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Abstract: Biocompatible particle-stabilized emulsions have gained significant attention in the biomed-
ical industry. In this study, we employed dynamic high-pressure microfluidization (HPM) to prepare
a biocompatible particle emulsion, which effectively enhances the thermal stability of core materials
without the addition of any chemical additives. The results demonstrate that the HPM-treated
particle-stabilized emulsion forms an interface membrane with high expansion and viscoelastic
properties, thus preventing core material agglomeration at elevated temperatures. Furthermore,
the particle concentration used for constructing the emulsion gel network significantly impacts the
overall strength and stability of the material while possessing the ability to inhibit oxidation of the
thermosensitive core material. This investigation explores the influence of particle concentration on
the stability of particle-stabilized emulsion gels, thereby providing valuable insights for the design,
improvement, and practical applications of innovative clean label emulsions, particularly in the
embedding and delivery of thermosensitive core materials.

Keywords: thermal sensitive core materials; thermal stability; dynamic high-pressure
microfluidization (HPM); high internal phase emulsion gel

1. Introduction

High internal phase emulsion (HIPE), characterized by a dispersed phase volume
fraction higher than 74%, has gained significant popularity across industries such as chemi-
cals, food, pharmaceuticals, and petrochemicals. This innovative emulsion system offers
great potential for the creation of advanced materials [1]. These materials possess diverse
properties and find applications in various high-tech fields, impacting everyday lives
through their use in filtration membranes, organic semiconductors, and tissue engineering
scaffolds. Moreover, HIPE serves as an efficient vehicle for delivering active substances
and facilitating sustained release in the domains of food and pharmaceuticals [2]. This
characteristic presents numerous opportunities for development and innovation in these
fields. When the continuous and/or dispersed phase of HIPE forms a gel, it is classified as
a high internal phase emulsion gel (HIPE-gel).

There has been a growing interest in the application of particle emulsifiers for stabi-
lizing emulsions, particularly those composed of hard inorganic particles like titanium
dioxide [3] and silicon dioxide [4]. However, these particles often suffer from limited
biodegradability and biocompatibility, which restricts their use in the food and pharma-
ceutical industries. Currently, particle emulsifiers have advanced from rigid particles to
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soft deformable particles possessing characteristics of both particles and polymeric par-
ticles [5]. The softness of these particles has a significant impact on the formation and
stability of emulsions. Unlike hard particles, soft particles can spontaneously adsorb onto
fluid interfaces, requiring less energy input [6]. Biocompatible soft particles primarily
fall into two major biopolymer categories, i.e., proteins and polysaccharides, including
commercialized food proteins such as whey protein [7,8], soy protein [9], and gelatin [10],
as well as polysaccharides like starch [11] and cellulose [12]. For instance, successful stabi-
lization of high internal phase emulsions (HIPE) was achieved to improve their resistance to
aggregation using low-concentration gelatin particles (0.5%) [13]. Chitosan aggregates were
utilized with varying degrees of cross-linking as particle emulsifiers to prepare HIPE with
adjustable pore structures [14]. Wheat alcohol-soluble protein–chitosan conjugates were
employed at low concentrations (0.5~2%) as particle emulsifiers to prepare HIPE with oil
phase volume fractions as high as 83%, which exhibited favorable plasticity, viscoelasticity,
curcumin protection, and resistance against oil oxidation [15].

Currently, the preparation of certain highly internal phase emulsions (HIPEs) still relies
on the use of crosslinkers or organic solvents that do not meet clean label standards. These
substances may persist in the emulsion products, severely limiting their applicability in the
fields of food, pharmaceuticals, and health products. Hence, it is imperative to discover a
more energy-efficient, environmentally friendly, and uncomplicated method to produce
particle emulsifiers that are suitable for clean label applications, which presents a significant
challenge. These particle emulsifiers possess exceptional interfacial properties, ensuring
high safety and suitability for large-scale industrial production and commercialization [16].
One promising approach in HIPE research involves utilizing high-pressure homogenization,
a technique capable of imparting proteins with novel structural and functional attributes
through top-down (i.e., particle size reduction) or bottom-up (i.e., particle re-aggregation)
processes [17]. This treatment enhances the interfacial properties of proteins, while also
offering advantages such as ease of operation, scalability, reproducibility, and continuous
processing. Consequently, high-pressure homogenization can be employed to physically
modify particle emulsifiers for industrial production, making it an ideal technique for
developing protein-based particle emulsifiers. For example, whey protein nano-gel particles
created through high-pressure homogenization have successfully been used to formulate
curcumin-loaded emulsion gels, exhibiting both a high loading efficiency and excellent
resistance against light-induced degradation [18].

