
Citation: Voropaeva, D.; Novikova,

S.; Stenina, I.; Yaroslavtsev, A.

Nafion-212 Membrane Solvated by

Ethylene and Propylene Carbonates

as Electrolyte for Lithium Metal

Batteries. Polymers 2023, 15, 4340.

https://doi.org/10.3390/

polym15224340

Academic Editors: Shih-Chieh Hsu

and Cheng-Zhang Lu

Received: 9 October 2023

Revised: 2 November 2023

Accepted: 5 November 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Nafion-212 Membrane Solvated by Ethylene and Propylene
Carbonates as Electrolyte for Lithium Metal Batteries
Daria Voropaeva , Svetlana Novikova , Irina Stenina and Andrey Yaroslavtsev *

Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky Avenue, 31,
119991 Moscow, Russia; voropaeva@igic.ras.ru (D.V.); svetlana_novi@mail.ru (S.N.); stenina@igic.ras.ru (I.S.)
* Correspondence: yaroslav@igic.ras.ru

Abstract: The use of cation-exchange membranes as electrolytes for lithium metal batteries can
prevent the formation of lithium dendrites during extended cycling and guarantee safe battery
operation. In our study, the Nafion-212 membrane in lithium form solvated by a mixture of ethylene
carbonate and propylene carbonate (EC-PC) was used as an electrolyte in a lithium metal battery
with the LiFePO4 cathode. The Nafion-212-EC-PC electrolyte is electrochemically stable up to
6 V, indicating its suitability for high-energy density batteries. It has an ionic conductivity of
1.9 × 10−4 S/cm at 25 ◦C and a high lithium transference number. The symmetric Li|Nafion-212-EC-
PC|Li cell shows a very low overvoltage of ~0.3 V at a current density of ±0.1 mA/cm2. At 25 ◦C,
the LiFePO4|Nafion-212-EC-PC|Li battery exhibits a capacity of 141, 136, 125, and 100 mAh/g at 0.1,
0.2, 0.5, and 1C rates, respectively. It maintains a capacity of 120 mAh/g at 0 ◦C and 0.1C with stable
performance for 50 charge/discharge cycles. The mechanism of conductivity and capacity retention
at low temperatures is discussed.

Keywords: polymer electrolyte; cation-exchange membrane; lithium metal battery; Nafion; ionic
conductivity; single-ion conductor

1. Introduction

Currently, lithium-ion batteries prevail in the field of electrochemical power sources;
however, their energy densities approach the upper limit of ~255 Wh/kg [1]. Achieving
higher energy densities requires the improvement of battery design and the development
of new electrochemical energy sources that are not yet widely used. Lithium metal batteries
offer the prospect of achieving high energy densities up to 500 Wh/kg due to the lower
potential and higher specific capacity of lithium metal compared with the graphite and
silicon anodes [1–3]. Several issues arise when designing lithium metal batteries, including
the growth of Li dendrites, the flammability of liquid electrolytes, and poor electrochemical
battery performance [4–6]. A widely accepted explanation for dendrite formation is the
space charge theory proposed by Chazalviel [7]. In conventional liquid or polymer/salt
electrolytes, not only Li+ ions move under the applied electric field but also anions, the
transference numbers of which can reach 0.8 [8,9]. For the reason that fixed anions cannot
participate in electrochemical processes, they accumulate near one electrode, creating a
depletion layer at the opposite electrode and resulting in concentration polarization. This
leads to the formation and spreading of dendrites. To prevent the formation of lithium
dendrites, single-ion-conducting polymer electrolytes with fixed anion groups can be
used [10–15].

