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Abstract: Different viscoelastic models and characteristics are commonly used to describe, an-
alyze, compare and improve the mechanical properties of polymers. A time-dependent linear
relaxation modulus next to frequency-domain storage and loss moduli are the basic rheological
material functions of polymers. The exponential Maxwell model and the exponential stretched
Kohlrausch–Williams–Watts model are, probably, the most known linear rheological models of poly-
mers. There are different identification methods for such models, some of which are dedicated to
specific models, while others are general in nature. However, the identification result, i.e., the best
model, always depends on the specific experimental data on the basis of which it was determined.
When the rheological stress relaxation test is performed, the data are composed of the sampling
instants used in the test and on the measurements of the relaxation modulus of the real material.
To build a relaxation modulus model that does not depend on sampling instants is a fundamental
concern. The problem of weighted least-squares approximation of the real relaxation modulus is
discussed when only the noise-corrupted time-measurements of the relaxation modulus are accessible
for identification. A wide class of models, that are continuous, differentiable and Lipschitz with
respect to parameters, is considered for the relaxation modulus approximation. The main results
concern the models that are selected asymptotically as the number of measurements tends to infinity.
It is shown that even when the true relaxation modulus description is completely unknown, the
approximate optimal model parameters can be derived from the measurement data that are obtained
for sampling instants that are selected randomly due to the appropriate randomization introduced
whenever certain conditions regarding the adopted class of models are satisfied. It is shown that
the most commonly used stress relaxation models, the Maxwell and Kohlrausch–Williams–Watts
models, satisfy these conditions. Since the practical problems of the identification of relaxation
modulus models are usually ill posed, Tikhonov regularization is applied to guarantee the stability
of the regularized solutions. The approximate optimal model is a strongly consistent estimate of
the regularized model that is optimal in the sense of the deterministic integral weighted square
error. An identification algorithm leading to the best regularized model is presented. The stochastic-
type convergence analysis is conducted for noise-corrupted relaxation modulus measurements, and
the exponential convergence rate is proved. Numerical studies for different models of the relax-
ation modulus used in the polymer rheology are presented for the material described by a bimodal
Gauss-like relaxation spectrum. Numerical studies have shown that if appropriate randomization is
introduced in the selection of sampling instants, then optimal regularized models of the relaxation
modulus being asymptotically independent of these time instants can be recovered from the stress
relaxation experiment data. The robustness of the identification algorithm to measurement noises
was demonstrated both by analytical and numerical analyses.

Keywords: viscoelasticity of polymers; linear relaxation modulus; stress relaxation test; experiment
randomization; differentiable Lipchitz models
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1. Introduction

Various rheological models have been widely adopted to describe the combined elastic
and viscous properties of various polymers for a hundred years [1,2]. A time-dependent
linear relaxation modulus next to frequency-domain storage and loss moduli are the basic
rheological material functions of polymers. The viscoelastic behavior of polymers varies
depending on the type of polymer [1,3–6]; therefore, different models have been and
are still being developed. The exponential relaxation is often modeled using Maxwell
models [2,3,7]. When the Debye decays show deviations from pure exponential solutions,
it can be approximated by the exponential stretched Kohlrausch–Williams–Watts (KWW)
model [8,9].

A model of the relaxation modulus can be recovered from the experiment data by ap-
plying an appropriate identification method. Identification consists of the selection, within
the given class of models, of such a model, which ensures the best fit to the measurement
results. This paper deals with the problem of the recovery of the relaxation modulus model
of linear viscoelastic material from discrete-time noise-corrupted measurements that are
obtained in the stress relaxation test. The viscoelastic relaxation modulus identification
problem is not aimed at achieving a true description of the real relaxation modulus, but
one that is a “sufficiently or optimally accurate”. A model is never a true description of the
real material, as a model will always contain errors and discrepancies compared with the
real rheological process behavior. Therefore, a model is always only the approximation of
the true material description [10].

For model identification, three entries are necessary: the measurement data from
the real material, the set of models within which the required model is sought, and the
identification criterion for the best model selection [10]. When the set of models is selected
based on the properties of the studied material, the model that is chosen depends on the
experimental data and the identification criterion. We usually determine the parameters
in a model by obtaining the “best-possible” fit to experimental data. The coefficients can
be highly dependent on our way of measuring “best” [10]. A common choice of model
quality measure (identification index) is the mean-square approximation error, leading to a
least-squares identification problem. When the identification index is fixed, the designated
model can also be highly dependent on the measurement data.

In this paper, we focused on how to identify a model that is independent of the specific
time instants at which we record stress measurements in the stress relaxation experiment.
Loosely speaking, the problem was whether the identification procedure will yield a
relaxation modulus model that is asymptotically (when the number of measurements tends
to infinity) independent of the particular sampling instants. The issue involves aspects on
whether the data set (i.e., the experimental conditions) is informative enough to guarantee
this convergence result.

We consider the problem of sampling-instant-independent approximation of a linear
relaxation modulus of the polymer within the parametric class of models when the integral
weighted square error is to be minimized and the true material description is completely
unknown. We showed how the problem can be solved by introducing an appropriate
randomization on the set of sampling instants at which the polymer relaxation modulus is
measured. It was assumed that only the relaxation modulus measurements are accessible
for identification. The problems of an optimal least-squares approximation of a relaxation
modulus in the classes of usually used models are the ill-posed problems [11,12] of the
best fitting of time-measured data by the finite sum of exponential functions (Maxwell
models) or the exponential stretched function (KWW model). Therefore, Tikhonov regu-
larization [11,12], combined with choosing the regularization parameter by the guarantee
model approximation rule, was used to stabilize the solution of the problem. A simple
identification algorithm providing the strongly consistent estimate of the optimal model
was given. The stochastic-type convergence analysis was performed, and the rate of conver-
gence was discussed for the case when the measurements are corrupted by additive noises.
The idea of measurement-point-independent identification is inspired by the fundamental
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Ljung paper [13] and the paper [14] concerning, respectively, dynamic and static zero-
memory systems’ optimal identification tasks. The results of the simulation experiments
for three-, five- and seven-parameter Maxwell models and the KWW model are presented
for the polymer material described by a bimodal Gauss-like relaxation spectrum, which is
often used to describe the rheological properties of various polymers [15], e.g., poly(methyl
methacrylate) [16], polyacrylamide gels [17] and polymers used in food technology [18–20].
Both asymptotic properties and robustness on noise measurements were examined.

In Appendix A, the proofs and derivations of some mathematical formulas are given,
to increase the clarity of the article. Some tables related to numerical studies are moved to
Appendix B.

2. Materials and Methods

In this section, the assumptions concerning the viscoelastic material modeled by the
Boltzmann constitutive integral equation and parametric classes of models describing
the linear relaxation modulus are given and discussed. The problem of the optimal ap-
proximation of the real completely unknown relaxation modulus in the assumed class of
models is formulated, which by minimizing the integral weighted square error results in
the optimal model that is independent of the particular measurement time instants. Next,
the concept of the relaxation experiment randomization is introduced so that the successive
sampling instants are selected randomly and independently with the same probability
distribution. Assumptions regarding this probability distribution and measurement noises
are introduced and justified. Finally, the empirical square identification index is introduced,
and the optimal identification task is stated along with the respective regularization.

2.1. Material

We consider a linear viscoelastic material that is subjected to small deformations
for which the uniaxial, nonaging and izotropic stress–strain equation is represented by a
Boltzmann superposition integral [1]:

σ(t) =
∫ t

−∞
G(t− τ)

.
ε(τ)dτ, (1)

where σ(t) and ε(t) denotes, respectively, the stress and strain at the time t, and G(t) is the
linear (Boltzmann) relaxation modulus.

The modulus G(t) is the stress, which is induced in the viscoelastic material described
by Equation (1) when the unit step strain ε(t) is imposed. By assumption, the exact
mathematical description of the relaxation modulus G(t) is completely unknown. The
value of G(t) can be, however, measured with a certain accuracy for any given value of
the time t ∈ T , where T = [t0, T], the initial time t0 ≥ 0 and 0 < T < ∞ or T = R+; here,
R+ = [0, ∞).

2.2. Models

Throughout, we will be concerned with the case when the relaxation modulus model
is to be selected within a certain parametric class of models, defined by the admissi-
ble set of parameters G ⊂ RK (finite-dimensional parameterization) and the mapping
GM : T × G → R+ . Thus, the relaxation modulus model is described by

GM(t) = GM(t, g), (2)

where the subscript ‘M’ means the model.
It is not assumed that the real relaxation modulus G(t) is represented in the chosen

class of models.

2.3. Assumptions

We make the following assumptions:
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Assumption 1. The real relaxation modulus G(t) is bounded on T , i.e., sup
t∈T

G(t) ≤ M < ∞.

Assumption 2. The set of admissible model parameters G is compact subset ofRK.

Assumption 3. For any t ∈ T , the function GM(t, g) is continuous and differentiable with respect
to g and so that GM(t, 0K) = 0, where 0K is K-dimensional zero vector inRK.

Assumption 4. sup
t∈T ,g∈G

‖5gGM(t, g)‖
2
≤ M1 < ∞, where 5gGM(t, g) denotes the gradient

of the function GM(t, g) with respect to the vector g, where ‖·‖2 is the Euclidean norm in the
spaceRK.

Assumption 1 is natural in the context of approximation of the relaxation modulus.
The parameters of known rheological models most often have a physical interpretation, they
are non-negative and bounded, and therefore, Assumption 2 follows. Assumptions 3 and 4
do not apply to the material, but to its model, which to a certain extent can be chosen
arbitrarily and guarantee that model GM(t, g) is a Lipschitz function with respect to the
parameter vector g for any t ∈ T and should not be a restriction. The parameter vector
g varies over the compact set G. Thus, for any g ∈ G, we have ‖g‖2 ≤ M2 < ∞, and
Assumptions 3 and 4 yield

sup
t∈T ,g∈G

|GM(t, g)| ≤ M1M2 = M3 < ∞, (3)

i.e., Assumptions 2–4 introduce the same saturation on the relaxation modulus model. The
above and Assumption 1 immediately result in the estimate

sup
t∈T ,g∈G

|G(t)− GM(t, g)| ≤ M + M3 < ∞, (4)

which is identical with Assumption A4 in [14]. Other assumptions from [14] are also
satisfied when the above conditions hold. A detailed analysis of the above assumptions for
the most frequently used rheological models will be carried out below.

2.4. Problem of the Optimal Relaxation Modulus Approximation

The following relaxation modulus approximation problem is considered. Determine
the model within the class of models defined by Equation (2) that minimizes the global
approximation error of the form

Q(g) =
∫
T
[G(t)− GM(t, g)]2ρ(t)dt, (5)

where a chosen weighting function 0 ≤ ρ(t) ≤ M0 < ∞ is a density on T , i.e.,
∫
T ρ(t)dt = 1.

Since ρ(t) is an absolutely integrable function, in view of (4), the product of a bounded
function [G(t)− GM(t, g)]2 and ρ(t) is absolutely integrable too, regardless of the bounded
or unbounded domain T . Thus, the integral (5) is well defined for any g ∈ G.

The problem of the relaxation modulus G(t) optimal approximation within the class
of models described by (2) consists of determining the parameter g∗ that minimizes the
index Q(g) over the set of admissible parameters G, i.e., it takes the form

min
g∈G

Q(g) = Q(g∗). (6)

Due to Assumption 3, the index Q(g) (5) is a continuous function of the vector g,
and thus, by the Weierstrass theorem concerning the extreme of continuous function on
the compact set (Assumption 2) [21], the existence of the solution to the optimization
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problem (6) is immediately concluded. The optimal parameter g∗ does not depend on the
particular time instants; however, it obviously depends on the time domain T .

2.5. Relaxation Modulus Measurements

Let T1, . . . , TN be independent random variables with a common probability density
function ρ(t), whose support is T . Let Gi = G(Ti) be the corresponding relaxation modulus,
i = 1, . . . , N, and let Gi denote their measurements obtained in a certain stress relaxation
test [1,2,17]. We will assume that the measurements of the relaxation modulus are corrupted
by additive noise Zi, i.e., Gi = Gi + Zi.