This study utilized milk protein concentrate (MPC) enriched with casein micelles as
the emulsifier for the particles. It is worth noting that casein micelles possess a highly
hydrated porous structure with a complex hierarchical arrangement [19–22]. To create
particle emulsifiers that are suitable for clean label production and are characterized by
exceptional interfacial functionality, we employed high-pressure homogenization (HPM)
to modify the intricate hierarchical structure of natural particles. This modification resulted
in a modified MPC that can be used as a clean-label particle emulsifier. Consequently,
O/W HIPE (high internal phase emulsion) gels were prepared using only MPC as the
emulsifying stabilizer and conjugated linoleic acid as a representative thermosensitive core
material. Our primary objective was to examine the influence of MPC concentration on the
preparation and stability of HIPE gels, as well as their capacity to hinder lipid oxidation
during storage and improve the thermal stability of CLA.

2. Materials and Methods
2.1. Materials

MPC485 (protein 80.67%, lactose 5.72%, fat 1.63%) was purchased from Fonterra Co., Ltd.
(Auckland, New Zealand). Conjugated linoleic acid (CLA) was purchased from Toole Biotechnol-
ogy Co., Ltd. (Shenzhen, Guangdong, China). All the other chemicals of analytical grade were
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the solutions were prepared
using ultrapure water (Milli-Q Ultrapure Water Purification Systems, Billerica, MA, USA).
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2.2. Preparation of MPC Dispersions under High Pressure

MPC is composed of whey proteins and caseins in a ratio of 1:4. Whey protein is
mainly composed of β-lactoglobulin (β-Lg) and α-lactalbumin (α-La). Casein is mainly
composed of four types of monomers, κ-casein, αs2-casein, αs1-casein, and β-casein, with a
ratio 1.3:1:4:4 [23]. These monomers form micelles, where they are linked to each other by
hydrophobic interactions and hydrogen bonds, and by colloidal calcium phosphates. Over
95% of the casein in milk is present in the casein micelles [24]. In addition, a small fraction
of casein exists as monomers or small aggregates [25]. The MPC powder was dispersed in
ultrapure water and stirred at room temperature for 2 h at 600 rpm, followed by an additional
10 h of stirring at 15 ◦C and 600 rpm. It is worth noting that the ultrapure water used in our
experiments lacked trace elements and minerals, which may have led to slight differences in
the size of casein micelles compared to natural micelles in milk. However, the MPC utilized
in our research was an industrial product obtained through milk ultrafiltration and spray
drying. Even when we attempted to reconstruct MPC using milk ultrafiltrate and simulated
milk ultrafiltrate, we still could not achieve casein micelles identical to those found in natural
milk. Furthermore, our aim was to make our study more aligned with practical production.
Therefore, we chose ultrapure water as our research medium.

The MPC dispersion (5% weight percentage) was preheated to 50 ◦C and then subjected
to three cycles of HPM using a high-pressure homogenizer equipped with a Z-shaped
module containing microchannels with a diameter of 75 µm (Nano Disperser, Antos Nano
Technology Limited Co., Suzhou, China). Each HPM treatment was conducted at 90 MPa.
The temperature of the MPC dispersion at the outlet of the homogenizer was approximately
60 ◦C. Three replicates were prepared for each MPC dispersion treated with HPM at 90 MPa,
labeled as MPC-HPM90. The untreated MPC dispersion served as the control and was
labeled as MPC-0.

2.3. Preparation of HIPE-Gels

HIPE-gels were prepared with the oil phase volume fraction of 75%, utilizing con-
jugated linoleic acid (CLA) as the core material (oil phase) and an aqueous dispersion
containing 2 or 4 wt% MPC (MPC-0, MPC-HPM90) as the aqueous phase. To facilitate
visualization of the CLA using both visual and microscope observation, Nile red dye
(0.1% w/v) was added to the CLA. First, 10 mL of protein dispersion was accurately mea-
sured and transferred into a 120 mL plastic beaker. Subsequently, 30 mL of CLA was
slowly introduced to the aqueous phase using a constant flow pump, while high-speed
shearing dispersion at a speed of 10,000 rpm (~4785× g) was conducted for 1 min with 10 s
pauses using the high-speed disperser (T18, IKA, Staufen, Germany). It is worth noting
that MPC is a multi-component mixture, and the particles mentioned in the article refer to
the particle emulsifier. The resulting high internal phase emulsion gels (HIPE-gels) were
obtained. The experiment was performed at a controlled temperature of 25 ◦C, utilizing
a constant temperature water bath. Three replicates of the HIPE-gels were prepared. For
storage, the HIPE-gels were maintained under controlled conditions of 45 ◦C in constant
temperature shaking incubators within a light-free environment. The stability and lipid
oxidation of the HIPE-gels were analyzed during a 14-day high-temperature storage period.
Additionally, the samples were stored for an extended period of 7 weeks at 45 ◦C, allowing
for visual assessment of their appearance and determination of shelf life. Approximately
8 g of the samples were stored in 10 mL glass vials for visual observation. For measuring
other indicators during the storage period, 30 mL wide-mouth plastic dishes with covers
were used.

