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Abstract: Paper-based thermoelectric (PTE) generators have recently emerged as a green tech-
nology that can help alleviate environment pollution and the energy crisis. In this work, a PTE
generator was prepared by coating a post-treatment-free thermoelectric ink consisting of poly(3,4-
ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) doped with 1-ethyl-3-methylimidazolium:
tricyanomethanide (EMIM:TCM) onto the card paper. By tuning the molar concentration of the
EMIM:TCM to 0.17 M and with hot-pressing, the PTE generator showed a decent power factor
(PF) value of 6.82 µW m−1 K−2, which was higher than the values of PTE in the literature. This
phenomenon could be attributed to the synergistic effect of high-performance thermoelectric ink
(i.e., PF = 175 µW m−1 K−2 when deposited on glass slide) and the hot-pressing. The hot-pressing
enhanced the packing density of cellulose fibers and the associated PEDOT:PSS hybrid, which en-
abled the formation of long-range conductive paths. In addition, the PTE had good mechanical
stability, indicated by no significant change of the power factor values after cyclic folding 10,000 times.
Moreover, the structure of as-prepared PTE could be easily tuned into different shapes that are
promising for the preparation of flexible wearable thermoelectric generators.

Keywords: paper-based thermoelectric; PEDOT:PSS; hierarchical structure; mechanical stability

1. Introduction

In recent years, intelligent wearable electronic devices have received increasing at-
tention. For a portable use of wearable devices, there have been numerous studies on
integrated energy harvesters, such as piezo-electric batteries [1,2], moisture-driven power
generators [3], and thermoelectric generators (TEGs). Among these devices, TEGs are a kind
of green energy source, which could directly convert waste heat into useful electricity that
can power wearable electronics and the “Internet of Things” [4]. Especially, flexible TEGs
that could easily adapt to the complex geometry and compliant material property of skin
have attracted lots of interests [4,5]. In the past decade, great progress has been achieved
in the development of flexible wearable TEGs, such as high-performance thermoelectric
inks [5,6], post-treatment-free thermoelectric inks [4], flexible substrates [5], and coating
technologies [7–10], among which, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS) and paper have evolved as the promising thermoelectric ink material and
substrate, respectively, mainly due to their unique features in superior biocompatibility,
high foldability, and good adaptability to the wet-coating process [11–13].

PEDOT:PSS is a charged polymer complex consisting of conductive and hydrophobic
PEDOT, and insulating and hydrophilic PSS chains, which bond together via columbic
interactions. It is one of the most successfully commercialized conjugated polymers that

Polymers 2023, 15, 4215. https://doi.org/10.3390/polym15214215 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15214215
https://doi.org/10.3390/polym15214215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-9320-064X
https://orcid.org/0000-0003-1695-360X
https://doi.org/10.3390/polym15214215
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15214215?type=check_update&version=2


Polymers 2023, 15, 4215 2 of 11

is widely used in flexible electronics, organic electronics, conductive coatings, and photo-
voltaics [14–16] because PEDOT:PSS has good aqueous dispersibility/stability, ease process-
ability, high conductivity, superior flexibility and stretchability, and excellent biocompatibil-
ity. These features endow PEDOT:PSS with not only good thermoelectric performance (e.g.,
typical figure of merit of 0.42 [12]) but also the capability to be fabricated into free-standing
and foldable sheets after being coated onto the polymer substrates [5,17,18]. Paper sub-
strates are among the most promising candidates for flexible, inexpensive, and environmen-
tally friendly TEGs [8,9,13]. Previous works have demonstrated that PEDOT:PSS/paper
TEGs could integrate the thermoelectric functionality of PEDOT:PSS with the merits of
the paper substrate via simple and cost-effective wet-coating protocols. For example,
Jiang et al. [19]. and Wei et al. [20]. have independently demonstrated that the func-
tional PEDOT:PSS ink could be coated onto paper substrate to fabricate free-standing
PEDOT:PSS/paper TEGs, via writing or screen-printing, respectively. Moreover, Deng
et al. reported that the PEDOT:PSS/paper TEGs showed excellent mechanical stability, i.e.,
thermoelectric performance was kept almost stable after 120 folding cycles [21]. It should be
pointed out that boosting the mechanical properties, such as the stretchability/foldability,
of PEDOT:PSS/paper is also important to enhance the overall performance and stability
of their F-TEGs [5]. However, the thermoelectric performance of the PEDOT:PSS/paper
hybrid was generally much lower that the counterparts prepared by depositing the PE-
DOT:PSS on traditional substrates like glass slides or plastic foils.