We assume additionally that:

Assumption 5. The measurement noise {Zi} is a time-independent, i.e., independent of the
variables {Ti}, sequence of independent identically distributed (i.i.d.) random variables with zero
mean E[Zi] = 0 and a common finite variance E

[
Z2

i
]
= σ2 < ∞.

Assumption 6. The measurement noises Zi are bounded, i.e., |Zi| ≤ δ < ∞ for i = 1, . . . , N.

Obviously, from Assumption 5, it follows that for i = 1, . . . , N, the expected value

E[G(Ti) + Zi − GM(Ti, g)]2 = Q(g) + σ2. (7)

2.6. Identification Task

For practical reasons, integral index Q(g) (5) can be replaced by the finite mean sum
of the model square errors, i.e., by the index

QN(g) =
1
N ∑N

i=1

[
Gi − GM(Ti, g)

]2, (8)

being the familiar mean-squares criterion for relaxation modulus model (2); the lower index
is the number of measurements. The empirical index QN(g) is obtained by the replacement
of the integral in Q(g) (5) with the finite mean sum of squares.

The problems of determining models used in polymer rheology based on measurement
data are usually ill posed in the Hadamard sense [11,12], i.e., the solution to a direct
minimization task

min
g∈G

QN(g) (9)

can be not unique, and small changes in measured relaxation modulus can lead to arbitrarily
large changes in the determined model. The stable approximate solutions can be found by
minimizing the Tikhonov functional formed by the linear combination

LN(g, λ) = QN(g) + λR(g), (10)

with a penalty term expressed by a non-negative regularized R(g), and a regularization
parameter λ > 0 has to equilibrate both terms of (10) in an appropriate manner [22]. We
make the following assumption:

Assumption 7. The regularizer R(g) is a continuous, differentiable strictly positive Lipchitz function.

Note that for the regularizers,

R(g) = (g− g0)
TW(g− g0), (11)

where g0 ∈ G typically unifies all available a priori information on the optimal model
parameter [23], and W is positive definite weight matrix, as well as

R(g) = gTWg (12)
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which implies the parameter of the least (weighted) norm, Assumption 7, is satisfied.
Then, for fixed regularization parameter λ, the extremal problem

min
g∈G

LN(g, λ) = LN

(
gλ

N , λ
)

. (13)

must be solved to obtain the optimal regularized model parameter gλ
N . However, the

minimum gλ
N can be not unique. Let the set of vectors gλ

N that solve the optimization
task (13) be denoted by Gλ

N . The regularized integral index (5) takes the form

L(g, λ) = Q(g) + λR(g). (14)

Let the set of model parameters g∗λ that solve the task

min
g∈G

L(g, λ) = L
(

g∗λ, λ
)

, (15)

be denoted by G∗λ.
The results of identification, both the model parameters gλ

N and the resulting relaxation
modulus GM

(
t, gλ

N
)
, are dependent on the measurement data, in particular on the sampling

instants Ti.

3. Results and Discussion

In this section, the analysis of the asymptotical (when the number of measurements
tends to infinity) properties of the optimal regularized model is conducted. The rate of
the convergence of the optimal identified model to the optimal model, which does not
depend on the measurement data, is analyzed. The choice of the regularization parameter
for the nonlinear Tikhonov regularization scheme is discussed, and the guaranteed model
approximation rule is discussed. The resulting identification algorithm is described, and
the applicability of the concept of the sampling-instant-independent identification to two
classes of polymer relaxation modulus models is analyzed. Next, the compactness assump-
tion concerning the set of admissible model parameters, which are natural in the context of
viscoelastic models of polymers and convenient when analyzing the mathematical proper-
ties of the method, will be weakened by omitting the upper parameter constraints, which
simplifies the numerical search for the optimal model parameters. Finally, the analytical
properties of the presented identification method are verified by numerical studies. It has
been assumed that the “real” material is described by a bimodal Gauss-like relaxation spec-
trum, which is often used to describe the rheological properties of various polymers [15–17]
and polymers used in food technology [18,21,22]. Generalized Maxwell and KWW models
are determined using the noise-corrupted data from the randomized experiment. Both the
asymptotic properties and the influence of the measurement noises on the solution have
been studied.

3.1. Convergence Analysis

Now, we wish to investigate the stochastic-type asymptotic properties of the regular-
ized approximation task given by Equation (13). Since for any λ > 0[

L(g, λ) + σ2
]
− LN(g, λ) = Q(g) + σ2 −QN(g),

and, by (7), the expected value

E[LN(g, λ)] = L(g, λ) + σ2, (16)

Property 2 from [14] directly implies the next proposition.
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Proposition 1. Let λ > 0. When Assumptions 1–7 are satisfied, then

sup
g∈G

∣∣∣[L(g, λ) + σ2
]
− LN(g, λ)

∣∣∣→ 0 w.p.1 as N → ∞, (17)

where w.p.1 means “with probability one”.

The result (17) means that the regularized identification index LN(g, λ) (10) is arbitrar-
ily close, uniformly in g over the set G, to its expected value, c.f., Equation (16).

Now we can proceed to the main results. Proposition 1 enables us to relate the relax-
ation modulus model parameter gλ

N , solving the regularized task expressed by Equation (13)
for the empirical index QN(g) to the parameter g∗λ that minimize the regularized deter-
ministic function Q(g) in the optimization task (15). Namely, from the uniform in g ∈ G
convergence of the regularized index LN(g) in Equation (17) for any λ > 0, we conclude
immediately the following, c.f., Assertion in [14] or Equation (3.5) in [13]:

Proposition 2. Let λ > 0. Assume that Assumptions 1–7 are in force, T1, . . . , TN are indepen-
dently and randomly selected from T , each according to probability distributions with density ρ(t).
If the minima of the optimization tasks (15) and (13) are unique, then

gλ
N → g∗λ w.p.1 as N → ∞ (18)

and
GM

(
t, gλ

N

)
→ GM

(
t, g∗λ

)
w.p.1 as N → ∞. (19)

for all t ∈ T . If the parameters solving the optimization tasks (15) and (13) are not unique, then for
any convergent subsequence

{
gλ

N
}

with gλ
N ∈ Gλ

N ,

gλ
N → G∗λ w.p.1 as N → ∞ (20)

and for all t ∈ T and some g∗λ ∈ G∗λ, the asymptotic property (19) holds.

By the compactness of G (Assumption 2), for any λ > 0, the existence of a convergent
subsequence

{
gλ

N
}

so that (20) holds is guaranteed.
Thus, for any fixed λ > 0, under the taken assumptions, the regularized parameter

gλ
N of the relaxation modulus model is a strongly consistent estimate of some parameter

g∗λ ∈ G∗λ. Moreover, since the model GM(t, g), g ∈ G is Lipschitz on G uniformly in t ∈ T ,
then the almost-sure convergence of gλ

N to the respective parameter g∗λ in Equation (18)
implies that, c.f., ([14]: Remark 2):

sup
t∈T

∣∣∣GM

(
t, gλ

N

)
− GM

(
t, g∗λ

)∣∣∣→ 0 w.p.1 as N → ∞. (21)

i.e., that GM
(
t, gλ

N
)

is a strongly uniformly consistent estimate of the best model GM
(
t, g∗λ

)
in the assumed class of models defined by Equation (2) for g ∈ G.

Summarizing, when Assumptions 1–7 are satisfied, the arbitrarily precise approxima-
tion of the optimal relaxation modulus model (with the regularized parameter g∗λ) can be
obtained (almost everywhere) as the number of mesurements N grows large, despite the
fact that the real description of the relaxation modulus is completely unknown.

3.2. Rate of Convergence

Taking into account the convergence in Equations (18) and (20), the question immedi-
ately arises of how fast gλ

N tends to some g∗λ ∈ G∗λ as N grows large. The distance between
the model parameters gλ

N and g∗λ will be estimated in terms of the regularized integral
identification index L(g, λ) (14), i.e., in the sense of the difference

∣∣L(g∗λ, λ
)
− L

(
gλ

N , λ
)∣∣.
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We will examine how fast, for a given ε > 0, the probability P
{∣∣L(g∗λ, λ

)
− L

(
gλ

N , λ
)∣∣ ≥ ε

}
tends to zero as N increases.

In Appendix A.1, for any ε > 0 and any λ > 0, using the well-known Hoeffding’s
inequality [24], the following upper bound is derived:

P
{∣∣∣L(gλ

N , λ
)
− L

(
g∗λ, λ

)∣∣∣ ≥ ε
}
≤ 2 exp

(
−Nε2

8M̂2

)
, (22)

where
M̂ = M̃ + σ2 + δ2 + 2(M + M3)δ, (23)

with some positive constant M̃ defined through inequality (A4) and the constants M and
M3 defined in Assumption 1 and Equation (3), respectively.

The inequality (22) shows connections between the convergence rate and the number
of measurements N and the measurement noises. In particular, if ε is fixed, then the
bounds for P

{∣∣L(gλ
N , λ

)
− L

(
g∗λ, λ

)∣∣ ≥ ε
}

tend to zero at an exponential rate as N increases.
The rate of convergence is higher the lower are M̃, δ and σ2, defined through inequality
(A4) and Assumptions 5 and 6, respectively, i.e., the measurement noises are weaker.
Additionally, analyzing (22), it is easy to see that stronger measurement disturbances
reduce the convergence rate. The decrease in the speed is greater the larger that δ and σ
are. This is not a surprise, since with large noises, the measurements are not very adequate
compared to the true relaxation modulus. Notice, however, that for a fixed ε > 0,

P
{∣∣∣L(gλ

N , λ
)
− L

(
g∗λ, λ

)∣∣∣ ≥ ε

Nγ

}
≤ 2 exp

 −N(1−2γ)ε2

8
[

M̃ + σ2 + δ2 + 2(M + M3)δ
]2

,

with 0 ≤ γ < 1
2 still tending to zero as N tends to infinity at a quasi-exponential rate.

3.3. Choice of the Regularization Parameter

Tikhonov regularization has been investigated extensively, both for the solution of
linear as well as nonlinear ill posed problems. (see [11,12,22] for a survey on continuous
regularization methods and references therein). For the minimization of the Tikhonov
functional QN(g) + λR(g) for nonlinear ill-posed problems, usually, iterative methods
are used. In [22], the regularization schemes based on different iteration methods, e.g.,
nonlinear Landweber iteration, level set methods, multilevel methods and Newton type
methods, are presented. An analysis of the convexity of the Tikhonov functional, which
guarantees global convergence of a wild class of numerical methods, has been carried out
by Chavent and Kunisch [25,26].

There are different ways to decide on a suitable choice of the regularization parameter
λ [12,27]. Here, we apply the guaranteed model approximation rule, which does not
depend on a priori knowledge about the noise variance. The idea of this rule was first
applied by Stankiewicz [28] for the identification of the relaxation time spectrum, and next,
it has been successfully used for the Maxwell model identification task [29].

Guaranteed Model Approximation (GMA) Rule

Suppose that gN is the optimal model parameter (usually not unique) minimizing the
original empirical model approximation index QN(g) (8) without regularization. The GMA
technique when applied to a regularized task (13) relies on choosing as the regularization
parameter the λ̂ for which the assumed quality Q̂N of the model approximation index
so that Q̂N > QN(gN) is achieved for the minimizer gλ

N in the regularized optimization
task (13), i.e.,

QN

(
gλ̂

N

)
= Q̂N . (24)
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Thus, as a result, the vector of the optimal regularized model parameters gλ̂
N is determined.

This rule is a quite natural strategy in the context of the relaxation modulus model approxi-
mation task, since the value of the mean-squares index (8) is directly taken into account. A
certain interpretation of the GMA rule is given by the following result: for the proof, see
Appendix A.2.

Proposition 3. Assume Q̂N > QN(gN). The regularized solution gλ̂
N , defined by (24), is the

solution of the following optimization task

min
g∈G

R(g) under the constraint QN(g) ≤ Q̂N . (25)

By Theorem 1, the GMA rule, Equation (24), relies on such a selection of the relax-
ation modulus model that the regularizer for the parameter gλ̂

N is the smallest among all
admissible models, so that QN(g) ≤ Q̂N . Therefore, the best smoothness (in the sense of
the assumed regularizer R(g)) of the model parameter vector gλ̂

N is achieved. The effec-
tiveness of this approach in the context of Maxwell model identification has been verified
by the early paper [29], where the functional LN(g, λ) (10) with the quadratic regularizer
R(g) = ‖g‖2

2 was applied in the regularized optimization task (13).