2.4. Confocal Laser Scanning Microscope (CLSM)

Nile red, at a concentration of 0.1 g/L, was utilized to label the oil phase. A concave
microscope slide was employed for immobilizing an appropriate volume of HIPE-gel,
which was subsequently evenly spread and sealed with a coverslip. Imaging of the sample
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was carried out using a TCS SP8 laser confocal microscope (Leica, Weztlar, Germany)
equipped with a 10× objective magnification and an excitation wavelength of 552 nm.

2.5. Rheological Analysis

A rotational rheometer (MCR92, Anton Paar, Graz, Germany) with a parallel plate
having a diameter of 25 mm and a measurement gap of 1 mm was employed for the rheo-
logical analyses. The angular frequency was set to 10 rad/s, and amplitude scanning was
conducted within a shear strain range of 0.01% to 1000%. Additionally, creep experiments
were performed on the HIPE-gels by applying a stress of 10 Pa to the sample for 3 min,
followed by a relaxation period of 3 min. The entire duration of changes in shear strain
was recorded.

2.6. Lipid Oxidation Stability

The stability of lipid oxidation was investigated by measuring the peroxide value
(POV) of CLA in HIPE-gels based on the method of Zhuang et al. [26]. The FeCl2 solution
used was freshly prepared. Freshly prepared or stored emulsion gel (0.1 g) was placed in a
15 mL centrifuge tube. A mixture of 3 mL of chloroform–methanol solution (2:1, v/v) was
then added, and the mixture was vortexed for 30 s. The solution was mixed thoroughly for
20 min and then centrifuged at 3000× g for 10 min at room temperature. Precisely measured
1 mL of organic phase was then added to a 10 mL brown flask, followed by the addition of
50 µL of FeCl2 solution (3.5 g/L). The flask was filled with a chloroform–methanol solution
(2:1, v/v), and 50 µL of KSCN solution (300 g/L) was added after mixing. After 5 min at
room temperature, the absorbance of the solution was measured at 500 nm. The POV was
calculated using Equation (1):

X =
c− c0

m× 55.84× 2× V2
V1

(1)

where X is the content of peroxides in the sample (meq/kg), c is the mass of iron in the
sample obtained from the standard curve (µg), c0 is the mass of the zero-tube iron obtained
from the standard curve (µg), V1 is the sample dilution total volume (mL), V2 is the sample
volume for measurement (mL), m is the mass of sample (g), 55.84 is the atomic weight of
iron, and 2 is conversion factor.

2.7. Centrifugal Stability

The influence of a high temperature and centrifugal force on the physical stability
of the O/W HIPE-gels was assessed using a LUMiSizer® stability analyzer [27]. The gel
samples were freshly prepared under room temperature conditions before centrifugation.
During the testing process, parallel near-infrared light (865 nm) traversed the sample pool,
allowing for the measurement of transmissivity as a function of the sample’s position. The
testing conditions were maintained at 45 ◦C and 3000 rpm for a duration of 150 min. Once
the tests were finished, a test result image (transmission–position image) was generated
automatically for each sample. The red lines in each image indicate the modifications in
the transmittance rate of different positions in the testing tube during the testing process.

2.8. Statistical Analysis

The results were expressed as the mean ± standard deviation. The statistical analyses
was performed using IBM SPSS Statistics 25 (SPSS Inc., Chicago, IL, USA). An analysis of
variance (ANOVA) was conducted, followed by Duncan’s test at a 95% confidence level.
Statistical significance was determined at a p-value of less than 0.05, indicating significant
differences between the samples.
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3. Results and Discussion
3.1. Visual Observation of Prepared HIPE-Gels

The prepared HIPEs were carefully placed in glass bottles and inverted for observation,
as depicted in Figure 1.
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Figure 1. Visual observation of HIPE-gels during storage at 45 ◦C.

