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Abstract: In this study, an artificial neural network (ANN) was established to predict product
properties (mass, diameter, height) using six process conditions of the injection-molding process
(melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling
time) as input parameters. The injection-molding process consists of continuous sequential stages,
including the injection stage, packing stage, and cooling stage. However, the related research tends to
have an insufficient incorporation of structural characteristics based on these basic process stages.
Therefore, in order to incorporate these process stages and characteristics into the ANN, a process-
based multi-task learning technique was applied to the connection between the input parameters and
the front-end of the hidden layer. This resulted in the construction of two network structures, and
their performance was evaluated by comparing them with the typical network structure. The results
showed that a multi-task learning architecture that incorporated process-level specific structures in
the connections between the input parameters and the front end of the hidden layer yielded relatively
better root mean square errors (RMSEs) values than a conventional neural network architecture,
by as much as two orders of magnitude. Based on these results, this study has provided guidance
for the construction of artificial neural networks for injection-molding processes that incorporates
process-stage specific features and structures in the architecture.

Keywords: quality prediction; multi-task learning; input parameter; multi-input; learning structure;
optimization; injection step; packing step; cooling step

1. Introduction

Injection molding is one of the most prominent processes in the plastics manufacturing
industry, known for its various advantages, such as short production times, high-volume
production, and high dimensional accuracy [1,2]. In this process, plastics are heated above
their melting point to a molten state and then injected into cavities within a mold at high
speeds and pressures. Given the characteristics of this process, variables such as melt
temperature, mold temperature, and injection speed are critical factors in determining the
quality of molded products. Therefore, optimizing these factors is a critical process for
improving product quality and productivity in the injection-molding process [3–6].

To address this, computer-aided engineering (CAE) technology has been used to
model the relationships between injection-molding variables and the final product quality
and to optimize the process [7–10]. However, the analysis process of injection-molding
simulations using CAE involves numerous assumptions and often requires a significant
amount of computation time to accurately predict the final dimensions. In addition, due
to the inherent nonlinear characteristics of plastic resin and the injection-molding process,
there is a practical disparity between the predicted values for product characteristics such
as warpage and dimensions and their actual results. As a result, there has always been
a need for novel approaches to optimize the production of injection-molded products
with specific quality targets such as mass or length. Recently, there has been a growing
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trend for applying artificial neural network (ANN) technology to model and optimize
the relationships between input variables, such as resin temperature in injection-molding
processes, and output variables, such as mass or specific lengths. ANNs are a prominent
technique in the field of artificial intelligence, known for their robust performance in
uncovering complex, inherently nonlinear relationships. They find widespread applications
in various domains, including data mining, image processing, modeling of engineering
systems, and engineering control. Research efforts are also underway to apply ANNs
to injection-molding processes, focusing on optimizing the relationship between process
conditions and the molded product quality.

Ozcelik et al. [11] used a multi-input, single-output (MISO) structure to construct an
ANN with mold temperature, melt temperature, packing pressure, packing time, and cool-
ing time as input parameters. They predicted process conditions to minimize warpage and
verified the extent to which warpage was minimized by practical experiments. Yin et al. [12]
utilized identical sets of five input parameters and derived the warpage data for the auto-
motive glove compartment cap from CAE results, as opposed to relying on experiments.
Lee et al. [13] utilized shape-related data, including volume and area, alongside the conven-
tional six process conditions as input variables to anticipate the mass of a product across
various molds. The artificial neural network (ANN) was constructed by incorporating both
experimental data and computer-aided engineering (CAE) analysis results. Leveraging the
ANN model, they achieved favorable outcomes in establishing a system for determining
the optimal combination of input parameters applicable to molds of diverse shapes. Gim
et al. [14] employed sensors to measure cavity pressure and time. Subsequently, they iden-
tified five specific points—namely, the start of the filling stage, switchover point, maximum
cavity pressure, packing endpoint, and cooling endpoint. These points were chosen to
extract pressure and time values, serving as input parameters for an artificial neural net-
work (ANN) structure. The ANN was designed to predict the mass of the injection-molded
product (specifically a spiral) as the output parameter, using a multi-input, single-output
(MISO) approach. Furthermore, their research included a study on optimizing the molding
window through sensitivity analysis, yielding positive outcomes. Table 1 lists studies in
which MISO models are applied to the injection-molding process.

Table 1. Previous research on MISO model applied to the injection-molding process.

Author Input
Parameters

Output
Parameters

The Number of
Hidden Layers

The Number of Neurons
Per Hidden Layers

Ozcelik, B et al.
[11]

5
(Mold Temp., Melt Temp., Packing

pressure, Packing time, Cooling time)

1
(Warpage) 2 hidden layers 9 (1st)–9 (2nd)

Yin, F et al.
[12]

5
(Mold Temp., Melt Temp., Packing

pressure, Packing time, Cooling time)

1
(Warpage) 2 hidden layers 20 (1st)–20 (2nd)

Lee, C. H et al.
[13]

9
(Overall volume, Cavity volume,

Overall surface area, Cavity surface
area, Filling time, Melt Temp., Mold

Temp., Packing pressure, Packing
time)

1
(Weight) 2 hidden layers 28 (1st)–28 (2nd)

Gim, J. et al.
[14]

10
(Time and pressure value from sensor)

1
(Part weight) 1 hidden layer 8

Recently, research on multi-input, multi-output (MIMO)-structured ANNs has been
actively pursued, as seen in studies such as Abdul et al. [15] and Heinisch et al. [16], aimed
at predicting multiple target qualities under different process conditions. Table 2 lists
studies in which MIMO models are applied to the injection-molding process.
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Table 2. Previous research on MIMO applied to the injection-molding process.

Author Input
Parameters

Output
Parameters

The Number of
Hidden Layers

The Number of Neurons
Per Hidden Layers

Abdul, R et al.
[15]

3
(Injection speed, Holding time,

Cooling time)

2
(Length shrinkage,
Width shrinkage)

1 hidden layer 4 (1st)

Heinisch, J et al.
[16]

6
(Mold Temp., Melt Temp.,

Injection time, Packing pressure,
Packing time, Cooling time)

3
(Weight, Length,

Width)
1 hidden layer 5 (1st)

Huang, Y. M. et al.
[17]

5
(Injection speed, Packing time,

Mold Temp., Melt Temp.)