3.4. Identification Algorithm

Taking into account the convergence results (18), (19) the calculation of the approximate
value gλ

N of the optimal relaxation modulus model’s regularized parameter g∗λ involves
the following steps:

1. Choose the non-negative definite regularizer R(g) to regularize identification index
QN(g) (8).

2. Select randomly from the set T the sampling instants t1, . . . , tN , selecting each ti
independently, according to the probability distribution on T , with the density given
by the weight function ρ(t) in the integral index Q(g) (5).

3. Perform the stress relaxation test [1,2,17] and record and store the relaxation modulus
measurements

{
Gi
}

, i = 1, . . . , N, corresponding to the chosen points ti.
4. Solve the regularized optimization task (13), applying the rule selected for choosing

the regularization parameter, and compute the regularized model parameter gλ̂
N for

the chosen regularization parameter λ̂.
5. Put N = N and gλ̂

N
= gλ̂

N . Select new N � N to enlarge the set of experimental data.
6. For new the N, repeat Steps 2, 3 and 4, i.e., select new sampling instants, perform

again the stress relaxation test for the next sample of the same material and compute
the new model parameter gλ̂

N .
7. In order to ascertain if gλ̂

N
is a satisfactory approximation of g∗λ̂, examine if ‖gλ̂

N
− gλ̂

N‖2
<

ε for ε being a small positive number. If not, go again to Step 5. Otherwise, stop the
procedure, taking gλ̂

N
as the approximate value of g∗λ̂.

Remark 1. The stopping rule from step 7 can be replaced by a less restrictive one, based on testing
whether

∣∣∣QN

(
gλ̂

N

)
−QN

(
gλ̂

N

)∣∣∣ < ε holds. Both the considered stopping rules correspond with
those that are commonly used in numerical minimization techniques.

Remark 2. Note that no other special assumptions about {ti} were made.

Remark 3. The relaxation modulus is the stress induced in the material when the unit’s step strain
is imposed. However, loading is never performed infinitely fast [30,31]. Therefore, the relaxation
modulus must be recovered from the experimental data of the stress relaxation process history,
collected in non-ideal two-phase stress relaxation tests, where the strain increases over the loading
time interval until a predetermined strain is reached, after which the strain is held constant. From
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different methods proposed for the relaxation modulus determination [30,32–34], the backward
recursive method developed by Lee and Knauss [30], the differential rule proposed by Sorvari and
Malinen [32], and the general method proposed by Zapas and Phillips [33] are most often cited. For
detailed references and an overview, see [31,34].

Remark 4. The regularization parameter λ̂ is selected only once in step 4 and used for the next sets
of measurements.

The schematic framework of the above identification procedure and the communi-
cation between the regularized optimization tasks and the relaxation test experiment are
shown in Figure 1. Based on Proposition 3, the optimization task (25) was applied in
Step 4 to determine the optimal parameter gλ̂

N . The additional variable p is the index of the
subsequent repetition of the stress relaxation experiment.
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Figure 1. The flow chart of the algorithm for the relaxation modulus model identification.

3.5. Applicability to Polymer Relaxation Modulus Models

The exponential Maxwell model and the exponential stretched Kohlrausch–Williams–
Watts model are the best known linear rheological models of polymers [35]. To approximate
nonexponential relaxation, inverse power laws were also used [36,37], especially the frac-
tional Scott–Blair model [38]. Fractional viscoelasticity, described for example by the
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fractional Maxwell model, appears to be an appealing tool to describe the relaxation pro-
cesses in polymers exhibiting both exponential and nonexponential types [38]. However,
the applicability of the idea of identification that is asymptotically independent of the time
instants used in the stress relaxation experiment to the fractional order model determination
will be the subject of a separate paper.

The generalized Maxwell model, with relaxation modulus described by a linear com-
bination of exponential terms, is still one of the most widely used rheological models
of polymers. Application examples from just the last few years include studies on the
long-term behavior of semi-crystalline bio-based fibers [39]; modeling the stress relaxation
in stress-induced polymer crystallization [40]; a description of the stress relaxation after
low- and high-rate deformation of polyurethanes [41]; and studying viscoelastic proper-
ties of hydroxyl-terminated polybutadiene (HTPB)-based composite propellants [42]. The
Maxwell model has been successfully applied to stress relaxation predictions of many poly-
mer composites [5]. For example, to the modeling of the viscoelastic properties of barium
titanate (BTO)-elastomer (Ecoflex) composites [43]; modern photocurable MED610 resin,
which is used mainly in medicine and dentistry [44]; perfluorosulfonic acid-based materials
(applied in proton exchange membrane fuel cells) [45]; and the viscoelastic behavior of
virgin EPDM/reclaimed rubber blends [46].

The Kohlrausch–Williams–Watts (KWW) relaxation function has been widely used
to describe the relaxation behavior of glass-forming liquids and complex systems [47].
However, in the ongoing debate on the application of the KWW function to relaxation
phenomena in different polymers [48,49], in particular to liquids and glasses, this model
is widely used. Examples of research published this year alone include modeling of the
mechanical properties of highly elastic and tough polymer binders with interweaving
polyacrylic acid (PAA) with a poly(urea-urethane) (PUU) elastomer [50]; modeling of the
relaxation curve describing the local dynamics of ions and hydration water near the RNA
interface [51]; studying the relaxation processes for bulk antipsychotic API aripiprazole
(APZ) and the active pharmaceutical ingredients (API) incorporating anodic aluminum
oxide (AAO) or silica (SiO2) systems that are collected during the “slow-heating” proce-
dure [52]; description of the rheological properties of the cross-linked blends of Xanthan
gum and polyvinylpyrrolidone-based solid polymer electrolyte [53]; studies concerning
the stress relaxation process in annealed metallic and polymer glasses [54]; and the stress
relaxation behavior of glass-fiber-reinforced thermoplastic composites [55].

Although these models are continuous and differentiable with respect to the parame-
ters (Assumption 3) and although the parameters are positive or non-negative due to the
physical interpretation, the satisfaction of Assumptions 2–5, which are related to the models
and the sets of their admissible parameters, is not obvious. We analyze them separately for
the two classes of models.

3.5.1. Generalized Maxwell Model

The generalized discrete Maxwell model, which is used to describe the relaxation
modulus G(t) of linear viscoelastic materials, consists of a spring and n Maxwell units that
are connected in parallel, as illustrated in Figure 2a. A Maxwell unit is a series arrangement
of Hooke and Newton’s elements: an ideal spring in a series with a dashpot, c.f., Figure 2b.
This model presents a relaxation of an exponential type given by a finite Dirichlet–Prony
series [3]:

GM(t, g) = ∑n
j=1 Eje

−tvj + E∞, (26)

with the vector of the model parameters defined as

g =
[
E1 · · · En v1 · · · vn E∞

]T , (27)

where Ej ≥ 0, vj ≥ 0 and E∞ ≥ 0 are the parameters representing the elastic modulus
(relaxation strengths), relaxation frequencies and equilibrium modulus (long-term modu-
lus), respectively. The elastic modulus Ej and the partial viscosity ηj associated with the



Polymers 2023, 15, 4605 12 of 35

j Maxwell mode determine the relaxation frequency vj = Ej/ηj and the relaxation time
τj = ηj/Ej. The restriction that these parameters are non-negative and bounded must
be given to satisfy the physical meaning. Thus, g ∈ G ⊂ R2n+1

+ , where G is an arbitrary
compact subset ofR2n+1

+ .
Polymers 2023, 15, 4605 12 of 35 
 

 

 

 

(a) (b) 

Figure 2. (a) Generalized Maxwell model; (b) a Maxwell unit; elastic modulus 𝐸, 𝐸 , 𝐸  and vis-
cosities 𝜂, 𝜂 , 𝑖 = 1, … , 𝑛. 

For the function 𝐺 𝑡, 𝒈   (26), for any 𝑡 ∈ 𝒯 , we have 𝐺 𝑡, 𝟎 = 0 , and by 
Equations (26) and (27), the gradient ∇𝒈𝐺 𝑡, 𝒈 = [𝑒 ⋯ 𝑒 −𝐸 𝑡𝑒 ⋯ −𝐸 𝑡𝑒 1] .  

In view of the boundness of the function 𝑡𝑒   for any 𝑡 ∈ 𝒯  (whether 𝒯  is 
bounded or not), Assumptions 2–4 are satisfied for any 𝒈 ∈ 𝓖, provided that 𝓖 is a com-
pact subset of the subspace ℛ . 

By (26), the following inequalities hold  𝐺 𝑡, 𝒈 ≤ ∑ 𝐸 + |𝐸 | ≤ ∑ 𝐸 + ∑ 𝑣 + |𝐸 |,  

whence, by virtue of the inequality ‖𝒙‖ ≤ √𝐾 ‖𝒙‖  [56] of the vector norm equivalence, 
where ‖𝒙‖  is the 1-norm (also called the Taxicab norm or Manhattan norm) in the space 𝑅 , we immediately obtain the following property: 

Property 1. For the relaxation modulus (26) of the Maxwell model, the estimation 𝐺 𝑡, 𝒈 ≤√2𝑛 + 1‖𝒈‖  holds for an arbitrary 𝑡 ≥ 0 and arbitrary vector 𝒈 (27) of non-negative model pa-
rameters. 

Property 1 and similar properties for subsequent models allow us to omit the upper 
constraints imposed on the model parameters in the optimization task (13) when the 
smoothing functions 𝑅 𝒈  (11) or (12) are used. 

3.5.2. KWW Model 
The exponential stretched Kohlrausch–Williams–Watts (KWW) model [8,9] describes 

the relaxation modulus as follows: 𝐺 𝑡, 𝒈 = 𝐺 𝑒 , (28) 

where an adjustable parameter 𝐺 > 0 is the initial relaxation modulus, a stretching pa-
rameter 0 < 𝛽 ≤ 1 is the exponent-spread factor, which quantitatively characterizes the 
non-Debye (nonexponential) character of the relaxation function, and 𝑣 > 0  and 𝜏 =1 𝑣⁄ > 0 are, respectively, the characteristic relaxation time and frequency. Thus, the vec-
tor of the KWW model’s non-negative parameters is defined as 𝒈 = [𝐺 𝑣 𝛽] . (29)

For any 𝑡 ∈ 𝒯 function, 𝐺 𝑡, 𝒈  (28) is continuous and differentiable with respect 
to 𝒈; the gradient is as follows: 

 

… 𝐸∞  

σ 

σ 

𝐸1 
η1 

𝐸2 
η2 

𝐸𝑛−1 
η𝑛 −1 

𝐸𝑛  
η𝑛  

 

𝐸 
σ 

η 
σ 

Figure 2. (a) Generalized Maxwell model; (b) a Maxwell unit; elastic modulus E, Ei, E∞ and viscosities
η, ηi, i = 1, . . . , n.

For the function GM(t, g) (26), for any t ∈ T , we have GM(t, 02n+1) = 0, and by
Equations (26) and (27), the gradient

∇gGM(t, g) =
[
e−tv1 · · · e−tvn −E1te−tv1 · · · −Ente−tvn 1

]T .

In view of the boundness of the function te−tvi for any t ∈ T (whether T is bounded
or not), Assumptions 2–4 are satisfied for any g ∈ G, provided that G is a compact subset
of the subspaceR2n+1

+ .
By (26), the following inequalities hold

GM(t, g) ≤∑n
j=1

∣∣Ej
∣∣+ |E∞| ≤∑n

j=1

∣∣Ej
∣∣+ ∑n

j=1

∣∣vj
∣∣+ |E∞|,

whence, by virtue of the inequality ‖x‖1 ≤
√

K ‖x‖2 [56] of the vector norm equivalence,
where ‖x‖1 is the 1-norm (also called the Taxicab norm or Manhattan norm) in the space
RK, we immediately obtain the following property:

Property 1. For the relaxation modulus (26) of the Maxwell model, the estimation GM(t, g) ≤√
2n + 1‖g‖2 holds for an arbitrary t ≥ 0 and arbitrary vector g (27) of non-negative model

parameters.