Perfluorinated sulfonic acid membranes with -SO3
− groups bonded to a perfluorinated

polymer matrix are of great interest due to their outstanding transport properties as well as
their excellent chemical, thermal, and electrochemical stability [16,17]. Nafion membrane is
a commonly used polymer (ionomer) that consists of a nonpolar polytetrafluoroethylene
matrix and a side chain -O-CF2-CF(CF3)-O-CF2-CF2-SO3Li, which effectively delocalizes
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negative charge. Nafion membranes solvated by organic polar aprotic solvents, which
are commonly used in conventional lithium-ion batteries, exhibit high ionic conductivity
(10−4 S/cm), high Li+ transference numbers (>0.9), and stable battery performance when
used as electrolytes [17–23]. As solvents for the solvation of membranes, it is possible to
use various aprotic organic solvents used in liquid electrolytes, such as linear and cyclic
carbonates, esters, sulfoxides, etc. Propylene carbonate (PC) is a widely used solvent
for lithium metal and lithium-ion batteries due to its wide operating temperature range
(−49–240 ◦C), high dielectric permeability, wide electrochemical stability window, and
high solvation ability. However, it cannot be used as an individual or main component
for lithium metal batteries due to its interaction with lithium, leading to a decrease in
battery capacity [24]. The addition of ethylene carbonate (EC), in addition to increasing
ionic conductivity due to its high dielectric constant and low viscosity, makes it possible
to avoid the problem of lithium dissolution and create a protective SEI that prevents the
interaction of the electrolyte with the electrodes.

There are several papers in the literature devoted to the use of solvated Nafion mem-
branes in lithium metal and lithium-ion batteries. For example, the commercial Nafion-211
membrane exhibited an ionic conductivity of 0.21 mS/cm at 70 ◦C after being soaked in
propylene carbonate. Meanwhile, the discharge capacity of the Li-S battery was found to
be 1072.8 mAh/g (per sulfur) at a cycling rate of 0.05C and 895 mAh/g, with 89% capacity
retention after 100 cycles at 1C [20]. The electrolyte prepared by casting a 20% Nafion solu-
tion in water and lower aliphatic alcohols and solvated with both ethylene carbonate and
propylene carbonate exhibited an ionic conductivity of 0.36 mS/cm at 20 ◦C. Furthermore,
its discharge capacity was approximately 80 mAh/g at 0.05C when tested in a cell with
the LiFePO4 cathode and lithium anode [18]. The properties of the electrolytes obtained
mainly depend on the solvent nature and the method of membrane production. Meanwhile,
the electrochemical characteristics of battery cells with membrane-based electrolytes are
determined not only by their conductivity but also by their thickness, as well as by the
composition and method of battery cell formation. It is important to consider these factors
to optimize the performance of battery cells. In recent years, there has been a shift to thinner
Nafion membranes of <50 µm thick in different electrochemical applications. To the best
of our knowledge, the 50 µm thick Nafion-212 membranes have not yet been used as an
electrolyte in lithium metal batteries.

Another important problem with lithium metal batteries is their behavior at negative
temperatures associated with insufficient ionic conductivity of solid-state electrolytes or
freezing of liquid electrolytes. The use of cation-exchange membranes with nanosized
pores can help solve this problem. Due to the presence of both nonpolar (hydrophobic)
perfluorinated matrix and polar (hydrophilic) terminal functional groups in perfluorinated
sulfonic acid membranes, self-organization processes occur in which polar functional
groups aggregate and form nanoscale clusters. As a result, solvents in solvated cation-
exchange membranes can freeze at lower temperatures than pure solvents [25] due to the
so-called nanosize effect.

The aim of this study was to produce and characterize polymer electrolytes based on
commercial perfluorinated sulfocationic membranes, namely Nafion-212, solvated by a
mixture of ethylene carbonate and propylene carbonate (EC-PC). The lithium conductivity,
transference numbers, and electrolyte stability against lithium metal were investigated for
the first time. Temperature effects were studied for Nafion-212 membranes swelled in an
EC-PC mixture in the temperature range −100–+130 ◦C by the DSC technique. In addition,
battery cells with the Nafion-212-based electrolyte and the LiFePO4 cathode and lithium
anode were tested, including performance at low temperatures.