3
(Injection pressure,

Cooling time, Z
shrinkage)

2 hidden layers 7 (1st)–3 (2nd)

Gim, J. et al.
[14]

10
(Time and pressure value from

sensor)

5
(Injection pressure,
Cooling time, X, Y,

Z shrinkage)

2 hidden layers 11 (1st)–7 (2nd)

Lee. J. H. et al.
[18]

6
(Melt Temp., Mold Temp.,

Injection speed, Packing pressure,
Packing time, Cooling time)

3
(Mass, Diameter,

Height)

2 shared hidden
layers,

1 specific-task
hidden layer

6 (1st)-5 (2nd)-[4(mass),
3(diameter), 4(height)]

In most related studies, when the process conditions applied to injection-molding
processes were used as input variables, the architecture was constructed by providing them
to the hidden layers as a single task, without distinguishing between process stages or
features. However, the injection-molding process is essentially a continuous sequence of
stages, including injection, packaging, and cooling. The effect of process conditions on
each of these stages is different, and the preceding stage can also affect the subsequent
stage. In other words, if the input parameters of the injection, packing, and cooling
stages, which have different processes and characteristics, are simply applied to the neural
network as a group without distinguishing between the processes, it may be difficult to
distinguish the degree to which each process step affects the quality of the product and
update the weights and biases accordingly. From a microscopic point of view, each input
parameter, melt temperature, injection speed, etc., affects the quality of the product, but
from a macroscopic point of view, the quality of the product may vary depending on the
interaction and feedback of each process step, injection stage, packing stage, etc., so it may
be necessary to reflect the structure and characteristics of the process step at the macro
level in the ANN architecture. For example, the level of packing pressure affects the quality
of the product, but, from a macro perspective, it can also be analyzed that the quality of
the product depends on how the packing pressures are applied and interact during the
packing phase. However, in single-task learning with an undifferentiated input parameter
structure, this may be difficult to reflect in the update of the ANN. Therefore, although
detailed knowledge and experience of the injection-molding process may not be necessary
to construct ANNs, it may be necessary to construct an ANN by considering the basic
process steps to achieve structural optimization for the neural network.

To improve this, in this study, two different architectures were constructed to sepa-
rately address input parameters influencing the injection stage, those affecting the packing
stage, and those impacting the cooling stage in the existing artificial neural network struc-
ture. Then, the predictive performance was compared with that of the conventional neural
network, and an analysis was conducted on the importance of incorporating considera-
tions for process stages in the construction of artificial neural networks. The data-based
intelligent neural networks algorithm developed to minimize bubble defects occurring in
curved multi-display atmospheric bonding equipment under atmospheric environments
was applied to the injection-molding process. In order to incorporate the effect of each



Polymers 2023, 15, 4578 4 of 26

process stage of the injection-molding process into the structure of the ANN, a multi-task
learning technique was applied to the connection between the input parameters and the
front of the hidden layer. The methods for constructing ANN models can be categorized
into single-task learning and multi-task learning. Single-task learning involves a structure
in which the input layer, hidden layer, and output layer are connected for a single task.
Initially, the majority of neural network models were constructed using this single-task
learning approach. However, when integrating variables with inherently different char-
acteristics into a single task, during the update process of the ANN model, the features
of all variables become interrelated, leading to changes in the weights and biases of that
layer. Consequently, accurately reflecting the unique characteristics of each variable in
the model becomes challenging. As an example, when weights and biases are adjusted to
enhance the prediction accuracy of one output, the prediction accuracy of other outputs
may decrease. To address the shortcomings of single-task learning, a proposed method is
multi-task learning. In ANN models that incorporate multi-task learning, learning does not
occur solely for one task. Instead, variables are organized into separate layers as needed,
and multiple tasks are structured to progress independently, all within a single ANN model,
as shown Figure 1. Multi-task learning allows individualized learning for each variable,
distinguishing them by their characteristics and creating separate tasks. This approach can
lead to the construction of more efficient and appropriate ANN models for each variable, as
opposed to single-task learning. In this study, the performance of ANNs based on process-
specific architectures was evaluated by applying multi-task learning at the front-end of
shared layers to account for the sequence-specific features of injection-molding processes
in the input parameters.
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parameter sharing [19,20].

An ANN with a multi-task learning structure was constructed by categorizing the
six process conditions—melt temperature, mold temperature, injection speed, packing
pressure, packing time, and cooling time—into injection phase, packing phase and cooling
phase. Based on this, two new structures were constructed that incorporated the process
stages into the connection between the input parameters and the front-end of the hidden
layer, and their performance was compared with the conventional neural network structure.
The output parameters included the mass, diameter, and height of the molded product.
In order to compare the performance in different scenarios, a MISO neural network with
single output parameters for mass, diameter, and height were constructed and their perfor-
mance was compared. In addition, based on this, the need and guidance for integrating
process stage-specific structures into ANN architectures for injection-molding processes
were provided.
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2. Experiment
2.1. Material and Molding Equipment

In this study, injection-molding experiments were conducted to collect data for build-
ing an artificial neural network (ANN), using a single-cavity mold to produce a bowl-
shaped product with a diameter of 99.90 mm and a height of 50.80 mm, as shown in Figure 2.
Both the sides and the bottom of the product have a uniform thickness of 3.00 mm. The
product was injection-molded using LG Chem’s polypropylene (PP), specifically LUPOL
GP1007F, and the material properties provided by the manufacturer are shown in Table 3.
For the injection-molding experiments, a 150-t injection molding machine (LGE II-150,
LSMtron) was used.
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Figure 2. Images of the bowl used in this study.

Table 3. Material properties of the polypropylene (LUPOL GP1007F, LG Chemical Co. Ltd., Seoul,
Republic of Korea) [21].