Property 1 and similar properties for subsequent models allow us to omit the upper
constraints imposed on the model parameters in the optimization task (13) when the
smoothing functions R(g) (11) or (12) are used.

3.5.2. KWW Model

The exponential stretched Kohlrausch–Williams–Watts (KWW) model [8,9] describes
the relaxation modulus as follows:

GM(t, g) = G0e−(vrt)β

, (28)

where an adjustable parameter G0 > 0 is the initial relaxation modulus, a stretching
parameter 0 < β ≤ 1 is the exponent-spread factor, which quantitatively characterizes
the non-Debye (nonexponential) character of the relaxation function, and vr > 0 and
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τr = 1/vr > 0 are, respectively, the characteristic relaxation time and frequency. Thus, the
vector of the KWW model’s non-negative parameters is defined as

g =
[
G0 vr β

]T . (29)

For any t ∈ T function, GM(t, g) (28) is continuous and differentiable with respect to
g; the gradient is as follows:

∇gGM(t, g) =
[
e−(vrt)β

−G0βv−1
r (vrt)βe−(vrt)β

−G0(vrt)βln(vrt)e−(vrt)β
]T

,

and GM(t, 03) = 0. The boundness of the first gradient element is obvious. By the inequality
e−x ≤ 1

1+x , that holds for any x > −1, we have

G0βv−1
r (vrt)βe−(vrt)β

≤ G0βv−1
r

(vrt)β

1 + (vrt)β
< G0βv−1

r . (30)

The right constraint in (30) is bounded whenever the relaxation frequency vr ≥
ε̃, where ε̃ is a small positive constant. However, for any positive t and 0 < β < 1,
the derivative ∂GM(t, g)/∂vr becomes unbounded when vr → 0+ . The third derivative
∂GM(t, g)/∂β for any positive t and 0 < β < 1 tends to zero, by negative values, when
vrt→ 0+ and is bounded for any bounded parameter g. Summarizing, the compact set of
admissible model parameters is such that

G =
{

g =
[
G0 vr β

]T : 0 ≤ G0, 0 < ε̃ ≤ vr, 0 ≤ β ≤ 1, ‖g‖2 ≤ M2 < ∞
}

,

for an arbitrary M2 > ε̃. By assumption, a stretching parameter 0 < β ≤ 1; however, from
the model identification point of view, it is convenient to expand this set to 0 ≤ β ≤ 1.
For β = 0, the relaxation modulus model is trivial, and GM(t, g) = G0 for any t, i.e., its
boundness, differentiability and continuity are preserved.

The next property follows directly from the inequality GM(t, g) ≤ G0, yielded by (28).

Property 2. For the relaxation modulus (28) of the KWW model, the estimation GM(t, g) ≤ ‖g‖2
holds for an arbitrary t ≥ 0 and arbitrary vector g (29) of non-negative model parameters.

3.6. Unconstrained Optimization

The compactness of the set of admissible model parameters G was significant for
the convergence results (18)–(21). Due to the compactness of G, the existence of the
optimal solutions to regularized tasks (13) and (15) is obvious. However, if the quadratic
regularizers expressed by Equations (11) or (12) are applied, the upper constraints on
the model parameters can be neglected, provided that they are not motivated by the
parameters’ physical meaning. The following two lemmas are instrumental, proved in
Appendices A.3 and A.4:

Lemma 1. Let λ > 0. If Assumptions 1–3 and 6 hold, the weight matrix W of the regularizer R(g)
(11) is a positive definite and the relaxation modulus model GM(t, g) (2) is such that |GM(t, g)| ≤
p‖g‖2 for any t ∈ T , where 0 < p < ∞, then a compact subset ofRK exists:

G =
{

g ∈ RK
+ : ‖g‖2 ≤ M < ∞

}
, (31)

where

M =
2p(M + δ)

λ λmin(W)
+

2‖Wg0‖2
λmin(W)

> 0, (32)
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so that
min
g∈RK

QN(g) + λR(g) = min
g∈G

QN(g) + λR(g), (33)

where λmin(W) > 0 is the minimal eigenvalue of W.

Lemma 2. Let λ > 0. If Assumptions 1–3 are satisfied, the weight matrix W of the regularizer R(g)
(11) is a positive definite, and the relaxation modulus model GM(t, g) (2) is such that |GM(t, g)| ≤
p‖g‖2 for any t ∈ T , where 0 < p < ∞, then a compact subset ofRK exists:

G =
{

g ∈ RK
+ : ‖g‖2 ≤ M < ∞

}
, (34)

where

M =
2pM

λ λmin(W)
+

2‖Wg0‖2
λmin(W)

> 0, (35)

so that
min
g∈RK

Q(g) + λR(g) = min
g∈G

Q(g) + λR(g). (36)

Letting g0 = 0K, we obtain a regularizer R(g) (12) instead of that expressed by (11),
and therefore, the above lemmas hold also for the regularizer R(g) = gTWg when applied
during numerical studies.

Since the quality indices Q(g) and QN(g) are continuous with respect to g, and the sets
G (34) and G (31) are compact in the spaceRK, in view of the above lemmas, for any λ > 0
there exist the solutions to the upper-constrained regularized optimal approximation tasks
given by the right hand sides of Equations (33) and (36) as well as the upper-unconstrained
optimal approximation task expressed by the left hand sides of these equations. Since
M < M, further, we have G ⊂ G. Therefore, both the optimization tasks (33) and (36) can
be reduced to the set G. If the previously defined set of admissible model parameters G is
such that G ⊂ G, then the upper constraints in the optimization tasks (15) and (13) can be
neglected in view of Lemmas 1 and 2. If G is not a subset of G, then, for example, expanding
the set of model parameters to G ∪ G can be used to simplify numerical optimization tasks.

3.7. Numerical Studies

We now present the results of the numerical studies of the asymptotic properties of
the identification algorithm and the influence of the measurement noises on the optimal
model. In the context of an ill-posed problem, simulation studies allow us, apart from the
theoretical analysis carried out above, to demonstrate the validity and effectiveness of the
proposed identification method.

It is assumed that material viscoelastic properties are described by the double-mode
Gauss-like relaxation spectrum. The Gaussian-like distributions were used to describe the
rheological properties of many polymers, e.g., poly(methyl methacrylate) [16], polyethy-
lene [15], native starch gels [20], polyacrylamide gels [17], glass [57] and carboxymethylcel-
lulose [19]. The spectra of a Gaussian character were determined for bimodal polyethylene
by Kwakye-Nimo et al. [15] and for soft polyacrylamide gels by Pérez-Calixto et al. [17].
Also, the spectra of various biopolymers determined by many researchers are Gaus-
sian in nature, for example, cold gel-like emulsions stabilized with bovine gelatin [18],
fresh egg white-hydrocolloids foams [19], some (wheat, potato, corn and banana) native
starch gels [20], xanthan gum water solution [19], carboxymethylcellulose (CMC) [19],
wood [58,59], and fresh egg white-hydrocolloids [19]. Three-, five- and seven-parameter
Maxwell models (26) were determined. Next, the KWW model (28) was considered.

The “real” material and all the models were simulated in Matlab R2023b, using the
special function erfc for the Gauss-like distribution.
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3.8. Simulated Material

Consider viscoelastic material of a relaxation spectrum, described by the double-mode
Gauss-like distribution considered in [15,60,61]:

H(τ) =

[
ϑ1e−(

1
τ−m1)

2
/q1 + ϑ2e−(

1
τ−m2)

2
/q2

]
/τ,

inspired by polyethylene data from [15], especially the HDPE 1 sample from [15] (Table 1
and Figure 8b), where the parameters are as follows: [60,61]: ϑ1 = 467 Pa·s, m1 = 0.0037 s−1,
q1 = 1.124261× 10−6 s−2, ϑ2 = 39 Pa·s, m2 = 0.045 s−1 and q2 = 1.173× 10−3 s−2. It is
shown in [60] that the related real relaxation modulus is

G(t) =
√

π

2

[
ϑ1
√

q1 e
1
4 t2q1−m1ter f c

(
1
2 tq1 −m1√

q1

)
+ ϑ2
√

q2 e
1
4 t2q2−m2ter f c

(
1
2 tq2 −m2√

q2

)]
. (37)

Following [60,61], the time interval T = [0, 1550] seconds is assumed for numerical
simulations. Therefore, the weighting function in the index Q(g) (5) is ρ(t) = 1

1550 s−1.
In the simulated stress relaxation experiment, N sampling instants ti were selected

randomly according to the uniform distribution on T . Additive measurement noises {zi}
were generated independently by random choice with a normal distribution, with zero
mean value and variance σ2. For the analysis of the asymptotic properties of the scheme
N = 50, 100, 250, 500, 1000, 2500, 5000, 10, 000 has been used. In order to study the
influence of the noises on the parameters of the optimal regularized models, the noises {zi}
have been generated with the standard deviation σ = 0.001, 0.004, 0.007 [Pa].

For every class of models (Maxwell, KWW) and for any pair (N, σ), the simulated
experiment was performed. Next, for any class of models and any σ, the regularization
parameter λ̂ was selected according to the GMA rule, using the experiment data for the
smallest N = 50. For this purpose, the parameter vectors gN , minimizing the mean
quadratic identification nonregularized index QN(g) (8) in the optimization task (9), were
determined for N = 50. Through the inspection of the relation between elements of the
vector gN , the diagonal positive definite weight matrices

W = diag(w11, w22, . . . , wKK), (38)

were selected for the regularizer R(g) (12). Next, the model approximation indices Q̂N >
QN(gN) for the GMA rule (24) were assumed, and optimal regularization parameters λ̂
related to the noises of the standard deviations σ = 0.001, 0.004, 0.007 [Pa] were found,
so that the GMA condition (24) holds. For successive models (three-, five- and seven-
parameter Maxwell models and the KWW model), the vectors gN , indices QN(gN) and
assumed Q̂N and the regularization parameters λ̂ are given in Tables A1–A4 in Appendix B.
In the same tables, the elements of the vectors g∗λ̂ which solve the optimization task (15)
were presented, together with the related integral model approximation indices Q

(
g∗λ̂
)

. In
the last rows of these tables the diagonal elements wkk, k = 1, 2, 3, of the weight matrices
W (38) were also given.

3.9. Asymptotic Properties

Then, for every class of models and any pair (N, σ), the optimal model parameter gλ̂
N

was determined by solving the regularized identification task (13) for λ = λ̂. The elements
of the parameter vectors gλ̂

N , the indices QN

(
gλ̂

N

)
and Q

(
gλ̂

N

)
, as well as the relative

percentage errors of the approximation of the measurement-independent parameters g∗λ,
defined as

ERR = ‖gλ̂
N − g∗λ‖

2

2/‖g∗λ‖2
2·100%, (39)
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are given in Tables 1–4 for successive classes of models, and the weakest noises σ =
0.001 [Pa].

Table 1. The elements Eλ̂
1N , vλ̂

1N and Eλ̂
∞N of the vector gλ̂

N solving optimization task (13) for reg-

ularization parameter λ̂ = 0.0156, the mean-square identification indices QN

(
gλ̂

N

)
, Equation (8),

the integral quadratic indices Q
(

gλ̂
N

)
, Equation (5), and the relative square errors ERRs (39) of the

measurement-independent parameters g∗λ, approximation for three-parameter Maxwell model (26)
and N relaxation modulus measurements, corrupted by additive independent noises of normal
distribution with standard deviation σ = 0.001 [Pa].