2. Materials and Methods

The following reagents were used in this work: Nafion-212 membrane (DuPont, Wilm-
ington, DE, USA, equivalent weight = 1100 g/mol, 50 µm thick (for dry membrane)),
LiOH·H2O (Sigma Life Science, Burlington, MA, USA), ethylene carbonate (Gelon, Linyi,
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China), propylene carbonate (Acros Organics, Germany), N-methyl-2-pyrrolidone (Sigma-
Aldrich, Darmstadt, Germany), liquid electrolyte containing 1 M LiPF6 in ethylene carbon-
ate, dimethyl carbonate, and diethyl carbonate (4:3:3) + vinylene carbonate (Gelon, China),
lithium metal (Gelon, China), polyvinylidene fluoride (MW = 1100 kDa, Gelon, China),
Super P-Li (Gelon, China).

2.1. Membrane Preparation

Before use as an electrolyte, commercial Nafion-212 membranes were conditioned
using a standard procedure to remove monomer impurities and solvent residues [26].
Ion-exchange capacity (IEC, mg-eq/g) was determined by acid-base titration. For this
purpose, the dry membrane in the H+-form after conditioning was kept in 0.5 M NaCl
for 24 h under constant stirring. The solution was then titrated with ~0.01 M NaOH. The
exact concentration of the sodium hydroxide solution was determined by titration with
a 0.1 M HCl solution prepared by dilution of the standard titrant. The equivalence point
was determined by changing the color of the universal indicator ZIV-1. IEC values were
calculated by Equation (1):

IEC =
CNaOH ·VNaOH

m·Vs
·10−3 (1)

where CNaOH (mol/L) and VNaOH (L) are the concentration and volume of NaOH used
for titration, respectively, m is the weight of a dry membrane (g), and Vs is the volume of
NaCl (L).

To convert the membranes to Li+ form, they were treated with a 0.1 M LiOH solution
under continuous stirring for 48 h. To remove the remaining ions, membranes were washed
multiple times using deionized water and then dried under vacuum at 50 ◦C for 12 h to
remove the remaining water.

2.2. Preparation of Polymer Electrolyte

To prepare the Nafion-212-EC-PC polymer electrolyte, the Nafion-212 membrane was
transferred into an argon-filled glove box with a moisture and oxygen content of <5 ppm
(SPECS, Moscow, Russia) and then immersed in a solution containing equal volumes of
ethylene carbonate and propylene carbonate (EC-PC) for 24 h.

The degree of membrane solvation was determined by the ratio of solvent molecules
to membrane functional groups. The solvated membrane was analyzed using differential
scanning calorimetry in aluminum crucibles in a helium atmosphere at temperatures
ranging from −100 to +130 ◦C with a heating rate of 10 ◦C/min using a NETZSCH STA
449F1 (Netzsch, Selb, Germany).

2.3. Study of a Polymer Electrolyte
2.3.1. Ionic Conductivity

The ionic conductivity of the Nafion-212-EC-PC polymer electrolyte was investigated
by impedance spectroscopy in the temperature range −20. . .+50 ◦C. Measurements were
carried out using an AC bridge Elins Z-1500J (Elins, Chernogolovka, Russia) in the fre-
quency range of 2.5 MHz–10 Hz in an Al|membrane|Al CR2032 coin-type cell. A Binder
MKF115 climate chamber (Binder GmbH, Tuttlingen, Germany) was used to set the required
temperature. The resistivity was determined by the cutoff on the active resistance axis in
Nyquist plots in the higher-temperature range (from +30 to +50 ◦C) or by extrapolation of
the semicircle on the active resistance axis using the ZView 4 program at lower tempera-
tures (from−20 to +25 ◦C). The activation energy of ionic conductivity was calculated using
the Arrhenius equation from the slope of the temperature dependence of conductivity.