Properties Standard Condition Unit Value

Physical
Specific gravity ASTM D792 - - 0.94

Melt flow rate ASTM D1238
230 ◦C, g/10 min 13.02.16 kg

Mechanical

Tensile strength
ASTM D638 50 mm/min kgf/cm2 290(3.2 mm)

Flexural strength
ASTM D790 10 mm/min kgf/cm2 380(6.4 mm)

Thermal Heat deflection
Temp. (6.4 mm) ASTM D648 4.6 kg ◦C 110

2.2. Experimental Conditions

In the injection-molding experiments, six controllable variables were selected: melt
temperature, mold temperature, injection speed, packing pressure, packing time, and
cooling time. These six process variables are widely recognized as representative factors in
injection-molding processes. They are commonly applied as process conditions in actual
injection-molding analyses or experiments and are considered key process variables in
various studies for optimizing injection-molding processes [3,4,6,8,9,11–13,15–18]. The melt
temperature and mold temperature ranges for the injection-molding experiments were
set from 200 ◦C to 240 ◦C at three levels, as shown in Table 4, based on the recommended
conditions provided by the resin manufacturer (LG Chem, Seoul, Republic of Korea) and
using material data from Autodesk Moldflow Insight 2023 (45.1.117), an injection-molding
analysis software.
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Table 4. Process conditions and levels for the injection-molding experiment.

Conditions Level 1 Level 2 Level 3

Melt temperature (◦C) 200 220 240
Mold temperature (◦C) 40 50 60
Injection speed (mm/s) 40 70 100
Packing pressure (bar) 150 200 250

Packing time (s) 6.0 12.0 18.0
Cooling time (s) 38 48 58

The injection speed and cooling time were derived through CAE analysis using
Moldflow Insight 2023. For the injection speed, a level was determined through actual
injection-molding experiments to ensure trouble-free product production. Then, the varia-
tion in injection time with respect to injection speed was interpreted up to this speed. Based
on this, the range where injection speed and injection time exhibit a linear relationship
was identified, and the operating levels for injection speed were set, as in Table 4. The
cooling time was determined by analyzing the injection-molding process under extreme
conditions to derive the minimum time required for the product to reach 100% solidification
or eject temperature. An additional 10 s was then added to this time to determine the
levels in Table 4. Packing conditions were determined through actual injection-molding
experiments to ensure trouble-free product formation. Specifically, for packing time, the
point at which the gate of the product solidifies, indicating the moment when no more
material is injected, was identified. This defined the reference time, and the levels in Table 4
were derived accordingly.

Table 5 lists 50 process conditions that reflect the factors and levels listed in Table 4.
Based on the levels presented in Table 4, 27 process conditions were created by the or-
thogonal array of L27, and 23 process conditions were randomly generated within the
corresponding range. Injection-molding experiments were conducted under the molding
conditions shown in Table 5. The quality of the injection-molded products was evaluated by
measuring their mass, diameter, and height. For the diameter measurement, the diameter
at the entrance of the mold was recorded, with measurements taken at a total of six points
and evaluated as an average, as shown in Figure 3. For the height measurement, the height
was measured at four different points and the average value was calculated (Figure 4).

Table 5. Injection-molding conditions generated by orthogonal array of L27 and random array.
Reprinted/adapted with permission from Ref. [18]. 2022, Lee, J. H.; Yang, D. C.; Yoon, K. H.;
Kim, J. S.

Exp.
No.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Injection Speed
(mm/s)

Packing
Pressure (bar)

Packing
Time

(s)

Cooling
Time

(s)
Note

1 200 40 40.0 150 6.0 38 L27
2 200 40 40.0 150 12.0 48 L27
3 200 40 40.0 150 18.0 58 L27
4 200 50 70.0 200 6.0 38 L27
5 200 50 70.0 200 12.0 48 L27
6 200 50 70.0 200 18.0 58 L27
7 200 60 100.0 250 6.0 38 L27
9 200 60 100.0 250 18.0 58 L27

10 220 40 70.0 250 6.0 48 L27
11 220 40 70.0 250 12.0 58 L27
12 220 40 70.0 250 18.0 38 L27
13 220 50 100.0 150 6.0 48 L27
14 220 50 100.0 150 12.0 58 L27
15 220 50 100.0 150 18.0 38 L27
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Table 5. Cont.

Exp.
No.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Injection Speed
(mm/s)

Packing
Pressure (bar)

Packing
Time

(s)

Cooling
Time

(s)
Note

16 220 60 40.0 200 6.0 48 L27
17 220 60 40.0 200 12.0 58 L27
18 220 60 40.0 200 18.0 38 L27
19 240 40 100.0 200 6.0 58 L27
20 240 40 100.0 200 12.0 38 L27
21 240 40 100.0 200 18.0 48 L27
22 240 40 40.0 250 6.0 58 L27
23 240 50 40.0 250 12.0 38 L27
24 240 50 40.0 250 18.0 48 L27
25 240 60 70.0 150 6.0 58 L27
26 240 60 70.0 150 12.0 38 L27
27 240 60 70.0 150 18.0 48 L27
28 214 55 82.7 204 16.3 52 Random
29 204 44 43.4 202 13.9 41 Random
30 203 46 93.6 205 13.7 45 Random
31 202 54 83.4 213 6.6 48 Random
32 206 43 61.6 221 6.9 39 Random
33 212 44 53.3 240 17.0 52 Random
34 212 51 90.8 224 6.1 48 Random
35 200 52 50.0 215 17.6 39 Random
36 229 51 46.2 153 11.7 45 Random
37 228 49 53.2 217 12.3 58 Random
38 222 51 63.7 167 8.7 51 Random
39 219 50 41.4 156 16.3 52 Random
40 228 46 96.5 154 16.7 57 Random
41 228 46 62.5 191 10.9 46 Random
42 219 42 98.4 237 17.9 41 Random
43 220 43 55.8 241 14.8 44 Random
44 233 42 50.8 198 13.5 55 Random
45 238 53 41.6 221 17.2 40 Random
46 234 48 68.2 222 8.8 41 Random
47 233 44 84.9 171 6.7 55 Random
48 234 43 56.9 176 11.1 48 Random
49 239 49 41.2 234 8.6 52 Random
50 240 49 76.1 241 6.4 51 Random
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3. Neural Network Architectures and Implementation
3.1. Injection Molding