N QN(gλ̂
N) [Pa2] Q(gλ̂

N) [Pa2] ERR [%] Eλ̂
1N [Pa] vλ̂

1N [s−1] Eλ̂
∞N [Pa]

50 4.2004 × 10−3 1.0723 × 10−2 0.9466 1.83859 6.92243 × 10−3 4.3772 × 10−2

100 8.0483 × 10−3 9.6203 × 10−3 0.1258 2.10863 8.89014 × 10−3 5.84914 × 10−2

250 9.7535 × 10−3 9.5998 × 10−3 8.123 × 10−2 1.97838 8.40937 × 10−3 5.39954 × 10−2

500 7.4646 × 10−3 1.0454 × 10−2 1.2699 1.80699 7.55342 × 10−3 4.74206 × 10−2

1000 1.0003 × 10−2 9.5483 × 10−3 0.1476 2.11463 9.29357 × 10−3 5.82845 × 10−2

2500 1.0014 × 10−2 9.6775 × 10−3 0.4440 2.17211 9.58249 × 10−3 5.92091 × 10−2

5000 1.0154 × 10−2 9.4905 × 10−3 4.997 × 10−2 2.08184 9.14869 × 10−3 5.90042 × 10−2

7500 1.0025 × 10−2 9.4971 × 10−3 1.205 × 10−2 2.05869 9.03097 × 10−3 5.77781 × 10−2

10,000 1.0055 × 10−2 9.5011 × 10−3 1.524 × 10−2 2.06152 8.9892 × 10−3 5.73231 × 10−2

20,000 8.9041 × 10−3 9.5659 × 10−3 3.013 × 10−2 2.00109 8.52489 × 10−3 5.42623 × 10−2

50,000 9.2309 × 10−3 9.5375 × 10−3 5.459 × 10−3 2.02138 8.63519 × 10−3 5.50748 × 10−2

100,000 9.6972 × 10−3 9.5093 × 10−3 3.493 × 10−3 2.04844 8.83866 × 10−3 5.64516 × 10−2

Table 2. The elements Eλ̂
1N , vλ̂

1N , Eλ̂
2N , vλ̂

2N and Eλ̂
∞N of the vector gλ̂

N solving optimization task (13) for

regularization parameter λ̂ = 2.51× 10−3, the mean-square identification indices QN

(
gλ̂

N

)
, Equation

(8), the integral quadratic indices Q
(

gλ̂
N

)
, Equation (5), and the relative square errors ERR (39) of

the measurement-independent parameters g∗λ, approximation for five-parameter Maxwell model
(26) and N relaxation modulus measurements corrupted by additive independent noises of normal
distribution with standard deviation σ = 0.001 [Pa].

N QN(gλ̂
N) [Pa2] Q(gλ̂

N) [Pa2] ERR [%] Eλ̂
1N [Pa] vλ̂

1N [s−1] Eλ̂
2N [Pa] vλ̂

2N [s−1] Eλ̂
∞N [Pa]

50 5.0 × 10−6 6.8155 × 10−4 2.07 0.94119 3.57829 × 10−3 1.73538 3.09241 × 10−2 8.412 × 10−3

100 3.6965 × 10−5 5.4636 × 10−5 1.75 × 10−2 1.01745 3.85167 × 10−3 2.02555 4.15854 × 10−2 1.2639 × 10−2

250 4.5229 × 10−5 5.5365 × 10−5 1.06 × 10−2 1.01928 3.85649 × 10−3 2.07666 4.22544 × 10−2 1.2885 × 10−2

500 5.1215 × 10−5 5.0257 × 10−5 3.05 × 10−3 1.02616 3.89451 × 10−3 2.06699 4.28871 × 10−2 1.2885 × 10−2

1000 5.1036 × 10−5 5.0021 × 10−5 5.5 × 10−3 1.02949 3.88211 × 10−3 2.07118 4.33627 × 10−2 1.2897 × 10−2

2500 5.0049 × 10−5 4.9049 × 10−5 1.02 × 10−3 1.02709 3.87612 × 10−3 2.06167 4.30789 × 10−2 1.27968 × 10−2

5000 5.1942 × 10−5 4.8581 × 10−5 1.89 × 10−4 1.02982 3.88972 × 10−3 2.05571 4.31916 × 10−2 1.31245 × 10−2

7500 5.1596 × 10−5 4.8712 × 10−5 1.89 × 10−4 1.03037 3.89006 × 10−3 2.05869 4.32779 × 10−2 1.30726 × 10−2

10,000 5.1276 × 10−5 4.8781 × 10−5 5.62 × 10−4 1.02979 3.88757 × 10−3 2.05899 4.32133 × 10−2 1.29740 × 10−2

20,000 4.8846 × 10−5 4.8995 × 10−5 1.20 × 10−4 1.02589 3.87391 × 10−3 2.05207 4.29263 × 10−2 1.28128 × 10−2

50,000 4.9066 × 10−5 4.8934 × 10−5 7.72 × 10−5 1.02631 3.87501 × 10−3 2.05244 4.29290 × 10−2 1.27937 × 10−2

100,000 4.9971 × 10−5 4.8738 × 10−5 6.42 × 10−6 1.02757 3.88095 × 10−3 2.05430 4.29902 × 10−2 1.29231 × 10−2
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Table 3. The elements Eλ̂
1N , vλ̂

1N , Eλ̂
2N , vλ̂

2N , Eλ̂
3N , vλ̂

3N and Eλ̂
∞N of the vector gλ̂

N solving optimization
task (13) for regularization parameter λ̂ = 1.27 × 10−3, the mean-square identification indices

QN

(
gλ̂

N

)
, Equation (8), the integral quadratic indices Q

(
gλ̂

N

)
, Equation (5), and the relative square

errors ERR (39) of the measurement-independent parameters g∗λ, approximation for seven-parameter
Maxwell model (26) and N relaxation modulus measurements corrupted by additive independent
noises of normal distribution with standard deviation σ = 0.001 [Pa].

N QN(gλ̂
N) [Pa2] Q(gλ̂

N) [Pa2] ERR [%] Eλ̂
1N [Pa] vλ̂

1N [s−1] Eλ̂
2N [Pa] vλ̂

2N [s−1] Eλ̂
3N [Pa] vλ̂

3N [s−1] Eλ̂
∞N [Pa]

50 1.6 × 10−5 1.08569 × 10−3 3.66 × 10−2 0.91380 3.496 × 10−3 0.83143 2.7811 × 10−2 0.82996 2.7811 × 10−2 7.603 × 10−3

100 2.25694 × 10−5 4.38001 × 10−5 7.83 × 10−4 0.96972 3.695 × 10−3 1.0064 2.832 × 10−2 1.05894 5.5844 × 10−2 1.0765 × 10−2

250 1.39206 × 10−5 1.13403 × 10−5 1.53 × 10−5 0.96278 3.675 × 10−3 1.04195 2.7757 × 10−2 1.10192 6.3315 × 10−2 1.0623 × 10−2

500 1.62056 × 10−5 1.96741 × 10−5 2.63 × 10−5 0.95898 3.665 × 10−3 1.03016 2.7044 × 10−2 1.09224 6.3563 × 10−2 1.045 × 10−2

1000 1.23718 × 10−5 9.7523 × 10−6 5.82 × 10−5 0.96012 3.664 × 10−3 1.04663 2.7517 × 10−2 1.10631 6.428 × 10−2 1.0313 × 10−2

2500 1.33721 × 10−5 1.09919 × 10−5 2.17 × 10−5 0.96250 3.67 × 10−3 1.04209 2.7724 × 10−2 1.10388 6.3365 × 10−2 1.0324 × 10−2

5000 1.36971 × 10−5 1.15176 × 10−5 1.82 × 10−5 0.96271 3.673 × 10−3 1.03686 2.7685 × 10−2 1.10569 6.3398 × 10−2 1.0428 × 10−2

7500 1.35309 × 10−5 1.12970 × 10−5 1.95 × 10−5 0.96231 3.67 × 10−3 1.03806 2.7636 × 10−2 1.10573 6.3676 × 10−2 1.0362 × 10−2

10,000 1.35952 × 10−5 1.14719 × 10−5 1.29 × 10−5 0.96236 3.67 × 10−3 1.04048 2.7686 × 10−2 1.10274 6.3591 × 10−2 1.033 × 10−2

20,000 1.58069 × 10−5 1.60772 × 10−5 1.19 × 10−5 0.963075 3.672 × 10−3 1.03044 2.7711 × 10−2 1.09572 6.2326 × 10−2 1.0375 × 10−2

50,000 1.53858 × 10−5 1.50425 × 10−5 2.82 × 10−6 0.96263 3.671 × 10−3 1.03389 2.7724 × 10−2 1.09609 6.2494 × 10−2 1.0336 × 10−2

100,000 1.45691 × 10−5 1.33615 × 10−5 2.62 × 10−7 0.96311 3.674 × 10−3 1.03655 2.7767 × 10−2 1.09878 6.2832 × 10−2 1.0407 × 10−2

Table 4. The elements Gλ̂
0N , vλ̂

rN and βλ̂
N of the vector gλ̂

N solving optimization task (13) for regular-

ization parameter λ̂ = 1.31× 10−3, the mean-square identification indices QN

(
gλ̂

N

)
, Equation (8),

the integral quadratic indices Q
(

gλ̂
N

)
, Equation (5), and the relative square errors ERR (39) of the

measurement-independent parameters g∗λ, approximation for KWW model (28) and N relaxation
modulus measurements corrupted by additive independent noises of normal distribution with
standard deviation σ = 0.001 [Pa].

N QN(gλ̂
N) [Pa2] Q(gλ̂

N) [Pa2] ERR [%] Gλ̂
0N [Pa] vλ̂

rN [s−1] βλ̂
N [−]

50 3.60 × 10−4 7.8738 × 10−4 0.3578 3.72319 2.52024 × 10−2 0.45406
100 4.670 × 10−4 7.9693 × 10−4 1.1724 4.39118 3.72331 × 10−2 0.41084
250 5.1244 × 10−4 6.6349 × 10−4 8.07 × 10−3 3.99535 3.19162 × 10−2 0.42414
500 4.6738 × 10−4 7.8228 × 10−4 0.4555 3.69177 2.67951 × 10−2 0.4429
1000 5.7908 × 10−4 6.5920 × 10−4 0.017 3.90855 2.97799 × 10−2 0.43396
2500 6.5771 × 10−4 6.5127 × 10−4 2.44 × 10−3 3.98004 3.05131 × 10−2 0.43259
5000 7.4273 × 10−4 6.5982 × 10−4 2.919 × 10−2 3.89251 2.92203 × 10−2 0.43686
7500 7.3871 × 10−4 6.7181 × 10−4 8.346 × 10−2 3.84555 2.85530 × 10−2 0.43938

10,000 7.1466 × 10−4 6.6242 × 10−4 3.84 × 10−2 3.88251 2.91616 × 10−2 0.43676
20,000 6.2228 × 10−4 6.5372 × 10−4 5.98 × 10−3 3.92963 2.98969 × 10−2 0.43363
50,000 6.3356 × 10−4 6.4931 × 10−4 4.39 × 10−4 3.96871 3.05467 × 10−2 0.43129
100,000 6.4603 × 10−4 6.4783 × 10−4 4.67 × 10−3 3.98754 3.09393 × 10−2 0.42979

The analysis of the identification indices QN

(
gλ̂

N

)
and Q

(
gλ̂

N

)
indicates that the

five- and seven-parameter Maxwell models provide a much better approximation of the
measurement data and the real relaxation modulus G(t) (37) than the three-parameter
model and a better approximation than the KWW model. This is illustrated in Figures 3–5,
where for the successive classes of model measurements, the Gi of the real modulus G(t)
fitted by the optimal models GM

(
t, gλ̂

N

)
are plotted for two numbers of measurements

(N = 100 and N = 10, 000) and the strongest noises. The plots for the seven-parameter
Maxwell model being visually almost identical to that for the five-parameter model and
providing an excellent data fit, especially for N = 10, 000 measurements, are omitted here;
compare also indices QN

(
gλ̂

N

)
and Q

(
gλ̂

N

)
from Tables 2 and 3. Although for N = 100

measurements, the models GM

(
t, gλ̂

N

)
and GM

(
t, g∗λ̂

)
differ in the initial time interval (see

small subplots), for N = 10, 000 measurements, they are practically identical. This applies
to the five-parameter Maxwell model with an almost excellent fitting (Figure 4b), as well
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as to the KWW (Figure 5b) and three-parameter Maxwell (Figure 3b) models with lower
quality of the measurement data fit.