2.3.2. Lithium Transference Numbers

Li+ transference numbers (TLi+) were estimated according to the Bruce-Vincent method [27]
in symmetric coin-type cells Li|Nafion-212-EC-PC|Li using an Elins P-20X8 instrument
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(Elins, Chernogolovka, Russia). For the experiment, a potential difference of ∆V = 10 mV
was applied to the cells, and the current before (I0) and after (If) polarization was measured.
The interface impedance was measured before (R0) and after (Rf) polarization by impedance
spectroscopy in the frequency range of 500 kHz to 10 mHz. The TLi+ values were calculated
using Equation (2):

TLi+ =
I f (∆V − I0R0)

I0

(
∆V − I f R f

) (2)

2.3.3. Electrochemical Stability Window

The electrochemical stability window of the Nafion-212-EC-PC polymer electrolyte
vs. Li/Li+ was determined by linear voltammetry using a multichannel potentiostat-
galvanostat Elins P-20X8 (Elins, Russia). The membrane sample was placed between a
stainless steel electrode (SS, as the working electrode) and a lithium electrode (as the counter
and reference electrode) and assembled in a coin-type CR2032 cell. Potential scans were
performed from 0.0 to 6.0 V (vs. Li/Li+) with a sweep rate of 1.0 mV/s. Cyclic voltammetry
was performed in the potential range of 2.5–4.1 V in SS|electrolyte|Li cells with a sweep
rate of 1.0 mV/s for 10 cycles.

To evaluate the stability of the polymer electrolyte against lithium metal, galvanostatic
cycling was carried out at a current density of 0.1 mA/cm2 in a symmetric Li|Nafion-212-
EC-PC|Li cell using Elins P-20X8 multichannel potentiostat-galvanostat. The cycle time
was 1 h (0.05 mAh/cm2). Before experiments, the lithium surface was mechanically cleaned
from lithium oxide and lithium carbonate.

2.3.4. Lithium Metal Batteries

To evaluate the possibility of using the Nafion-212-EC-PC polymer electrolyte in
lithium metal batteries, we tested a coin-type cell with a positive electrode based on
LiFePO4@C (LFP) composite prepared by the solvothermal method using sucrose as a
carbon source according to the procedure described in Ref. [28]. To prepare the positive
electrode, an LFP composite containing 5 wt.% carbon was mixed with carbon black and
a 5 wt.% solution of PVDF (MM = 1100 kDa) in N-methyl-2-pyrrolidone (the ratio of
LFP:carbon black:PVDF was 85:10:5). The resulting slurry was homogenized on a magnetic
stirrer under vigorous stirring for 2 h, then subjected to ultrasonic treatment with an
ultrasonic probe for 10 s. The obtained electrode paste was applied to aluminum foil with a
thickness of 9 µm using the doctor-blade technique; the thickness of rolling was 200 µm.
The resulting cathode sheets were dried at 90 ◦C for 1 h, then pressed under 1 ton, followed
by additional holding at 120 ◦C in vacuum for 24 h. Round electrodes of 1.6 cm in diameter
(2 cm2 area with ~5 mg/cm2 loading) were cut from the coated foil. During assembly of
electrochemical cells, the cathode material was impregnated with a small amount (~30 µL)
of liquid electrolyte containing 1 M LiPF6 in EC-DMC-DEC-VC.