The HIPEs were formulated using two different concentrations (2 wt%, 4 wt%) of MPC.
These MPC concentrations tightly adhered to the glass bottles, exhibiting gel-like properties
upon inversion, signifying the successful preparation of the HIPE-gels. In contrast, the
HIPE-gels prepared using whey protein microgels with concentrations ranging from 2.5%
to 7.5% exhibited low flowability, which was also observed in ref. [28], causing them to
flow down to the bottom of the glass bottle during inversion. In our study, HIPE-gels
prepared with a lower concentration (2 wt%) of MPC, regardless of whether the MPC
underwent HPM treatment, displayed a softer texture and an observable oil sheen on the
surface, suggesting slight oil phase leakage. Interestingly, the HIPE-gels formulated with
a higher concentration (4 wt%) of MPC exhibited well-supported structures, indicating
an improved strength of the network structure due to the elevated particle concentration.
Furthermore, all the MPC-prepared HIPE-gels demonstrated excellent long-term stability,
with no significant visual changes observed after seven weeks of storage at 45 ◦C (Figure S1,
Supplementary Materials).

3.2. Microstructure of HIPE-Gels

To further investigate the influence of MPC particle concentration on the performance
of the HIPE-gels, we employed confocal laser scanning microscopy (CLSM) to observe their
microstructures. Furthermore, ImageJ software was utilized to analyze the droplet size and
distribution based on the CLSM images obtained. As depicted in Figure 2, all the oil droplets
in the HIPE-gels exhibited a densely packed arrangement, assuming polygonal shapes
due to squeezing and deformation. This phenomenon can be ascribed to the dispersed
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phase volume fraction surpassing the requirement for close packing, which is consistent
with prior research on HIPE-gels stabilized by whey protein isolate [28]. However, it is
unavoidable that there may still be some circular shapes of varying sizes present.

Polymers 2023, 15, x FOR PEER REVIEW  6  of  14 
 

 

droplet size and distribution based on the CLSM images obtained. As depicted in Figure 

2, all the oil droplets in the HIPE-gels exhibited a densely packed arrangement, assuming 

polygonal shapes due to squeezing and deformation. This phenomenon can be ascribed 

to  the dispersed phase volume  fraction  surpassing  the  requirement  for  close packing, 

which is consistent with prior research on HIPE-gels stabilized by whey protein isolate 

[28]. However, it is unavoidable that there may still be some circular shapes of varying 

sizes present. 

 

Figure 2. CLSM images (A,B) and the size distribution (C) of the oil drops in the HIPE-gels during 

storage at 45 °C. 

Figure 2. CLSM images (A,B) and the size distribution (C) of the oil drops in the HIPE-gels during
storage at 45 ◦C.

The particle concentration of the MPC played a significant role in determining the size,
morphology, and size distribution of the oil droplets in both the freshly prepared and stored
HIPE-gels. In the HIPE-gels fabricated using a low concentration (2 wt%) of MPC, the oil
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droplets were larger, irregularly distributed, and displayed uneven shapes. Specifically, the
average size of the oil droplets in the HIPE-gels prepared with MPC-0 was measured at
12.85 ± 5.68 µm, while those prepared with the MPC-HPM90 were slightly smaller, with
an average size of 10.53 ± 2.52 µm. By increasing the MPC concentration to 4 wt%, the
size of the oil droplets in the HIPE-gels decreased, and they assumed an irregular circular
shape. The average size of the oil droplets in the HIPE-gels prepared using MPC-0 was
6.42 ± 1.21 µm, while those prepared using MPC-HPM90 exhibited an average size of
5.84 ± 1.45 µm. This relationship between particle concentration and droplet size can be
attributed to the insufficiency of protein-based particle emulsifiers at lower concentrations,
which fail to adequately cover the oil droplet surface during the shear dispersion process,
resulting in droplet coalescence.

Additionally, the use of MPC with or without HPM treatment for HIPE-gel preparation
influenced the morphology, size, and size distribution of the oil droplets. The incorporation of
MPC-HPM90 as an emulsifier in the HIPE-gel formulation led to a noticeable improvement in
the homogeneity of smaller oil droplets. This enhancement can be attributed to the increased
deformability and collapsibility of the particles. The impact of this effect was most prominent
in samples with lower concentrations (2 wt%), as evident from Figure 2. However, when
the MPC concentration was increased to 4 wt%, the elevated quantity of protein particles
allowed for complete coverage of the oil–water interface [28–30], thus overcoming differences
in oil droplet morphology, size, and distribution caused by particle internal architecture.
Consequently, any variations arising from the deformed particle shapes resulting from HPM
treatment, which affected droplet characteristics, were successfully mitigated. Therefore, no
significant differences were observed in the freshly prepared HIPE-gels with a higher MPC
concentration, regardless of whether the HPM treatment was applied.

