
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erties for cartilage regeneration applications. They can also be applied to other clinical
cases, such as IVDD and mandibular reconstitution surgeries. In addition, these hydrogels
can be used as delivery systems for therapeutic agents, such as bioactive molecules, cells,
and monoclonal antibodies. However, it is essential to note that the biocompatibility assays
in this study are limited to osteoarthritis in vitro models. Additional in vivo biocompati-
bility and biodegradability testing are essential to validate and strengthen the proposed
application of these hydrogels.
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