Electrochemical testing was carried out in galvanostatic mode at cycling rates of 0.1C
(17 mA/g), 0.2C (34 mA/g), 0.5C (85 mA/g), and 1C (170 mA/g) at 25 ◦C in a potential
range of 2.5 to 4.1 V using an Elins P-20X8 multichannel potentiostat-galvanostat and at 0
and −5 ◦C at a cycling rates of 0.1C and 0.5C. The cell capacity Q (mAh/g) was calculated
by Equation (3):

Q =
I·t

3.6·m (3)

where I, t, and m are current (A), time (s), and weight (g) of active cathode material,
respectively. The Coulombic efficiency (CE) was calculated using Equation (4):

CE =
Qd
Qc
× 100% (4)

where Qd and Qc are the discharge and charge capacities, respectively.
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3. Results and Discussion

Nafion-212 membrane has an ion-exchange capacity of 0.87 mg-eq/g, as determined
by acid-base titration. Solvent sorption during solvation of the Nafion-212 membrane
results in an increase in its thickness and weight. After being soaked in the EC-PC solvent
mixture, Nafion-212 exhibited a degree of solvation of 7.8 solvent molecules per sulfonic
acid group, resulting in a thickness increase from 50 µm to 62 µm.

The Nyquist plots and the temperature dependence of the ionic conductivity are
shown in Figure 1a,b. At room temperature, the ionic conductivity of the Nafion-212-EC-
PC polymer electrolyte is 1.9× 10−4 S/cm, meeting the necessary criteria for electrolytes for
lithium metal batteries [29]. The ionic conductivity decreases with decreasing temperature.
There are no sharp drops in its temperature dependence; however, its value at −20 ◦C is an
order of magnitude lower than at room temperature.
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The DSC curve of the Nafion-212-EC-PC membrane shows a significant endothermic
peak with an onset temperature of−5.7 ◦C (Figure 1c). It can be associated with the melting
of a portion of EC in the membrane pores, which is characterized by a higher crystallization
temperature [30–32]. The absence of abrupt changes in the temperature dependence of
conductivity is caused by two factors. In this temperature range, the Nafion-212-EC-PC
membrane contains both a liquid EC-PC mixture and solid EC. According to the phase
diagram of the binary EC-PC system [32], the eutectic temperature of the EC-PC mixture
is about −60 ◦C for the EC mole fraction of ~0.2. Therefore, above this temperature, the
EC-PC mixture contains a liquid phase. With increasing the EC content, the crystallization
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temperature of EC increases. For the EC mole fraction of 0.56, its melting temperature is
0.9 ◦C [32]. This is in agreement with our DSC and conductivity data. The difference is
that the onset temperature of the endothermic peak observed on the DSC curve in this
work is at a slightly lower temperature (−5.7 ◦C), which may be due to the presence
of an impurity (lithium cations) and a decrease in melting temperature in accordance
with Raoult’s law. Another reason is that the solvent contains quite a lot of lithium ions,
predominantly located within a thin Debye layer near the negatively charged walls of
nanosized membrane pores. At these temperatures, only the cation-depleted core (so-called
“electrically neutral” solution [25,33]) in solvated nanodomains begins to freeze [34]. As the
temperature decreases, a portion of the crystalline solvent with zero cation concentration
increases while the concentration of lithium ions in the remaining liquid solvent rises
accordingly, which leads to a less sharp drop in the conductivity of solvated membranes
than would be in the case of a pure solvent. A similar effect was observed for hydrated
perfluorinated sulfonic acid membranes [25] and membranes based on polyethylene and
sulfonated grafted polystyrene [34].

Based on the linear sweep voltammetry data (Figure 2a), no anodic or markedly
cathodic peaks were observed for the Nafion-212-EC-PC electrolyte within the potential
range of 0–6 V vs. Li/Li+. In fact, the observed cathodic peaks at 4.1 and 5.1 V were charac-
terized by relatively small intensities (<10 µA/cm2). Compared with liquid electrolytes
stable in the range of ~1–4.5 V [24,35], the Nafion-212-EC-PC electrolyte exhibits a broader
electrochemical stability window. Therefore, it can be considered a promising electrolyte
compatible with high-voltage cathodes [36–38].
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Based on cyclic voltammetry in the potential range of 2.5−4.1 V, consistent with the
operating range of the LFP cathodes, a gradual decrease in the potential difference between
charge-discharge plateaus compared with the first cycle is observed (Figure 2b). This de-
crease suggests favorable dynamics and increased stability of the electrolyte during cycling.