Injection-molding processes are broadly divided into four stages: injection, packing,
cooling and plastification, and ejection. Figure 5 illustrates how these stages are configured
and depicts the influence of various process variables on the injection-molding process.
The injection stage is the phase in which the screw of the injection-molding machine is
controlled by speed to initiate the filling of the material into the shape of the product
within the mold. In this stage, there is a need to rapidly fill the material before it solidifies,
and, typically, 98–99% of the entire product volume is filled. Therefore, in the injection
stage, melt temperature, mold temperature, and injection speed act as critical process
variables. The packing stage is a phase in which the volume of the unfilled product from
the injection stage is filled by controlling the pressure. This stage is aimed at compensating
for issues such as shrinkage in injection-molded products. In this stage, packing pressure
and packing time influence the process, and additionally, factors such as melt temperature
and mold temperature, which can affect the magnitude of pressure, also play a role. The
outcome parameters from the preceding process stage (injection stage) also have an impact.
The cooling stage is the phase that accounts for the majority of the cycle time in the
injection-molding process, where the temperature of the fully formed product inside the
mold is cooled to a temperature without any deformation. Therefore, the initially set melt
temperature, mold temperature, and cooling time impact the process. It is also influenced
by the outcome parameters of the injection and packing stages. The plastification stage
occurs concurrently with the cooling stage, involving the preparation of the material for
the next product production within the barrel of the injection-molding machine. This stage
can be considered a kind of process preparation step, where the material is pre-melted at
the set melt temperature and mold temperature. In this study, we considered three stages:
injection, packing, and cooling. Additionally, the ejection stage involves separating the
molded product from the mold upon completion and transferring it.
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3.2. Neural Network Archtectures

In this paper, three architectures were investigated and compared for predicting the
quality of injection-molded products. One is a typical artificial neural network (ANN),
similar to Network #1 in Figure 6, while the other follows a structure where input pa-
rameters are simultaneously applied through layers that are differentiated according to
the injection-molding process stages, as seen in Network #2 in Figure 7. The structure of
Network #2 in Figure 7 is grouped according to injection-molding processes based on input
parameters; however, it is a non-interacting structure. In other words, the outcomes of the
injection stage do not influence the packing stage, and the results of the packing stage do
not affect the cooling stage. While input parameters are grouped by process, the sequence
of the processes is not considered.
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Figure 7. Network #2: structure where input parameters are simultaneously applied through layers
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The remaining architecture adopts a structure where input parameters are differenti-
ated according to the injection-molding process stages and described through continuous
sequence layers, similar to Network #3 in Figure 8. In this structure, input parameters
are grouped by process, and the process sequence is also considered to allow interaction
between the preceding and succeeding stages. Six different process conditions were used as
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input parameters, including melt temperature, mold temperature, injection speed, packing
pressure, packing time, and cooling time. In networks #2 and #3, the input parameters
are grouped into injection, packing, and cooling stages according to the structure and
characteristics of the process steps to reflect the interactive influence between the processes
from a macro perspective.
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The melt temperature and mold temperature were arranged to affect all stages, and
the injection speed was assigned to the injection group, the packing pressure and time to
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the packing group, and the cooling time to the cooling group and applied to the ANN.
To facilitate a comprehensive comparison between the three architectures, a single-output
model was built that separately predicted mass, diameter, and height as output parameters.
Also, to allow for a straightforward comparison based on the structural differences of the
three architectures, a consistent set of shared layers was maintained with a fixed number of
three, while varying the structure of the input parameters and the hidden layer structures
that receive them. However, only the number and structure of the hidden layers remained
fixed, and the remaining hyperparameters were determined by an exploration process to
find values suitable for the architecture.

3.3. Data Processing

From the total dataset of 50 process conditions in Table 5, 38 datasets were assigned as
the training dataset, 6 datasets were assigned as the validation dataset, and the remaining
6 datasets were assigned as the test dataset to evaluate the performance of the model.
The datasets were subjected to min–max normalization to standardize the magnitudes
and differences in values among the parameters, ensuring that the influence based on the
parameter scale was consistent. For the min–max normalization, Equation (1) was used,
and the range was normalized to 0.1–0.9 to prevent saturation caused by data leakage.

x′ i = (0.9− 0.1)×
{

(xi −Min. X)

(Max. X−Min. X)

}
+ 0.1, x′ i ∈ X (1)