Following a two-week storage experiment at 45 ◦C, the concentration of the protein-
based particle emulsifiers emerged as a crucial factor affecting the stability of the HIPE-gels.
In the HIPE-gels stabilized using a low concentration (2 wt%) of MPC, severe droplet
coalescence and enlargement were observed, resulting in large oil droplets reaching approx-
imately 100 µm. Specifically, the average size of the oil droplets in the HIPE-gels prepared
using MPC-0 was measured at 28.74 ± 10.77 µm, while those prepared using MPC-HPM90
exhibited a smaller average size of 16.09 ± 6.43 µm. Conversely, the droplet size expe-
rienced minimal changes during storage in the HIPE-gels stabilized with MPC-HPM90
at a high concentration (4 wt%), whereas some oil droplets aggregated in the HIPE-gels
stabilized with MPC-0 (Figure 2). The average size of the oil droplets in the HIPE-gels
prepared with MPC-0 was determined to be 14.88 ± 12.07 µm, whilst those prepared
with MPC-HPM90 demonstrated an average size of 13.04 ± 8.28 µm. The complete cover-
age of the particles facilitated enhanced long-term stability of the HIPE-gels at elevated
temperatures and displayed improved storage stability.

3.3. Dynamic Viscoelastic Properties of HIPE-Gels

The rheological properties of emulsions have a significant impact on their stability and
practical applications. In order to gain a comprehensive understanding of the rheological
properties of HIPE-gels and evaluate their practical utility, we conducted experiments
on HIPE-gels prepared with different concentrations of MPC to examine their stability
under large amplitude oscillatory shear. Figure 3 presents an investigation of the strain-
dependent behavior of both the storage modulus (G′) and loss modulus (G′ ′) of the HIPE-
gels, conducted at a fixed angular frequency of 10 rad/s.

Figure 3 shows the amplitude scanning of the HIPE-gels during storage at 45 ◦C. As
can be observed from the figure, the concentration of MPC also affected the rheological
behavior of the HIPE-gels. In the linear viscoelastic region, the G′ of the emulsion gels
increased with an increase in the MPC concentration [14,31]. This suggests that as the
concentration of the particle emulsifier increases, a more compact gel network structure
could be formed inside the HIPE-gels, thereby increasing the mechanical strength of the
HIPE-gels. In other words, increasing the MPC concentration could improve the mechanical
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strength and stability of the HIPE-gels. It has been suggested that an entangled protein
network between adsorbed and non-adsorbed protein molecules is the major reason for the
high elastic modulus and gel-like structure of emulsion gels [32]. Nevertheless, increasing
the concentration of MPC-0 could not effectively improve the structural stability of the
HIPE-gels during storage. Specifically, after 14 d of storage, the G′ of the HIPE-gels
fabricated with 4 wt% MPC-0 decreased by approximately 41.67%. However, the HIPE-gels
prepared with MPC-HPM90 exhibited excellent structural stability during storage. The
improved performance of the HIPE-gels could be explained by the contribution of the
HPM treatment, which enhances their ability to deform and collapse on the oil droplet
surface [5]. The processing of HPM improves the deformation and collapse capacity of the
MPC present on the oil droplet surface. Additionally, it strengthens the interpenetration
between the particle emulsifiers, thereby leading to stronger protein interactions and the
creation of a denser viscoelastic interface. This interface exhibits heightened mechanical
capabilities coupled with prolonged HIPE-gel stability.
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The dynamic viscoelastic properties of the HIPE-gels were assessed using creep recov-
ery tests, as depicted in Figure 4. Notably, all the tested samples underwent instantaneous
deformation upon stress loading and unloading.