We see that also for the strongest noises, the model GM

(
t, gλ̂

N

)
tends to GM

(
t, g∗λ̂

)
as N increases, even when the accuracy of the measurement data approximation is not
excellent for a given class of models. Not only for N = 10, 000, but also for smaller
numbers of measurements, these models coincide, which is confirmed by the ERR (39)
values from Tables 1–4. The relative percentage errors ERR (39) of the parameters g∗λ

and gλ̂
N discrepancy is smaller than 0.1% for N ≥ 5000 for the three-parameter Maxwell

model with the worst fit to the measurement data and for N ≥ 1000 for the KWW model.
However, for more accurate, in terms of QN

(
gλ̂

N

)
and Q

(
gλ̂

N

)
indices, in the five- and

seven-parameter Maxwell models, ERR (39) does not exceed for N ≥ 100 measurements,
respectively, 0.02% and 0.001%.
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Figure 3. The real relaxation modulus measurements �̅�  (red points) and three-parameter Maxwell 
models: sampling-instant-independent model 𝐺 𝑡, 𝒈∗   (green lines) and optimal models 𝐺 𝑡, 𝒈   (blue lines) for 𝑁  measurements and additive random noises of normal distribution 
with zero mean value and standard deviation 𝜎 = 0.007 Pa: (a) 𝑁 = 100; (b) 𝑁 = 10,000. The caret 
for 𝜆 has been omitted in the legend description to simplify it. 
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Figure 4. The real relaxation modulus measurements �̅�  (red points) and five-parameter Maxwell 
models: sampling-instant-independent model 𝐺 𝑡, 𝒈∗   (green lines) and optimal models 𝐺 𝑡, 𝒈   (blue lines) for 𝑁  measurements and additive random noises of normal distribution 
with zero mean value and standard deviation 𝜎 = 0.007 Pa: (a) 𝑁 = 100; (b) 𝑁 = 10,000. The caret 
for 𝜆 has been omitted to simplify the legend description. 

  
(a) (b) 

Figure 5. The real relaxation modulus measurements �̅�  (red points) and KWW models (28): sam-
pling-instant-independent model 𝐺 𝑡, 𝒈∗   (green lines) and optimal models 𝐺 𝑡, 𝒈   (blue 
lines) for 𝑁  measurements and additive random noises of normal distribution with zero mean 

Figure 3. The real relaxation modulus measurements Gi (red points) and three-parameter

Maxwell models: sampling-instant-independent model GM

(
t, g∗λ̂

)
(green lines) and optimal models

GM

(
t, gλ̂

N

)
(blue lines) for N measurements and additive random noises of normal distribution with

zero mean value and standard deviation σ = 0.007 Pa: (a) N = 100; (b) N = 10, 000. The caret for λ̂

has been omitted in the legend description to simplify it.
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The dependence of the optimal model parameters gλ̂
N on the number of measurements

N for the noises of σ = 0.001, 0.004, 0.007 [Pa] for the three-parameter Maxwell model are
illustrated by Figure A1a–c in Appendix B.1. For the five-parameter Maxwell model, the
elements of the optimal parameters gλ̂

N as the functions of N are illustrated by Figure A2a–c,
Appendix B.2. Only extreme—the strongest and weakest—disturbances are considered here
to limit the size of the figure. For all the noises of σ = 0.001, 0.004, 0.007 [Pa], the elements
of gλ̂

N for the seven-parameter Maxwell model are depicted in Figures A3 and A4a–c in
Appendix B.3, while for the KWW model, they are depicted in Figure A5a–c, Appendix B.4.
In any subplot, the values of the respective parameters of the globally optimal model g∗λ

are plotted with horizontal violet lines. In these figures, a logarithmic scale is used on the
horizontal axes. The asymptotic properties are also illustrated by Figures A1d, A2d, A4d
and A5d juxtaposing, for respective models, the integral index Q

(
gλ̂

N

)
as a function of N

with the index Q
(

g∗λ̂
)

, marked with horizontal lines. In these figures, the caret for the λ̂

variable has been omitted to simplify the description of the plot axes.
These plots confirm the asymptotic properties of the proposed identification algorithm.

A better model fit, for the five- and seven-parameter Maxwell models GM

(
t, gλ̂

N

)
, implies

smaller fluctuations in the estimates of its parameters gλ̂
N and their faster convergence to

the parameters g∗λ̂ of the sampling-point-independent model GM

(
t, g∗λ̂

)
. This property

translates into the speed of the convergence Q
(

gλ̂
N

)
into Q

(
g∗λ̂
)

.

3.10. Noise Robustness

Now, we are interested in the noise robustness properties of the regularized identifica-
tion algorithm when the concept of experiment randomization is applied to determine the
standard relaxation modulus models.

To examine the impact of the measurement noises for every pair (N, σ), the experiment
(simulated stress relaxation test) was repeated n = 50 times, generating the measurement
noises {zi} independently by random choice with a normal distribution, with zero mean
value and variance σ2.

Next, to estimate the approximation error of the relaxation modulus measurements
for the n-element sample, the mean optimal relaxation modulus approximation error
was determined:

ERRQN =
1
n ∑n

j=1 QN

(
gλ̂

N,j

)
, (40)
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where gλ̂
N,j is the vector of optimal model parameters determined for j-th experiment

repetition for given pair (N, σ), j = 1, . . . , n.
The mean optimal integral error of the true relaxation modulus approximation

ERRQ =
1
n ∑n

j=1 Q
(

gλ̂
N,j

)
(41)

was also computed.
By generalization of the distance between the regularized vector of model parameters

gλ̂
N,j and the measurement-independent vector g∗λ̂ (for noise-free measurements), estimated

by relative error ERR (39), for the n element sample, the mean relative error of the parameter
g∗λ̂ approximation was defined as

MERR =
1
n ∑n

j=1 ‖g
λ̂
N,j − g∗λ̂‖

2

2
/‖g∗λ̂‖

2
2·100%. (42)

The index ERRQN (40) as a function of N and σ is depicted in the bar in Figure 6;
linear scales are used for the index ERRQN axis.
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Figure 6. The mean empirical error ERRQN (40) of the optimal relaxation modulus approximation as
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We can see that ERRQN for N > 100 does not depend essentially on the number
of measurements, neither for small nor large noises. For the five- and seven-parameter
Maxwell model, the algorithm ensures very good quality of the measurement approxima-
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tion even for large noises, and for the three-parameter and KWW model, the measurement
data fit is ten times weaker than for the five-parameter Maxwell model, but it is still a good
approximation. For these models, with a poorer approximation quality, the impact of noises
on the approximation quality is weaker than for the five- and seven-parameter Maxwell
models, for which the approximation error comes primarily from measurement noises,
especially for the seven-parameter model. However, for the five- and seven-parameter
Maxwell models, the impact of noises on the approximation quality is slightly larger, and
the indices of the order 10−5 ÷ 10−4 are really very small.

Figure 7 illustrates the dependence of the index ERRQ (41) on N and σ; for the three-
parameter Maxwell model and the KWW model, linear scales are used for the ERRQ axis,
while for the five- and seven-parameter Maxwell models, a logarithmic scale is applied.
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Figure 7. The mean optimal integral error of the true relaxation modulus approximation ERRQ (41)
as a function of the number of measurements N and the noise of standard deviation σ for: (a) three-;
(b) five-; and (c) seven-parameter Maxwell models (26); (d) KKW Model (28).

The mean integral error ERRQ is, generally, a decreasing function of the number of
sampling points and an increasing function of the noise standard deviation, as depicted
in Figure 7. This is particularly visible in Figure 7c for the seven-parameter Maxwell
model, which has an excellent fit to the measurement data, compare also Figure 6c. The
interpretation of Figure 7c becomes quite clear when we take into account the convergence
analysis conducted above. As we have shown, the global integral index Q(g) (strictly the
function L(g, λ) (14)) converges exponentially both with the increase in the number of
measurements N and with the decrease in the noise variance σ2; compare the inequality in
Equation (22) and the definition of M̂ (23).
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The relationships of the mean relative errors MERR (42) with N and σ are depicted in
Figure 8; a logarithmic scale is used for the MERR axis in all subfigures. We can see that
MERR decreases exponentially with the increasing number of measurements (logarithmic
scale). This index is particularly small for more accurate models (five- and seven-parameter
Maxwell models). It is of the order of 10−7÷ 10−3 % for N ≥ 100 and even for the strongest
disturbances, which practically means determining the globally optimal parameter g∗λ.
The characteristics from Figure 8 also confirm the noise robustness of the estimators gλ̂

N
of the optimal parameter g∗λ, also for models that approximate the measurement data
less well.
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MERR (42) as a function of the number of measurements N and the noise of standard deviation σ

for: (a) three-; (b) five-; and (c) seven-parameter Maxwell models (26); (d) KKW Model (28).

To sum up, not so much the dependence of the empirical index ERRQN (40), but
primarily the courses of the indices MERR (42) and ERRQ (41) as the functions of N,
indicate the asymptotic independence of the model from the sampling points. The five- or
even seven-parameter Maxwell models are necessary for an almost excellent fitting of the
data, if the sampling time instants are chosen in an appropriate way.

4. Conclusions

The analytical analysis and numerical studies proved that an arbitrarily precise ap-
proximation of the optimal regularized relaxation modulus model that is independent of
the sampling instants can be derived from relaxation modulus data sampled randomly
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according to respective randomization, when the number of the measurements applied
in the stress relaxation test grows large, despite the fact that the real description of the
relaxation modulus is completely unknown. The parameters of the approximate model
are strongly consistent estimates of the parameters of the sampling-instants-independent
model. The assumed conditions and restrictions are related primarily to a model, which
can be selected to a certain extent, not to the real relaxation modulus.

The resulting identification procedure is very useful in application, because it does
not require any other experimental technique that is more sophisticated than a priori
independent random sampling of time instants from the assumed set according to a
stationary rule. Therefore, the general statement that the choice of the sampling instants
has fundamental meaning for the identified model finds the expected confirmation also
in the context of polymer rheological models. Applying the scheme proposed, the three-,
five- and seven-parameter Maxwell models and KWW models were determined, and the
convergence of the sequence of the optimal parameters was demonstrated.

The relaxation modulus identification problem is not to achieve a true description of
the real relaxation modulus, but one that is a “sufficiently or optimally accurate”. Modern
computer-aided engineering design systems with an application of different polymers
and different engineering plastics are combined with increasingly stronger applications
of mathematical models and model-based numerical design methods. The more accurate
and universal the model is, the better the design results may be. Therefore, an optimal
sampling-instants-independent model provides more information for engineering design
purposes than one that depends on the specific experiment data used in the experiment.

Fractional viscoelasticity, a new formalism introduced for the mathematical modeling
of rheological materials, has been verified by many studies to be a solid tool to describe the
relaxation processes in polymers exhibiting both exponential and nonexponential types.
Fractional order models have gained research interest due to their improved flexibility
compared with those offered by their classic, integer-order counterparts. However, the most
known among them, the Blair–Scott and fractional Maxwell models, do not meet all the
assumptions adopted here. The applicability of the idea of identification of the model, being
asymptotically independent of the time instants used in the stress relaxation experiment, to
the fractional order models determination will be the subject of future research.

The paper is concerned with the relaxation modulus modeling, but the proposed
identification scheme can also be successfully applied to the identification of the creep
compliance models, for example the Kelvin–Voigt model, using the measurements obtained
in the creep test, whenever the respective set of sampling times is open to manipulation
during the data collection.
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Appendix A

Appendix A.1. Derivation of the Inequality (22)

Note that for any λ > 0, by (14) and (15), we have

0 ≤ L
(

gλ
N , λ

)
− L

(
g∗λ, λ

)
≤ L

(
gλ

N , λ
)
− LN

(
gλ

N , λ
)
+ LN

(
gλ

N , λ
)
− L

(
g∗λ, λ

)
, (A1)
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where the functional LN(g) is defined by Equation (10). Since, by (13) and (10), LN
(
gλ

N , λ
)
≤

LN
(
g∗λ, λ

)
, inequality (A1) implies that

0 ≤ L
(

gλ
N , λ

)
− L

(
g∗λ, λ

)
≤ L

(
gλ

N , λ
)
− LN

(
gλ

N , λ
)
+ LN

(
g∗λ, λ

)
− L

(
g∗λ, λ

)
,

which can be rewritten as

0 ≤ L
(

gλ
N , λ

)
− L

(
g∗λ, λ

)
≤ L

(
gλ

N , λ
)
+ σ2− LN

(
gλ

N , λ
)
+ LN

(
g∗λ, λ

)
− L

(
g∗λ, λ

)
− σ2,

whence the next estimation follows:∣∣∣L(gλ
N , λ

)
− L

(
g∗λ, λ

)∣∣∣ ≤ 2 sup
g∈G

∣∣∣L(g, λ) + σ2 − LN(g, λ)
∣∣∣.