Based on galvanostatic cycling of a Li|Li cell at a current density of 0.1 mA/cm2, the
Nafion-212-EC-PC electrolyte exhibits an overvoltage of ~320 mV after 100 cycles (Figure 3).
On the voltage profiles, there are no arc-shaped curves that indicate the absence of the
polarization effect, which is commonly observed in classical electrolytes with dual-ion
conductivity due to the anion concentration gradient [39]. Therefore, the voltage profiles in
Figure 3 demonstrate the unipolar conductivity of the Nafion-212-EC-PC electrolyte [40].
The potential values obtained from the galvanostatic cycling plots of Li|Li cells exceed
those of certain gel-polymer electrolytes [41,42], which may be due to the slightly lower
conductivity of the Nafion-212-EC-PC electrolyte. However, a more likely reason is that
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batteries with solid electrolytes generally exhibit higher resistances at interfaces between
an electrolyte and electrodes as a result of nonoptimal contact.
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0.05 mAh/cm2.

The Li+ transference number is a crucial parameter that determines the performance
of an electrolyte in lithium metal batteries. The transference numbers were estimated
using the Bruce–Vincent method, which is the most common method for determining Li+

transference numbers of polymer electrolytes. It involves the polarization of a symmetric
Li|electrolyte|Li cell by a very small (<10 mV) potential difference until the system reaches
a steady state with a constant concentration gradient [43]. This method assumes that
electrolytes obey the Nernst–Einstein equation, which relates the ion diffusion coefficient
to conductivity at infinite dilution and complete dissociation, i.e., an ideal solution without
ion-ion interactions. In this regard, values determined by the Bruce–Vincent method and
calculated using Equation (2) do not represent the real transference numbers of polymer
electrolytes and should be described as a “limiting current fraction”, which refers to the
maximum fraction of the initial current that can be maintained without any interfacial
resistance in a steady state [44]. There are some other methods for the determination of
lithium transference numbers, such as pulsed field gradient NMR [45], electrophoretic
NMR [46], the Hittorf [47], and the Newman methods [48]. The disadvantage of these
methods is the relatively complex instrumentation required as well as greater measurement
errors. Nevertheless, the Bruce–Vincent method is so widely used in the field of polymer
electrolytes that it is a standard technique for transference number determination. Therefore,
in this work, we used it to compare our data with values reported in the literature.

Figure 4 shows the Nyquist plots and the polarization curve. The obtained Li transfer-
ence number for the Nafion-212-EC-PC electrolyte is 0.80, which is comparable to values
reported in the literature for single-ion conducting polymer electrolytes, determined by the
Bruce–Vincent method [49–51]. The difference between the obtained value and 1 may be
due to the ion-ion interactions and the segmental mobility of the membrane side chains
terminated with SO3

− groups, which leads to their orientation towards the electrodes under
the applied potential difference. Moreover, the concentration of cations at one electrode
and cation vacancies at the opposite electrode, which occur because of the polarization (the
so-called concentration polarization), also contribute to this difference. The results show
that the Nafion-212-EC-PC polymer electrolyte is more selective for cation transfer than
liquid electrolytes, which have a transference number of ~0.3 [35].