The strain value represents the cumulative deformation experienced by the gel sample
under stress. As this value increased, the stiffness of the gel samples noticeably decreased,
while a decrease in strain corresponded to an increase in gel hardness. Hence, the strain
value serves as an indicator of gel firmness. When subjected to constant stress, the HIPE-
gels stabilized using MPC-0 displayed higher strains compared to those stabilized using
MPC-HPM90. This discrepancy suggests that the gels stabilized using MPC-0 were more
susceptible to deformation due to their fragile gel structure, rendering them vulnerable to
external perturbations. Conversely, the HIPE-gels stabilized using MPC-HPM90 exhibited
minimal deformation when exposed to external force. This remarkable resistance to defor-
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mation can be attributed to the formation of interfacial membranes by deformed particles
subsequent to the HPM treatment. MPC-HPM90 may optimize the benefits of both soft
and hard particles when placed at the interface. Softer particles (e.g., casein micelles) can
spontaneously adsorb on the interface, while harder particles (e.g., whey proteins and
small aggregates of casein monomers) have limited adaptability [6,33]. Soft particles can
adsorb spontaneously on the fluidic interface, while hard particles can constrain the lateral
compression of soft particles during the divergent reaction. These viscoelastic membranes
act as buffers, reducing the interaction between oil droplets and resulting in the forma-
tion of a stronger gel network. Consequently, such gels exhibit enhanced resistance to
deformation. Figure 4 displays a general inverse relationship between the increase in shear
strain and the extension of storage time, particularly after 7 days of storage. In both the
aging and recovery steps, the shear strain obtained from the fresh-prepared HIPE-gels
(0 day) was greater than that obtained from the aged HIPE-gels (7 days), suggesting that
the aged HIPE-gels were unable to effectively respond to shear strain, resulting in increased
stiffness. Regardless of whether the MPC underwent HPM treatment or not, the HIPE-
gels prepared using 2 wt% MPC demonstrated a higher strain under the external force.
This increased susceptibility to stress deformation in low particle concentration HIPE-gels
can be attributed to their soft and flowable gel texture, as well as their flexible molecular
network structure, as previously reported [34]. With an increase in particle concentration,
the contact area between the particle emulsifier and the oil phase in the HIPE-gels also
increased. Additionally, a higher concentration of the particle emulsifier led to more stable
and stronger gel networks, thereby enhancing resistance to deformation. Consequently, the
strain of the HIPE-gels gradually decreased at 4 wt% MPC, indicating that higher emulsifier
concentrations contribute to stronger network structures within the gels.
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3.4. Lipid Oxidation of HIPE-Gels under Elevated Temperatures

Conjugated linoleic acid (CLA) is a type of polyunsaturated fatty acid [35] that under-
goes rapid oxidation at high temperatures [36], making it an excellent model for studying
thermal sensitivity in core materials. In our study, we investigated the effectiveness of HIPE
(high internal phase emulsion) gels in delaying the lipid oxidation of CLA by increasing
the temperature during this process. Figure 5 illustrates the impact of stable HIPE gels
with varying particle concentrations as emulsifiers on the delayed oxidation of conjugated
linoleic acid.

The peroxide value (POV) of pure and unprotected CLA was determined to be
25.00 ± 0.88 meq/kg oil. However, the POV of CLA increased when incorporated into
the freshly prepared HIPE-gels. Notably, the oxidation degree of CLA was more pro-
nounced in the HIPE-gels stabilized with 2 wt% MPC. The POV of CLA in the HIPE-gels
stabilized using MPC-0 and MPC-HPM90 was measured at 35.60 ± 0.84 meq/kg oil and
37.14 ± 2.51 meq/kg oil, respectively. In the HIPE-gels stabilized with freshly prepared
2% MPC, regardless of whether MPC-0 or MPC-HPM90 was used, insufficient protein
concentration resulted in incomplete coverage of the oil droplet surfaces. Consequently,
lipid oxidation occurred during the approximately 20-min HIPE-gel preparation process.
The level of lipid oxidation was similar in both samples, as depicted in Figure 5.



Polymers 2023, 15, 4272 10 of 14

Polymers 2023, 15, x FOR PEER REVIEW  10  of  14 
 

 

HIPE gels with varying particle concentrations as emulsifiers on the delayed oxidation of 

conjugated linoleic acid. 

 

Figure 5. The lipid oxidation of CLA in HIPE-gels during storage at 45 °C. Different letters (a–d) 

indicate significant difference (p < 0.05) due to HPM treatment and different MPC concentration. 

The lipid oxidation of CLA in HIPE-gels during storage for 0 day (A), 7 days (B) and 14 days (C) at 

45 °C. 

The peroxide value (POV) of pure and unprotected CLA was determined to be 25.00 

± 0.88 meq/kg oil. However, the POV of CLA increased when incorporated into the freshly 

prepared HIPE-gels. Notably, the oxidation degree of CLA was more pronounced in the 

HIPE-gels stabilized with 2 wt% MPC. The POV of CLA in the HIPE-gels stabilized using 

MPC-0 and MPC-HPM90 was measured at 35.60 ± 0.84 meq/kg oil and 37.14 ± 2.51 meq/kg 

oil, respectively. In the HIPE-gels stabilized with freshly prepared 2% MPC, regardless of 

whether MPC-0 or MPC-HPM90 was used, insufficient protein concentration resulted in 

incomplete coverage of the oil droplet surfaces. Consequently, lipid oxidation occurred 

during the approximately 20-min HIPE-gel preparation process. The level of lipid oxida-

tion was similar in both samples, as depicted in Figure 5. 