3.4. The Search for Optimal Hyperparameters

During the process of training a machine learning model using ANNs, the param-
eters that users need to set are referred to as hyperparameters. Since the efficiency and
performance of ANNs are determined by the initial values of these hyperparameters, it is
important to configure suitable hyperparameters that align with the nature of the data and
the objectives of the model. Therefore, the hyperband technique was used to determine
appropriate hyperparameters, as shown in Table 6. The hyperband technique is widely
used because it offers shorter optimization times and better performance results compared
to conventional methods such as grid search, random search, and Bayesian search [22].
The number of hidden layers is also a critical hyperparameter that requires exploration.
However, in this study, to facilitate the comparison of Networks #1, #2, and #3, the number
and structures of the layers shown in Figures 6–8 were used. Furthermore, various tools
were applied to prevent underfitting and overfitting in the artificial neural network. The
tools applied to the structure of the artificial neural network included Batch Normalization,
Dropout, Weight Regularization (L2), Limitation of the number of neurons and layers to
avoid complexity, and Early Stopping. To maintain the mean and covariance of the neural
network, batch normalization was applied to each hidden layer. Additionally, ‘dropout’
was employed to prevent overfitting caused by excessively training specific variables. The
dropout rate, considered a hyperparameter, was explored within the range of 0.0 to 0.4,
tailored to the model and data. Values exceeding 0.5 could potentially degrade the model’s
accuracy, hence we restricted the range to 0.4. Furthermore, L2 regularization, a form of
weight regularization, was applied to prevent certain weight values from becoming too
large and dependent on specific features, allowing the model to reflect general charac-
teristics of the data. To limit the unrestricted increase in the complexity of the artificial
neural network, the maximum number of neurons per layer was set to twice the sum of
the input and output parameter counts. The minimum number of neurons that could be
allocated was constrained by the output parameter count. Moreover, the total number
of neurons placed throughout the entire artificial neural network was restricted within a
predefined range to allow for convergence from input parameters to output parameters.
This constraint was imposed by considering the number of neurons in the previous layer as
a limiting range for the next layer, permitting a square or conical structure. This approach
aimed to prevent excessive complexity in the model. Also, to compare the generalized
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neural network structure with the newly proposed structure, the study limited the shared
hidden layer count to three, serving as a measure to prevent the model from becoming
excessively complex. Typically, having more than four hidden layers in a neural network
can lead to optimization issues, making it one of the factors contributing to the model’s
excessive complexity. Finally, to prevent the neural network model from overfitting to the
training dataset, the early stopping technique was applied. The endpoint of training was
set based on a compromise value of the loss function between the training and validation
datasets, preventing the model from overfitting to the training data.

Table 6. Ranges of hyperparameters for Networks.

Hyperparameters Range Note

Seed number 0–50 Step size was 1

Batch size 16, 32, 64,. . . Increased in multiples of 2 until it could
cover the number of learning data

Optimizer Adams [23] Fixed
Learning rate 0.0001–0.01 [23] Step size was 0.0001

Beta 1 0.1–1.0 [23] Step size was 0.1
Bata 2 0.9, 0.99, 0.999, 0.999 [23] -

Number of neurons
From the number of output parameters to

twice the sum of the number of output and
input parameters.

Step size was 1

Initializer
He normal (hidden layer) -

Xavier normal (output layer)

Activation function
Elu (hidden layer) -

Linear (output layer)
Drop number 0.0–0.4 Step size was 0.1

Coefficient of L2 normalization 0.001, 0.01, 0.1 -

In addition, the root mean square errors (RMSEs) from Equation (2) were used as a
metric to evaluate the performance during the training process of the ANNs. In Equation (2),
N represents the number of data used for evaluation, where yi corresponds to the measured
values and ŷi represents the predictions made by the ANN.

RMSE =

√√√√ 1
N

N

∑
i
(yi − ŷi)

2 (2)

4. Results
4.1. Relationship between Process Conditions and Injection-Molded Quality: Experiment Dataset

Table 7 shows the main effects between six process conditions and the mass of injection-
molded products using the datasets generated by L27 orthogonal array design in Experi-
ment #1–27 among the 50 datasets in Table 5. Table 8 indicates the contribution analysis
of six process conditions to the mass of injection-molded products over the entire set of
50 datasets. Interactions were analyzed up to the second order. Examining the results
in Tables 7 and 8, it can be observed that the most significant factor influencing mass is
the packing time. Following closely is the melt temperature as the next influential factor.
Generally, the packing stage is known to have a close relationship with the mass of the
molded product, as it involves controlling pressure to force additional material into the
mold. Specifically, in this study, the mold used employs a direct hot runner, resulting in
a delayed solidification time at the gate section. Therefore, in this study, the maximum
packing time for feasible product production was applied, yielding results indicating that
packing time is a significant contributor to mass. Subsequently, melt temperature, as a
factor associated with the solidification time of the product or gate, can influence the mass
of the molded product, as higher values are correlated with delayed solidification.
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Table 7. Main effects of L27 orthogonal array (DOE) on dataset: mass.

Process Variable
Mean Value of Mass (g)

RankLevel 1 Level 2 Level 3

Melt temperature 55.68 55.20 54.70 2
Mold temperature 55.44 55.22 54.91 4

Injection speed 55.31 55.20 55.06 5
Packing pressure 54.77 55.22 55.58 3

Packing time 53.74 55.29 56.55 1
Cooling time 55.13 55.19 55.25 6

Table 8. Contribution analysis of the entire 50 datasets: mass.

Process Variable Description Contribution for Mass (%)

Melt temperature Main effect 10.61
Mold temperature Main effect 3.19

Injection speed Main effect 1.83
Packing pressure Main effect 4.64

Packing time Main effect 78.77
Cooling time Main effect 0.21

Melt temperature ×Mold temperature 2-way interaction 0.02
Melt temperature × Injection speed 2-way interaction 0.01

Melt temperature × Packing pressure 2-way interaction 0.00
Melt temperature × Packing time 2-way interaction 0.00
Melt temperature × Cooling time 2-way interaction 0.00

Mold temperature × Injection speed 2-way interaction 0.00
Mold temperature × Packing pressure 2-way interaction 0.00

Mold temperature × Packing time 2-way interaction 0.08
Mold temperature × Cooling time 2-way interaction 0.02
Injection speed × Packing pressure 2-way interaction 0.01

Injection speed × Packing time 2-way interaction 0.05
Injection speed × Cooling time 2-way interaction 0.01

Packing pressure × Packing time 2-way interaction 0.00
Packing pressure × Cooling time 2-way interaction 0.00

Packing time × Cooling time 2-way interaction 0.01

Table 9 shows the main effects of six process variables on the diameter of the molded
product, while Table 10 illustrates the contribution analysis of these six process variables
to the diameter. Analyzing the results from Tables 9 and 10, it is evident that, similar
to the mass, the most significant influence on diameter is attributed to the packing time.
This is because, generally, the impact of the packing time on the diameter is substantial,
as the product is typically forcibly charged through pressure control, compensating for
factors such as shrinkage. Additionally, this substantial contribution is attributed to the
prolonged maximum packing time applied in this study to produce the molded product.
The remaining factors, such as mold temperature and packing pressure, also exhibit a
relatively high influence on diameter compared to other factors. This can be attributed to
product compensation and delayed solidification.