The above, by (14) and (10), is equivalent to∣∣∣L(gλ
N , λ

)
− L

(
g∗λ, λ

)∣∣∣ ≤ 2sup
g∈G

∣∣∣Q(g) + σ2 −QN(g)
∣∣∣, (A2)

where the upper bound does not depend on the regularizer term R(g).
The relaxation modulus measurements are corrupted by noises Zi and Gi = Gi + Zi.

Define for i = 1, . . . , N i.i.d. random variables:

Xi(g) = Q(g) + σ2 − [Gi + Zi − GM(Ti, g)]2. (A3)

In view of Equation (7), EXi(g) = 0 for any g ∈ G. By Assumptions 1–4 and the fact that
the weighting function ρ(t) ≥ 0 is a density on T , there is a positive constant M̃ so that for
any i = 1, . . . , N and any g ∈ G, we have∣∣∣Q(g)− [Gi − GM(Ti, g)]2

∣∣∣ ≤ M̃, (A4)

whence, bearing in mind (A3), under Assumptions 5 and 6, for any i = 1, . . . , N and g ∈ G,
the next estimation follows:

|Xi(g)| ≤ M̃ + σ2 + δ2 + 2θδ = M̂, (A5)

where the positive constant θ is such that |G(Ti)− GM(Ti, g)| ≤ θ for every = 1, . . . , N and
g ∈ G. In view of Assumptions 1–4, such a constant exists, and it can be evaluated without
difficulty: θ = M + M3 can be taken according to (4). Thus, random variables Xi(g) are
collectively bounded on the set G.

In view of (8) and (A3),∣∣∣Q(g) + σ2 −QN(g)
∣∣∣ = 1

N

∣∣∣∑N
i=1 Xi(g)

∣∣∣.
Due to the compactness of G and the continuity of the indices Q(g) and QN(g), there

is a g̃ ∈ G so that

sup
g∈G

∣∣∣Q(g) + σ2 −QN(g)
∣∣∣ = ∣∣∣Q(g̃) + σ2 −QN(g̃)

∣∣∣ = 1
N

∣∣∣∑N
i=1 Xi(g̃)

∣∣∣. (A6)

Now, combining (A2) and (A6), we have∣∣∣L(gλ
N , λ

)
− L

(
g∗λ, λ

)∣∣∣ ≤ 2
N

∣∣∣∑N
i=1 Xi(g̃)

∣∣∣. (A7)
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Since, keeping (A5) in mind, by using Hoeffding’s inequality [24], for every ε̃ > 0,
we obtain

P
{∣∣∣∑N

i=1 Xi(g̃)
∣∣∣ ≥ ε̃

}
≤ 2 exp

(
−2ε̃2

N
(
2M̂
)2

)
,

and whence, by the inequality (A7), we finally have the following bound:

P
{∣∣∣L(gλ

N , λ
)
− L

(
g∗λ, λ

)∣∣∣ ≥ ε
}
≤ P

{∣∣∣∑N
i=1 Xi(g̃)

∣∣∣ ≥ Nε

2

}
≤ 2 exp

(
−Nε2

8M̂2

)
= 2 exp

 −Nε2

8
(

M̃ + σ2 + δ2 + 2θδ
)2


for any ε > 0, whence putting θ = M + M3, inequality (22) results with M̂ (23) yielded by
the right equality in (A5).

Appendix A.2. Proof of Proposition 3

Let g 6= gλ̂
N be an arbitrary admissible solution of the optimization task (25), whence

QN(g) ≤ Q̂N . Since gλ̂
N solves (13) for the regularization parameter λ̂, the following

inequality holds:
QN

(
gλ̂

N

)
+ λ̂ R

(
gλ̂

N

)
≤ QN(g) + λ̂R(g),

which, bearing in mind that by (24), we have QN

(
gλ̂

N

)
= Q̂N , yields

Q̂N −QN(g) ≤ λ̂
[

R(g)− R
(

gλ̂
N

)]
,

which together with the preceding implies that

R(g) ≥ R
(

gλ̂
N

)
,

for an arbitrary admissible g, i.e., gλ̂
N is the solution of the optimization task (25).

Appendix A.3. Proof of Lemma 1

By virtue of the identification index definition (8), the Schwarz inequality related to
the scalar product of the vectors g and Wg0 and the assumption |GM(t, g)| ≤ p‖g‖2, the
following inequality holds:

QN(g) + λ(g− g0)
TW(g− g0) ≥

1
N ∑N

i=1

[
Gi
]2 − 2p

N ∑N
i=1

∣∣Gi
∣∣‖g‖2 + λgTWg− 2λ‖g‖2‖Wg0‖2 + λgT

0 Wg0, (A8)

for any λ > 0 and any g ∈ RK
+. Using the left of the known Rayleigh–Ritz inequalities [62]

(Lemma I),
λmin(X)xTx ≤ xTXx ≤ λmax(X)xTx, (A9)

which holds for any x ∈ RK and any symmetric matrix X = XT ∈ RK,K, where λmin(X)
and λmax(X) are minimal and maximal eigenvalues of X, and bearing in mind that in
the case considered (Assumptions 1 and 6) of

∣∣Gi
∣∣ ≤ M + δ for i = 1, . . . , N, inequality

(A8) yields

QN(g) + λ(g− g0)
TW(g− g0) ≥

1
N ∑N

i=1

[
Gi
]2 − 2p

N ∑N
i=1(M + δ)‖g‖2 + λ λmin(W)‖g‖2

2 − 2λ‖g‖2‖Wg0‖2 + λgT
0 Wg0.

By Assumption 3, we have GM(t, 0K) = 0 for any t ∈ T , and therefore, Equation (8)
immediately yields QN(0K) =

1
N ∑N

i=1
[
Gi
]2. Therefore, for any g ∈ RK

+ so that ‖g‖2 > M,
where M is defined by (32), the inequality holds that

QN(g) + λ(g− g0)
TW(g− g0) > QN(0K) + λgT

0 Wg0,
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whence the equivalence of the minimization tasks in Equation (33) follows. The proof
is completed.

Appendix A.4. Proof of Lemma 2

Via Equations (5) and (11), bearing in mind the left hand side inequality (A9), we have

Q(g) + λ(g− g0)
TW(g− g0) ≥

∫
T

G(t)2ρ(t)dt− 2
∫
T

G(t)GM(t, g)ρ(t)dt + λ λmin(W)‖g‖2
2 − 2λ‖g‖2‖Wg0‖2 + λgT

0 Wg0. (A10)

Via Assumption 1 and due to the non-negative definiteness of the true relaxation
modulus and the relaxation modulus model, the following inequality holds:∫

T
G(t)GM(t, g)ρ(t)dt ≤ M

∫
T

GM(t, g)ρ(t)dt,

which in view of the assumption |GM(t, g)| ≤ p‖g‖2 and the equality
∫
T ρ(t)dt = 1 yield∫

T
G(t)GM(t, g)ρ(t)dt ≤ Mp‖g‖2.

Therefore, by inequality (A10), we have

Q(g)+λR(g) ≥
∫
T

G(t)2ρ(t)dt− 2Mp‖g‖2 +λ λmin(W)‖g‖2
2− 2λ‖g‖2‖Wg0‖2 +λgT

0 Wg0.

Since R(0K) = gT
0 Wg0, the above inequality means that if ‖g‖2 > M, where M is given by

(35), then Q(g) + λR(g) > Q(0K) + λR(0K), i.e., the equivalence of two optimization tasks
in Equation (36) is now proved.

Appendix B

Appendix B.1. Data Concerning the GMA Rule and Optimal Model Parameter g∗λ̂ for the
Three-Parameter Maxwell Model (26)

Table A1. The elements E1N , v1N and E∞N of the reference parameter vector gN of three-parameter
Maxwell model (26), minimizing (for N = 50) the mean quadratic identification index QN(gN) (8),
the minimal index QN(gN) and the model approximation index Q̂N that are assumed for GMA rule
(24), optimal regularization parameters λ̂ for the standard deviations σ = 0.001, 0.004, 0.007 [Pa],
parameters E∗λ̂1 , v∗λ̂1 and E∗λ̂∞ of the optimal regularized models solving optimization task (15) for

respective regularization parameters λ̂, integral model approximation indices Q
(

g∗λ̂
)

, Equation (5).
In the last raw diagonal elements wkk, k = 1, 2, 3 of the weight matrix W (38) are given.

σ [Pa] ^
λ QN(

¯
gN) [Pa2]

^
QN [Pa2]

¯
E1N [Pa]

¯
v1N [s−1]

¯
E∞N [Pa]

0.001 1.568 × 10−2 4.1107 × 10−3 0.0042 1.85421 7.21454 × 10−3 5.6666 × 10−2

0.004 1.72 × 10−2 4.2363 × 10−3 0.0043 1.85204 7.18845 × 10−3 5.70563 × 10−2

0.007 1.79 × 10−2 4.3894 × 10−3 0.0045 1.84983 7.16194 × 10−3 5.7437 × 10−2

σ [Pa] ^
λ Q(g∗

^
λ) [Pa2] E∗

^
λ

1 [Pa] v∗
^
λ

1 [s−1] E∗
^
λ

∞ [Pa]

0.001 1.568 × 10−2 9.5165 × 10−3 2.03641 8.77502 × 10−3 5.5975 × 10−2

0.004 1.72 × 10−2 9.5368 × 10−3 2.03459 8.74101 × 10−3 5.48663 × 10−2

0.007 1.79 × 10−2 9.5464 × 10−3 2.03377 8.72578 × 10−3 5.43696 × 10−2

w11 w22 w33

0.001 1 10
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Figure A1. The optimal Maxwell model parameters: (a) 𝐸 ; (b) 𝑣 ; (c) 𝐸 ; and (b) integral iden-
tification index 𝑄 𝒈 , Equation (5), as the functions of the number of measurements 𝑁 for noises 𝜎 = 0.001, 0.004, 0.007 [Pa]; the horizontal violet lines correspond to the elements 𝐸∗ , 𝑣∗ , 𝐸∞∗  of 
the optimal regularized parameter 𝒈∗   (subfigures (a–c)) and to the respective quadratic index 𝑄 𝒈∗  (subfigure (d)). The regularization parameters 𝜆 are given in Table A1. The caret under 𝜆 
variable has been omitted to simplify the description of the plot axes. 
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Table A2. The elements 𝐸 , �̅� , 𝐸 , �̅�  and 𝐸  of the reference vector 𝒈  for five-parameter 
Maxwell model (26), minimizing for 𝑁 = 50 the identification index 𝑄 𝒈  (8), the minimal in-
dex 𝑄 𝒈 , model approximation index 𝑄  assumed for GMA rule (24), optimal regularization 
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Figure A1. The optimal Maxwell model parameters: (a) Eλ̂
1N ; (b) vλ̂

1N ; (c) Eλ̂
∞N ; and (d) integral

identification index Q
(

gλ̂
N

)
, Equation (5), as the functions of the number of measurements N for

noises σ = 0.001, 0.004, 0.007 [Pa]; the horizontal violet lines correspond to the elements E∗λ̂1 , v∗λ̂1 ,
E∗λ̂∞ of the optimal regularized parameter g∗λ̂ (subfigures (a–c)) and to the respective quadratic index

Q
(

g∗λ̂
)

(subfigure (d)). The regularization parameters λ̂ are given in Table A1. The caret under λ̂

variable has been omitted to simplify the description of the plot axes.