After 14 days of storage, the POV of pure CLA significantly increased to 36.69 ± 1.41 

meq/kg oil. Meanwhile, the HIPE-gels stabilized using 2 wt% MPC exhibited an accelera-

tion in peroxide production, as evident from the POV of CLA. In fact, the POV of CLA in 

the HIPE-gels stabilized using MPC-0 and MPC-HPM90 reached 47.71 ± 1.62 meq/kg oil 

and  43.88  ±  0.66 meq/kg  oil,  respectively. As  the  particle  emulsifier  concentration  in-

creased, the HIPE-gels effectively suppressed the lipid oxidation of CLA. Figure 5 demon-

strates that the inhibition of lipid oxidation in the HIPE-gels stabilized with both 4% MPC-

0 and 4% MPC-HPM90 was comparable, which was attributable to the formation of a con-

tinuous protein network on the surface of the oil droplets after 14 days of storage at 45 °C. 

This network hinders oxidants from coming into contact with the oil phase. In contrast, 

traditional emulsions with elevated water activity levels (>0.4) are expected to exhibit ac-

celerated rates of lipid oxidation due to their O–W interface, which enlarges the surface 

area of oil droplets and facilitates interactions with the pro-oxidants present in the sur-

rounding water phase [37]. Therefore, the oxidation rate of CLA in the HIPE-gels stabi-

lized with 2 wt% MPC was found to be significantly higher than that observed in pure 

CLA oil. 

Our findings  reveal an  intriguing phenomenon of  inhibited CLA oxidation  in  re-

sponse  to  an  increased  particle  emulsifier  concentration.  This  observation  can  be  at-

tributed to the three-dimensional network formed during gelation  in HIPE-gels, which 

restricts the diffusion and transfer of oxygen, pro-oxidants, and free radicals to the O–W 

interface [38,39]. Consequently, lipid oxidation of CLA in HIPEs is delayed. 

3.5. Physical Stability of HIPE‐Gels under Elevated Temperatures 

To assess the physical stability of the HIPE-gels, we utilized an accelerated centrifu-

gation technique using LUMisizer® stability analysis (Figure 6). This method allows for 

evaluating stability under simulated mechanical forces and provides insights into long-

Figure 5. The lipid oxidation of CLA in HIPE-gels during storage at 45 ◦C. Different letters (a–d)
indicate significant difference (p < 0.05) due to HPM treatment and different MPC concentration. The
lipid oxidation of CLA in HIPE-gels during storage for 0 day (A), 7 days (B) and 14 days (C) at 45 ◦C.

After 14 days of storage, the POV of pure CLA significantly increased to 36.69± 1.41 meq/kg
oil. Meanwhile, the HIPE-gels stabilized using 2 wt% MPC exhibited an acceleration in peroxide
production, as evident from the POV of CLA. In fact, the POV of CLA in the HIPE-gels stabilized
using MPC-0 and MPC-HPM90 reached 47.71± 1.62 meq/kg oil and 43.88± 0.66 meq/kg oil,
respectively. As the particle emulsifier concentration increased, the HIPE-gels effectively suppressed
the lipid oxidation of CLA. Figure 5 demonstrates that the inhibition of lipid oxidation in the HIPE-
gels stabilized with both 4% MPC-0 and 4% MPC-HPM90 was comparable, which was attributable
to the formation of a continuous protein network on the surface of the oil droplets after 14 days
of storage at 45 ◦C. This network hinders oxidants from coming into contact with the oil phase.
In contrast, traditional emulsions with elevated water activity levels (>0.4) are expected to exhibit
accelerated rates of lipid oxidation due to their O–W interface, which enlarges the surface area
of oil droplets and facilitates interactions with the pro-oxidants present in the surrounding water
phase [37]. Therefore, the oxidation rate of CLA in the HIPE-gels stabilized with 2 wt% MPC was
found to be significantly higher than that observed in pure CLA oil.

Our findings reveal an intriguing phenomenon of inhibited CLA oxidation in response
to an increased particle emulsifier concentration. This observation can be attributed to
the three-dimensional network formed during gelation in HIPE-gels, which restricts the
diffusion and transfer of oxygen, pro-oxidants, and free radicals to the O–W interface [38,39].
Consequently, lipid oxidation of CLA in HIPEs is delayed.

3.5. Physical Stability of HIPE-Gels under Elevated Temperatures

To assess the physical stability of the HIPE-gels, we utilized an accelerated centrifu-
gation technique using LUMisizer®stability analysis (Figure 6). This method allows for
evaluating stability under simulated mechanical forces and provides insights into long-term
storage stability [40], as the centrifugal force accelerates flocculation and the coalescence of
oil droplets [41].