Table 9. Main effects of L27 orthogonal array (DOE) on dataset: diameter.

Process Variable
Mean Value of Diameter (mm)

RankLevel 1 Level 2 Level 3

Melt temperature 99.86 99.86 88.96 6
Mold temperature 99.86 99.87 99.85 4

Injection speed 99.86 99.85 99.87 5
Packing pressure 99.84 99.86 99.89 2

Packing time 99.72 99.90 99.96 1
Cooling time 99.86 99.88 99.84 3
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Table 10. Contribution analysis of the entire 50 datasets: diameter.

Process Variable Description Contribution for Diameter
(%)

Melt temperature Main effect 0.11
Mold temperature Main effect 1.98

Injection speed Main effect 0.66
Packing pressure Main effect 1.88

Packing time Main effect 76.19
Cooling time Main effect 0.40

Melt temperature ×Mold temperature 2-way interaction 0.62
Melt temperature × Injection speed 2-way interaction 2.30

Melt temperature × Packing pressure 2-way interaction 0.32
Melt temperature × Packing time 2-way interaction 1.83
Melt temperature × Cooling time 2-way interaction 1.30

Mold temperature × Injection speed 2-way interaction 0.03
Mold temperature × Packing pressure 2-way interaction 0.05

Mold temperature × Packing time 2-way interaction 0.42
Mold temperature × Cooling time 2-way interaction 1.71
Injection speed × Packing pressure 2-way interaction 0.50

Injection speed × Packing time 2-way interaction 0.00
Injection speed × Cooling time 2-way interaction 0.60

Packing pressure × Packing time 2-way interaction 0.37
Packing pressure × Cooling time 2-way interaction 0.11

Packing time × Cooling time 2-way interaction 0.01

Tables 11 and 12 present the main effects and contributions to the height of the injection-
molded product. For the height of the injection-molded product, it is observed that both
packing pressure and packing time exert significant influence. This is due to the practice of
forcibly adding material through pressure control after the injection stage, which ultimately
has a substantial impact on the dimensions of the product, similar to mass and diameter.
In contrast, for the height of the molded product, the effects of interactions are relatively
negligible compared to the main effect factors.

Table 11. Main effects of L27 orthogonal array (DOE) on dataset: height.

Process Variable
Mean Value of Diameter (mm)

RankLevel 1 Level 2 Level 3

Melt temperature 50.72 50.67 50.62 6
Mold temperature 50.70 50.68 50.62 4

Injection speed 50.67 50.67 50.66 5
Packing pressure 50.58 50.67 50.75 2

Packing time 50.47 50.69 50.84 1
Cooling time 50.66 50.68 50.66 3
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Table 12. Contribution analysis of the entire 50 datasets: height.

Process Variable Description Contribution for Diameter
(%)

Melt temperature Main effect 5.73
Mold temperature Main effect 4.45

Injection speed Main effect 0.95
Packing pressure Main effect 10.27

Packing time Main effect 75.78
Cooling time Main effect 0.06

Melt temperature ×Mold temperature 2-way interaction 0.23
Melt temperature × Injection speed 2-way interaction 0.17

Melt temperature × Packing pressure 2-way interaction 0.03
Melt temperature × Packing time 2-way interaction 0.23
Melt temperature × Cooling time 2-way interaction 0.00

Mold temperature × Injection speed 2-way interaction 0.00
Mold temperature × Packing pressure 2-way interaction 0.03

Mold temperature × Packing time 2-way interaction 0.00
Mold temperature × Cooling time 2-way interaction 0.01
Injection speed × Packing pressure 2-way interaction 0.04

Injection speed × Packing time 2-way interaction 0.07
Injection speed × Cooling time 2-way interaction 0.01

Packing pressure × Packing time 2-way interaction 0.07
Packing pressure × Cooling time 2-way interaction 0.01

Packing time × Cooling time 2-way interaction 0.06

4.2. Comparison of the Single-Output Models with Mass as the Output Parameter

Tables A1–A3 (Appendix A) show the results of hyperparameter exploration for
Networks #1, #2, and #3, where mass is the output variable. While hyperparameter
exploration was performed, it is important to note that the hidden layer structure was kept
constant to facilitate an intuitive comparison between the three artificial neural network
(ANN) architectures. The prediction results for the test data not used to train with the
neural networks in Tables A1–A3 (Appendix A) are shown in Table 13. Performance was
compared by calculating the root mean square errors (RMSEs) value of the measured value
and the predicted value of the neural network for the normalized test data.

Table 13. Root mean square errors (RMSEs) of normalized mass test data for Network #1, 2, 3.

Predicted Parameter
Network

#1 #2 #3

Mass 5.237× 10−2 2.697× 10−2 2.387× 10−2

The test data consists of the datasets (Exp. #28, 30, 31, 32, 36 and 45) from Table 5. As
shown in Table 13, the best performance was achieved by Network #3, which passes the
input parameters as a continuous sequence of injection-molding process steps in an ANN
structure to predict mass. In the case of Network #2, it also showed a performance level
comparable to the RMSE results for mass prediction achieved by Network #3.

Figure 9 shows the predicted mass results of three network architectures obtained
from the test data and experimental results, with error bars calculated by the mass quality
standard for general PP. A figure of ±0.5% [18] was applied as the standard error of
the mass for the PP molded product. According to the results in Figure 9, although the
hyperparameter structures investigated in this study are not the optimal ones, it is evident
that the predictions of Networks #2 and #3 meet the mass criteria, and an improvement
can be observed compared to the results of Network #1. Based on these results, it can be
confirmed that an architecture that incorporates the structure and characteristics of the
injection-molding process outperforms typical ANNs in predicting the mass of the products
used in this study.
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(b) Network #2; (c) Network #3.

4.3. Comparison of the Single-Output Models with Diameter as the Output Parameter

The hyperparameter values for the three network architectures used to predict the
diameter of the injection-molded products in this study are shown in Tables A4–A6
(Appendix A). In Table 14, as in Section 4.2, the diameter prediction results of each network
architecture on the normalized test data are presented in terms of RMSEs.