To evaluate the electrochemical performance of a lithium metal battery with an elec-
trolyte based on Nafion-212 solvated by EC-PC, the LFP|Li cell was tested at different
charge–discharge rates (Figure 5). Charge–discharge curves of the LFP|Li cells show
characteristic plateaus of LiFePO4, indicating the Fe2+↔Fe3+ transition. Meanwhile, the
difference between the average potential of charge and discharge plateaus in the cell using
the Nafion-212-EC-PC membrane electrolyte is similar to that in cells with liquid elec-
trolytes at the same rates of charge and discharge [28,51], indicating that ohmic losses
mainly influence this parameter [52].
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The discharge capacity of the Li|Nafion-212-EC-PC|LFP cell was 141 mAh/g at 0.1C,
which is less than the capacity of a similar cell with liquid electrolyte by only 11% [28].
This capacity is equivalent to 83% of the theoretical specific capacity of the LFP electrode.
As the cycling rate increases, the capacity of the cell with Nafion-212-EC-PC electrolyte
decreases to 136, 125, and 100 mAh/g at 0.2, 0.5, and 1C, respectively. The decrease in
cell capacity with the Nafion-212-EC-PC membrane electrolyte with increasing C-rate is
comparable to that of cells with liquid electrolytes. Increasing the charge/discharge rate
by tenfold (up to 1C) results in the cell capacity decreasing by roughly 30%; however, it is
recovered when the rate returns to 0.1C (Figure 5b). The recovery of the initial cell capacity
indicates the absence of material degradation, and a decrease in the cell capacity at high
rates is attributed to kinetic limitations. It should be noted that the Coulombic efficiency of
the cell remains around ~100% for all C-rates.

Notable is the fact that the cell capacity with the polymer electrolyte remains stable at
low temperatures, showing a Coulombic efficiency of ~100%. However, the cell capacity
decreased to 100 and 120 mAh/g when cycling at 0.1C at −5 and 0 ◦C, respectively
(Figure 6). This corresponds to a decrease of 29% and 9% in capacity relative to room
temperature, despite the fact that the ionic conductivity of the Nafion-212-EC-PC membrane
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electrolyte is more than an order of magnitude lower at these temperatures. Increasing
the cycling rate to 0.5C from 0.1C results in a more significant reduction in capacity, to
~66 mAh/g, which is maintained for 30 cycles with ~100% Coulombic efficiency (Figure 6b).
A further temperature decrease leads to a significant decrease in electrochemical capacity
due to lower electrolyte conductivity and a slower transfer rate of solvated lithium cation
at the electrolyte/SEI interfaces, along with changes in the kinetics of the electrode reaction
for LiFePO4/FePO4 transformation [53,54].
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Figure 6. (a) Charge-discharge curves at −5, 0 ◦C and 0.1C and (b) the discharge capacity and
Coulombic efficiency of the Li|Nafion-212-EC-PC|LFP battery at −5 and 0 ◦C and 0.1C, 0.5C
(indicated in the figure).

The performance of the Li|Nafion-212-EC-PC|LFP cell at room temperature is com-
parable with data for other single-ion conducting polymer electrolytes or even surpasses
them [18,19,55]. This comparison is also true for cells with liquid electrolytes [51,54,56]. The
high-energy density and the ability to operate at low temperatures are among the crucial
parameters of modern batteries [57–59]. It can be noted that a number of cathode materials
are being developed for this purpose [38,60–62], while the obstacle to their commercializa-
tion is the lack of electrolytes with a wide electrochemical stability window. The obtained
results suggest that the Nafion-212-EC-PC membrane may be used as an electrolyte in
lithium metal batteries with high-energy-density operating at low temperatures.

4. Conclusions

The polymer electrolyte for lithium metal batteries was prepared using a Nafion-212
membrane solvated by a mixture of ethylene carbonate and propylene carbonate. The
Nafion-212-EC-PC electrolyte has a high lithium transference number and ionic conduc-
tivity of 1.9 × 10−4 S/cm at 25 ◦C. The LiFePO4|Nafion-212-EC-PC|Li cell exhibited
capacities ranging from 100 to 141 mAh/g at different C-rates (0.1C–1C) at room tempera-
ture and a capacity of 120 mAh/g at 0 ◦C and 0.1C. The battery showed stable performance
over 50 charge and discharge cycles with a Coulombic efficiency of ~100%. Moreover, the
electrolyte is electrochemically stable up to 6 V, indicating its suitability for high-energy-
density batteries.
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