Polymers 2023, 15, 4605 28 of 35

Appendix B.2. Data Concerning the GMA Rule and Optimal Model Parameter g∗λ̂ for the
Five-Parameter Maxwell Model (26)
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Figure A2. The optimal Maxwell model parameters: (a) 𝐸 ; (b) 𝑣 ; (c) 𝐸 ; (d) 𝑣 ; (e) 𝐸 ; and 
(f) integral identification index 𝑄 𝒈 , Equation (5), as the functions of the number of measure-
ments 𝑁  for noises 𝜎 = 0.001, 0.007 [Pa] ; the horizontal violet lines correspond to the elements 𝐸∗ , 𝑣∗ , 𝐸∗ , 𝑣∗  and 𝐸∞∗  of the optimal regularized parameter 𝒈∗  (subfigures (a–e)) and to the 
respective quadratic index 𝑄 𝒈∗  (subfigure (f)). The regularization parameters 𝜆 are given in Ta-
ble A2. The caret for 𝜆 variable has been omitted to simplify the description of the plot axes. 
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Table A2. The elements E1N , v1N , E2N , v2N and E∞N of the reference vector gN for five-parameter
Maxwell model (26), minimizing for N = 50 the identification index QN(gN) (8), the minimal
index QN(gN), model approximation index Q̂N assumed for GMA rule (24), optimal regularization
parameters λ̂ for the standard deviations σ = 0.001, 0.004, 0.007 [Pa], parameters E∗λ̂1 , v∗λ̂1 , E∗λ̂2 , v∗λ̂2
and E∗λ̂∞ of the optimal regularized models solving optimization task (15) for respective regularization

parameters λ̂, integral model approximation indices Q
(

g∗λ̂
)

, Equation (5). In the last raw diagonal
elements wkk, k = 1, . . . , 5 of the weight matrix W (38) are given.

σ [Pa] ^
λ QN(

¯
g N) [Pa2]

^
QN [Pa2]

¯
E1N [Pa]

¯
v1N [s−1]

¯
E2N [Pa]

¯
v2N [s−1]

¯
E∞N [Pa]

0.001 2.51 × 10−3 4.4403 × 10−6 5.0 × 10−6 0.95212 3.63025 × 10−3 1.74059 3.16799 × 10−2 9.84 × 10−3

0.004 2.62 × 10−3 1.9897 × 10−6 2.0 × 10−5 0.93879 3.55242 × 10−3 1.73906 3.08364 × 10−2 8.473 × 10−3

0.007 2.77 × 10−3 6.0773 × 10−5 6.12 × 10−5 0.92754 3.48427 × 10−3 1.73970 3.01797 × 10−2 7.322 × 10−3

σ [Pa] ^
λ Q(g∗

^
λ) [Pa2] E∗

^
λ

1 [Pa] v∗
^
λ

1 [s−1] E∗
^
λ

2 [Pa] v∗
^
λ

2 [s−1] E∗
^
λ

∞ [Pa]

0.001 2.51 × 10−3 4.8799 × 10−5 1.02699 3.87801 × 10−3 2.05434 4.29624 × 10−2 1.287 × 10−2

0.004 2.62 × 10−3 4.8841 × 10−5 1.02679 3.87669 × 10−3 2.05449 4.29512 × 10−2 1.2824 × 10−2

0.007 2.77 × 10−3 4.8851 × 10−5 1.02709 3.87711 × 10−3 2.05427 4.29646 × 10−2 1.2787 × 10−2

w11 w22 w33 w44 w55

0.01 1 0.0001 0.1 10

Appendix B.3. Data Concerning the GMA Rule and Optimal Model Parameter g∗λ̂ for the
Seven-Parameter Maxwell Model (26)
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Figure A3. The parameters of the optimal seven-parameter Maxwell model: (a) 𝐸  ; (b) 𝑣  ; (c) 𝐸  ; (d) 𝑣   as the functions of the number of measurements 𝑁  for noises 𝜎 =0.001, 0.004, 0.007 [Pa] ; the horizontal violet lines correspond to the elements 𝐸∗  , 𝑣∗  , 𝐸∗   and 𝑣∗  of the optimal regularized parameter 𝒈∗ . The regularization parameters 𝜆 are given in Table 
A3. The caret for 𝜆 variable has been omitted to simplify the description of the plot axes. 

  
(a) (b) 

Figure A3. The parameters of the optimal seven-parameter Maxwell model: (a) Eλ̂
1N ; (b) vλ̂

1N ; (c) Eλ̂
2N ;

(d) vλ̂
2N as the functions of the number of measurements N for noises σ = 0.001, 0.004, 0.007 [Pa]; the

horizontal violet lines correspond to the elements E∗λ̂1 , v∗λ̂1 , E∗λ̂2 and v∗λ̂2 of the optimal regularized
parameter g∗λ̂. The regularization parameters λ̂ are given in Table A3. The caret for λ̂ variable has
been omitted to simplify the description of the plot axes.
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Figure A3. The parameters of the optimal seven-parameter Maxwell model: (a) 𝐸  ; (b) 𝑣  ; (c) 𝐸  ; (d) 𝑣   as the functions of the number of measurements 𝑁  for noises 𝜎 =0.001, 0.004, 0.007 [Pa] ; the horizontal violet lines correspond to the elements 𝐸∗  , 𝑣∗  , 𝐸∗   and 𝑣∗  of the optimal regularized parameter 𝒈∗ . The regularization parameters 𝜆 are given in Table 
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Figure A4. The parameters of the optimal seven-parameter Maxwell model: (a) 𝐸 ; (b) 𝑣 ; (c) 𝐸 ; and (d) integral identification index 𝑄 𝒈 , Equation (5), as the functions of the number of 
measurements 𝑁 for noises 𝜎 = 0.001, 0.004, 0.007 [Pa]; the horizontal violet lines correspond to 
the elements 𝐸∗  , 𝑣∗   and 𝐸∗   of the optimal regularized parameter 𝒈∗   (subfigures (a–c)) and 
the respective quadratic index 𝑄 𝒈∗  (subfigure (d)). The regularization parameters 𝜆 are given 
in Table A3. The caret for 𝜆 variable has been omitted to simplify the description of the plot axes. 
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KWW Model (28) 
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0.001 1.31 × 10−3 6.4994 × 10−4  3.96037 3.04633 × 10−2 0.43159 
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Figure A4. The parameters of the optimal seven-parameter Maxwell model: (a) Eλ̂
3N ; (b) vλ̂

3N ; (c) Eλ̂
∞N ;

and (d) integral identification index Q
(

gλ̂
N

)
, Equation (5), as the functions of the number of measure-

ments N for noises σ = 0.001, 0.004, 0.007 [Pa]; the horizontal violet lines correspond to the elements
E∗λ̂3 , v∗λ̂3 and E∗λ̂∞ of the optimal regularized parameter g∗λ̂ (subfigures (a–c)) and the respective

quadratic index Q
(

g∗λ̂
)

(subfigure (d)). The regularization parameters λ̂ are given in Table A3. The

caret for λ̂ variable has been omitted to simplify the description of the plot axes.

Table A3. The elements E1N , v1N , E2N , v2N , E3N , v3N and E∞N of the reference vector gN of seven-
parameter Maxwell model (26), minimizing (for N = 50) identification index QN(gN) (8), the
minimal index QN(gN) and model approximation index Q̂N assumed for GMA rule (24), optimal
regularization parameters λ̂ for the standard deviations σ = 0.001, 0.004, 0.007 [Pa], parameters E∗λ̂1 ,
v∗λ̂1 , E∗λ̂2 , v∗λ̂2 , E∗λ̂3 , v∗λ̂3 and E∗λ̂∞ of the optimal regularized models solving optimization task (15) for

respective parameters λ̂, integral model approximation indices Q
(

g∗λ̂
)

, Equation (5). In the last raw
diagonal elements wkk, k = 1, . . . , 7 of the weight matrix W (38) are given.

σ [Pa] ^
λ QN ( ḡ N ) [Pa2]

^
QN [Pa2]

¯
E 1N [Pa] v̄ 1N [s−1]

¯
E 2N [Pa] v̄ 2N [s−1]

¯
E 3N [Pa] v̄ 3N [s−1]

¯
E ∞N [Pa]

0.001 1.27 × 10−3 2.1028 × 10−6 1.6 × 10−5 0.9191 3.532 × 10−3 0.72158 2.0778 × 10−2 1.42317 5.5709 × 10−2 8.427 × 10−3

0.004 9.2 × 10−4 1.9802 × 10−5 2.6 × 10−5 0.93211 3.533 × 10−3 0.89967 2.5898 × 10−2 0.9034 3.9878 × 10−2 8.178 × 10−3

0.007 1.02 × 10−3 6.0766 × 10−5 6.745 × 10−5 0.92678 3.479 × 10−3 0.90175 3.0131 × 10−2 0.8378 3.0130 × 10−2 7.115 × 10−3

σ [Pa] ^
λ Q(g∗

^
λ ) [Pa2] E∗

^
λ

1 [Pa] v∗
^
λ

1 [s−1] E∗
^
λ

2 [Pa] v∗
^
λ

2 [s−1] E∗
^
λ

3 [Pa] v∗
^
λ

3 [s−1] E∗
^
λ

∞ [Pa]

0.001 1.27 × 10−3 1.3786 × 10−5 0.96267 3.671 × 10−3 1.03609 2.7733 × 10−2 1.09812 6.2789 × 10−2 1.0358 × 10−2

0.004 9.2 × 10−4 9.2425 × 10−6 0.95907 3.659 × 10−3 1.11782 6.445 × 10−2 1.03771 2.7318 × 10−2 1.0186 × 10−2

0.007 1.02 × 10−3 1.1645 × 10−5 0.96314 3.673 × 10−3 1.03848 2.7766 × 10−2 1.10342 6.3286 × 10−2 1.0399 × 10−2
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Appendix B.4. Data Concerning the GMA Rule and Optimal Model Parameter g∗λ̂ for the KWW
Model (28)
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Figure A5. The optimal parameters of KWW model (28): (a) 𝐺 ; (b) 𝑣 ; (c) 𝛽 ; and (d) integral 
identification index 𝑄 𝒈 , Equation (5), as the functions of the number of measurements 𝑁 for 
noises 𝜎 = 0.001, 0.004, 0.007 [Pa]; the horizontal violet lines correspond to the elements 𝐺∗ , 𝑣∗  
and 𝛽∗   of the parameter 𝒈∗   (subfigures (a–c)) and to the respective quadratic index 𝑄 𝒈∗  
(subfigure (d)). The regularization parameters 𝜆 are given in Table A4. The caret for 𝜆 variable has 
been omitted to simplify the description of the plot axes. 
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Table A4. The elements G0N , vrN and βN of the reference vector gN of the KWW model (28), mini-
mizing for N = 50 identification index QN(gN) (8), the index QN(gN) and the model approximation
index Q̂N assumed for GMA rule (24), optimal regularization parameters λ̂ for the standard devia-
tions σ = 0.001, 0.004, 0.007 [Pa], parameters G∗λ̂0 , v∗λ̂r and β∗λ̂ of the optimal regularized models

solving optimization task (15) for respective λ̂, integral model approximation indices Q
(

g∗λ̂
)

(5). In
the last raw diagonal elements wkk, k = 1, 2, 3 of the weight matrix W (38) are given.

σ [Pa] ^
λ QN(

¯
gN) [Pa2]

^
QN [Pa2]

¯
G0N [Pa]

¯
vrN [s−1]

¯
βN [−]

0.001 1.31 × 10−3 3.4881 × 10−4 3.60 × 10−4 3.99652 2.96219 × 10−2 0.43412
0.004 3.01 × 10−3 3.8915 × 10−4 3.91 × 10−4 4.01451 2.98816 × 10−2 0.43236
0.007 2.87 × 10−3 4.5689 × 10−4 4.96 × 10−4 4.03218 3.01369 × 10−2 0.43064

σ [Pa] ^
λ Q(g∗

^
λ) [Pa2] G∗

^
λ

0 [Pa] v∗
^
λ

r [s−1] β∗
^
λ [−]

0.001 1.31 × 10−3 6.4994 × 10−4 3.96037 3.04633 × 10−2 0.43159
0.004 3.01 × 10−3 6.6262 × 10−4 3.87901 2.89852 × 10−2 0.43771
0.007 2.87 × 10−3 6.6129 × 10−4 3.88528 2.90969 × 10−2 0.43723

w11 w22 w33

0.02 1 0.1
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