Table 14. Root mean square errors (RMSEs) of normalized diameter test data for Network #1, 2, 3.

Predicted Parameter
Network

#1 #2 #3

Diameter 7.669× 10−2 6.746× 10−2 4.526× 10−2

In the context of predicting the diameter of a product using ANNs, Network #1
showed the highest RMSE value, while Network #3 had the most favorable RMSE value.
Network #2 had an RMSE value that was better than that of Network #1, but by a relatively
small margin that warrants consideration at a comparable level. However, Network #3
clearly had a significantly lower RMSE than the other network architectures, confirming its
superior performance in predicting the diameter. This can also be seen in the graph of the
prediction results versus the actual product diameter and error bars calculated by applying
ISO 20457:2018 [24] (Plastics molded parts—Tolerances and acceptance conditions); the
dimensional quality standard for injection-molded products, shown in Figure 10. The
calculated standard error equivalent to ISO 20457:2018 of the injection-molded product
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used in this study was ±0.09 mm. Network #1, a typical ANN, and Networks #2 and #3,
which incorporate process steps into the connections between input parameters and hidden
layers, all meet the length quality criteria. In particular, Network #3 produces predictions
that are closer to the actual measurements. Based on these results, it can be seen that, even
in the case of predicting the diameter of a bowl’s molded part, the ANN architecture that
reflects the injection-molding process steps performs well and produces better results than
the typical ANN (Network #1).
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4.4. Comparison of the Single-Output Models with Height as the Output Parameter

The results of hyperparameter exploration for ANN architectures with the height of
the bowl product as the output parameter are presented in Tables A7–A9 (Appendix A).
The results of evaluating the performance of ANNs, Network #1, Network #2 and Network
#3, with the applied selected hyperparameter values applied using test data are presented
in Table 15. Compared to Network #1, which is a typical ANN structure, Network #2, 3
both showed better RMSE results by more than about twice. Figure 11 shows the actual
height measurement data and error bars for the bowl product and compares the predictions
from Networks #1, 2, and 3. The error bars were calculated by applying ISO 20457:2018
(Plastics molded parts—Tolerances and acceptance conditions), the dimensional quality
standard for injection molded products, as was done for diameters in Section 4.3. Figure 10
shows that the neural network models from all three architectures predict the heights of the
bowl products within the quality standards. Figure 11 also shows that Networks #2 and 3,
which include the process steps, are very close to the actual measured data. Based on these
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results, it can be seen that an ANN structure (Network #2, 3) that reflects the process steps
may be more suitable than the typical architecture (Network #1) for predicting the height
of a molded part.

Table 15. Root mean square errors (RMSEs) of normalized height test data for Network #1, 2, 3.

Predicted Parameter
Network

#1 #2 #3

Height 5.133× 10−2 2.935× 10−2 2.866× 10−2
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5. Conclusions

In this study, an artificial neural network (ANN) was built to predict the correlation
between process conditions and product quality in injection molding. In order to evaluate
the performance of architectures that incorporate process stages into the connection between
input parameters and the hidden layer, injection-molding experiments were conducted on
dish products and data were collected.

Based on the collected dataset, three different ANN networks with different archi-
tectures were constructed. One follows the conventional ANN structure, where all input
parameters are directly connected to the hidden layer. The other two ANNs apply the
process stages and characteristics of injection molding to the input parameters. One groups
input parameters based on the injection stage, packing stage, and cooling stage, and simul-
taneously feeds them into the hidden layers as a multi-task architecture. The other groups



Polymers 2023, 15, 4578 20 of 26

input parameters by process stage and configures the network to feed input parameters in
a continuous sequence as the process stages progress. In the case of Networks #2 and #3,
which applied the process steps, both showed relatively superior performance in predicting
product quality in all scenarios compared to the typical ANN, Network #1. In particular,
the architecture of Network #3, which transmits input parameters in a continuous sequence
based on the process order, showed outstanding performance in predicting product mass,
diameter, and length. Compared to the root mean square error (RMSE) value of Network
#1, a typical artificial neural network, the RMSE of Network #3 for mass improved by
approximately 54.42%, while diameter and height showed performance improvements of
40.98% and 44.17%, respectively, in terms of RMSE-based evaluations. For Network #2,
there is also an improvement in performance, although not as significant as in the case of
Network #3. The RMSE of Network #2 for mass, diameter, and height showed a reduction
of 48.50%, 12.04%, and 42.82%, respectively, when compared to the RMSE of Network #1. In
conclusion, this study showed that ANN architectures incorporating the injection-molding
process steps as input parameters showed an average prediction performance improve-
ment of approximately 46.52% for Network #3 and 34.45% for Network #2 based on RMSE
performance. Figure 12 shows a diagram depicting how the new network performance has
improved compared to the existing artificial neural network.
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Furthermore, when comparing these results with quality criteria for injection-molded
products, it was observed that the conventional artificial neural network failed to meet
the quality standards in the mass prediction for Exp. #31 and #32, as well as in the height
prediction for Exp. #32. In contrast, Network #2 and Network #3 confirmed that for mass,
diameter, and height predictions, all test data fell within the quality standards based on
improvement RMSE. This suggests that applying an ANN with input parameters grouped
by process stages, instead of a conventional ANN, in real injection-molding processes
and industry can lead to enhanced production rates through predictions within quality
standards. Therefore, these results suggest that incorporating the structural aspects of each
stage of the injection-molding process into the neural network architecture may be a more
suitable approach to data prediction using ANNs.