In Figure 6, we present the integrated transmission curves of different HIPE-gels under
865 nm parallel near-infrared light over time. The position at 130 mm corresponds to the
bottom of the HIPE-gel samples, while approximately 105 mm corresponds to the top. As
the transmittance of emulsions is inversely proportional to the concentration of oil droplets,
higher transmittance values indicate lower droplet concentrations, and vice versa. When
using near-infrared light to detect the internal structures of gels, the initial transmittance is
low due to the intact nature of the gel network. However, the application of centrifugal
force breaks the gel network, leading to increased light transmittance. Oil droplets spill
upwards, while water released from the disrupted gel structure settles down.

The majority of the initial profile lines (highlighted in red, Figure 6) in each figure were
located at the base, indicating that the HIPE-gels originally possessed consistent, opaque
gel structures with extremely low transmittance. After subjecting them to accelerated
centrifugation at 3000 rpm for 150 min, the bottom part of the final profile lines (green lines)
exhibited an increase in transmittance of 80–90%. This increase suggests that the HIPE-gel
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structure was disrupted under centrifugal force, leading to water seepage at the bottom
and enhanced transmittance.
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We observed that the HIPE-gels stabilized with lower concentrations (2 wt%) of MPC
demonstrated a significant increase in transmittance near the bottom of the sample tube
(Figure 6A,B), indicating their lower stability compared to those stabilized with higher
concentrations (4 wt%) of MPC. As the concentration of MPC increased, the difference
between the profiles recorded at different times during centrifugation decreased, suggesting
an improved stability of the HIPE-gels. Several studies have evaluated emulsion stability
using the LUMISizer®. For instance, Niu et al. [42] assessed the stability of O/W emulsions
prepared using sugar beet pectin (SBP) (0.5–2.0%) and gum Arabic (GA) (0.5–15.0%) at
various concentrations. Their findings demonstrated that both the SBP- and GA-stabilized
emulsions became increasingly stable as the concentration rose. Su et al. [43] monitored
transmission changes using a LUMISizer® to evaluate the stability of HIPEs prepared
using β-lactoglobulin-propylene glycol alginate composite hydrogel particles (β-lgPPs)
at different concentrations (c = 0.1–2.0 wt%). The results indicated that HIPEs with high
particle concentrations (c = 1.0–2.0 wt%) exhibited a relatively high physical stability, with
an extremely slow creaming rate during centrifugation and a final value not exceeding 0.025.

Moreover, the HIPE-gels stabilized with MPC-HPM90 displayed less variation in trans-
mission intensity at the same concentration. Among all the samples, the HIPE-gel stabilized
using 4 wt% MPC-HPM90 exhibited minimal changes under accelerated centrifugation,
indicating its high stability against coalescence, even in the presence of centrifugal force.
Notably, the MPC-stabilized HIPE-gels demonstrated considerable resistance to droplet
coalescence. Despite water seepage from the gel structure, no Nile red-stained oil droplets
were released from the emulsion. Theoretical principles suggest that applying centrifugal
force to a mixture of oil and water would result in phase separation, with the oil phase
rising to the top. However, the HIPE-gels we prepared exhibited exceptional physical
stability owing to the O–W interfacial membrane’s high mechanical strength, which was
constructed by soft particles.
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4. Conclusions

This study investigated the impact of the particle concentration of MPC modified
with HPM on their own structure and thermal stability during storage, as well as its effect
on the thermal stability of the encapsulated core materials. The results indicate that at
lower concentrations (2%), the MPC particles failed to provide sufficient coverage to the oil
droplets, resulting in a fragile network structure and increased possibility of oil droplet
coalescence. In contrast, higher concentrations (4 wt%) of MPC demonstrated a notable
ability to maintain long-term stable oil droplets. Specifically, the HIPE-gels stabilized using
MPC-HPM90 exhibited insignificant changes in oil droplet size, size distribution, and gel
network strength during a 14-day high-temperature storage period. These gels displayed
excellent physical stability in elevated temperature environments and effectively inhibited
lipid oxidation of the core material. This study provides valuable experimental data and
theoretical guidance for the development, refinement, and application of particle emulsi-
fiers. The research findings pave the way for the creation of more efficient emulsifiers that
are suitable for use in environmentally friendly labeled consumer products. In summary,
we have successfully developed HIPE-gels, a novel material that can enhance the thermal
stability of heat-sensitive CLA without requiring any additional chemical emulsifiers. In
future studies, we will investigate the feasibility of using HIPE-gels as a template for the
preparation of porous materials and to polymerize lenoic acid. This technology has the
potential to offer significant advantages over traditional emulsion polymerization processes,
which use toxic surfactants that can have harmful environmental and health implications.
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