From the analysis of the specific dataset for the bowl product used in this study,
it might be the better choice for predicting the mass and length to construct an ANN
based on multi-task learning, which incorporates the process steps and characteristics of
injection-molding into the connections between input parameters and hidden layers, rather
than the typical ANN. The approach employed in this study’s results can be applied to
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service systems, akin to other research outcomes [13,23] with a systemic perspective. In a
system aimed at deriving the initial optimal conditions for molding products of the target
quality in an injection-molding process, this approach enhances prediction accuracy, thereby
improving user convenience and productivity. Furthermore, the results of this study can be
applied to a predictive-based process control system, where changes in process conditions
and quality maintenance are conducted through quality predictions, rather than through
step-by-step process control. This application can enhance accuracy and productivity, while
reducing the time consumed by condition changes for quality improvement and other
processes. As with this use case, the results of this study might be used as a useful reference
for future research on applying ANNs to the injection-molding industry, such as predictive
process control, deriving optimal conditions, and building a digital twin injection-molding
platform based on them.
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Appendix A

Table A1. Hyperparameters of Network #1 architecture with mass as the output parameter.

Hyperparameters Value

Seed number 16
Batch size 16
Optimizer Adams

Learning rate 0.0027
Beta 1 0.7
Beta 2 0.999

Number of hidden layers 4
Number of neurons 12-6-6-3

Initializer He normal (hidden layers)
Xavier normal (output layer)

Activation function Elu
Drop number 0.0-0.0-0.1-0.3

Coefficient of L2 normalization 0.001
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Table A2. Hyperparameters of Network #2 architecture with mass as the output parameter.

Hyperparameters Value

Seed number 41
Batch size 16
Optimizer Adams

Learning rate 0.0086
Beta 1 0.9
Beta 2 0.999

Number of hidden layers

1 (process layer for injection stage)
1 (process layer for packing stage)
1 (process layer for cooling stage)

3 (common layers)

Number of neurons

7 (process layer for injection stage)
7 (process layer for packing stage)
4 (process layer for cooling stage)

13-13-8 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number

0.0 (process layer for injection stage)
0.3 (process layer for packing stage)
0.0 (process layer for cooling stage)

0.1-0.1-0.2 (common layers)
Coefficient of L2 normalization 0.001

Table A3. Hyperparameters of Network #3 architecture with mass as the output parameter.

Hyperparameters Value

Seed number 9
Batch size 16
Optimizer Adams

Learning rate 0.0076
Beta 1 0.2
Beta 2 0.9999

Number of hidden layers
1 (process layer for injection stage)
1 (process layer for packing stage)

3 (common layers)

Number of neurons
2 (process layer for injection stage)
9 (process layer for packing stage)

8-4-1 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number
0.2 (process layer for injection stage)
0.0 (process layer for packing stage)

0.3-0.1-0.0 (common layers)
Coefficient of L2 normalization 0.001
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Table A4. Hyperparameters of Network #1 architecture with diameter as the output parameter.

Hyperparameters Value

Seed number 4
Batch size 32
Optimizer Adams

Learning rate 0.0029
Beta 1 0.3
Beta 2 0.99

Number of hidden layers 4
Number of neurons 5-5-4-2

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number 0.2-0.2-0.1-0.2
Coefficient of L2 normalization 0.001

Table A5. Hyperparameters of Network #2 architecture with diameter as the output parameter.

Hyperparameters Value

Seed number 25
Batch size 16
Optimizer Adams

Learning rate 0.0043
Beta 1 0.8
Beta 2 0.9

Number of hidden layers

1 (process layer for injection stage)
1 (process layer for packing stage)
1 (process layer for cooling stage)

3 (common layers)

Number of neurons

8 (process layer for injection stage)
9 (process layer for packing stage)
4 (process layer for cooling stage)

21-14-14 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number

0.0 (process layer for injection stage)
0.3 (process layer for packing stage)
0.1 (process layer for cooling stage)

0.2-0.1-0.4 (common layers)
Coefficient of L2 normalization 0.01

Table A6. Hyperparameters of Network #3 architecture with diameter as the output parameter.

Hyperparameters Value

Seed number 44
Batch size 16
Optimizer Adams

Learning rate 0.006
Beta 1 0.2
Beta 2 0.99

Number of hidden layers
1 (process layer for injection stage)
1 (process layer for packing stage)

3 (common layers)
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Table A6. Cont.

Hyperparameters Value

Number of neurons
6 (process layer for injection stage)
9 (process layer for packing stage)

15-10-1 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number
0.3 (process layer for injection stage)
0.0 (process layer for packing stage)

0.1-0.3-0.2 (common layers)
Coefficient of L2 normalization 0.001

Table A7. Hyperparameters of Network #1 architecture with height as the output parameter.

Hyperparameters Value

Seed number 30
Batch size 16
Optimizer Adams

Learning rate 0.0019
Beta 1 0.2
Beta 2 0.9999

Number of hidden layers 4
Number of neurons 8-3-2-2

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number 0.3-0.1-0.1-0.0
Coefficient of L2 normalization 0.01

Table A8. Hyperparameters of Network #2 architecture with height as the output parameter.

Hyperparameters Value

Seed number 35
Batch size 16
Optimizer Adams

Learning rate 0.0089
Beta 1 0.2
Beta 2 0.9999

Number of hidden layers

1 (process layer for injection stage)
1 (process layer for packing stage)
1 (process layer for cooling stage)

3 (common layers)

Number of neurons

8 (process layer for injection stage)
6 (process layer for packing stage)
3 (process layer for cooling stage)

17-12-5 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number

0.1 (process layer for injection stage)
0.2 (process layer for packing stage)
0.0 (process layer for cooling stage)

0.4-0.0-0.3 (common layers)
Coefficient of L2 normalization 0.01
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Table A9. Hyperparameters of Network #3 architecture with height as the output parameter.

Hyperparameters Value

Seed number 48
Batch size 16
Optimizer Adams

Learning rate 0.0067
Beta 1 0.3
Beta 2 0.9999

Number of hidden layers
1 (process layer for injection stage)
1 (process layer for packing stage)

3 (common layers)

Number of neurons
1 (process layer for injection stage)
9 (process layer for packing stage)

6-6-3 (common layers)

Initializer
He normal (hidden layers)

Xavier normal (output layer)
Activation function Elu

Drop number
0.2 (process layer for injection stage)
0.4 (process layer for packing stage)

0.0-0.3-0.0 (common layers)
Coefficient of L2 normalization 0.001
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