By addressing this issue, we fabricated a PTE generator by coating the PEDOT:PSS
hybrid ink onto the playing card paper substrate and conducted a systematic study of
structure–property correlation and mechanical stability. To enhance the thermoelectric per-
formance of PEDOT:PSS, a 1-ethyl-3-methylimidazolium:tricyanomethanide (EMIM:TCM)
ionic liquid was employed as a secondary dopant to develop a high-performance thermo-
electric ink [4,6]. The PEDOT:PSS/EMIM:TCM/paper (PPETn-P, where n indicates the
molar concentration of EMIM:TCM) was post-treated with hot-pressing to enhance the
packing density of the cellulose fiber and PEDOT:PSS. The PEDOT:PSS/EMIM:TCM/glass
(PPET-G), prepared by coating onto glass slides, was included as a standard for comparison
with PPET-P. The surface morphology and crystalline behavior of the hot-pressed PPET-P
film were characterized with scanning electron microscopy (SEM), optical microscopy
(OM), and grazing-incidence X-ray diffraction (GIXRD), respectively. Moreover, the folding
and stretchability of the PPET-GTE were characterized with the folding tester and tensile
testing machine, respectively, based on which, the decent thermoelectric performance
and excellent mechanical stability of PPET-P was rationalized via the structure change
and associated molecular interactions. This fundamental knowledge could illuminate the
design and fabrication of the paper-based wearable electronics.

2. Experimental Section
2.1. Materials

PEDOT:PSS aqueous dispersion (Clevios PH 1000) was purchased from Heraeus (Lev-
erkusen, Germany). Clevios PH 1000 had a solid content of 1.3 wt% PEDOT:PSS, and the
weight ratio of PSS to PEDOT was 2.5. 1-ethyl-3-methylimidazolium tricyanomethanide
(EMIM:TCM) was purchased from TCI Chemical Industry Development Co., Ltd. (Shang-
hai, China). Distilled water was purchased from Watsons (Guangzhou, China). Ethylene
glycol (EG) was obtained from Aladin Co., Ltd. (Shanghai, China). Playing cards (type
959) were purchased from Yaoji Playing Cards Co., Ltd. (Shanghai, China). Glass slides
(size: 24 mm × 24 mm) were purchased from Aladdin Bio-Chem Technology Co., Ltd.
(Shanghai, China). The silicon wafer ((100) orientation) was purchased from PlutoSemi Co.,
Ltd. (Foshan, China) and used after cutting it into small pieces.

2.2. Sample Preparation

The post-treatment-free TE ink was prepared by adding the EMIM:TCM into the
PEDOT:PSS aqueous dispersion at a set of molar concentration values, i.e., n = 0, 0.10, 0.15,
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0.17, 0.20, and 0.30 M. The PEDOT:PSS/EMIM:TCM (PPETn) mixture was homogenized
by magnetically stirring for 6 h at room temperature before the coating experiment. The
as-prepared ink was drop-casted onto the paper or glass slide. The laboratory environment
was 25 ◦C and 70 RH%. The purple core layer of the playing card was used for the matrix
of the PPET. For the matrix preparation, the card was first immersed in EG for 24 h, to
detach the core layer from the adjacent top and bottom layers of the card. Afterwards, the
wet matrix was dried at 50 ◦C for 1 h with a laboratory oven, followed by cutting it into
small pieces of 2 × 3 cm2 with a sharp knife.

The PPET-P composite was prepared by coating the PPET aqueous dispersion onto
the paper matrix. First, 0.9 mL PPET aqueous dispersion was coated onto a piece of paper
matrix by drop-casting with a pipette. Second, the wet sample was dried at 50 ◦C for 1 h
with a laboratory oven. Finally, the sample was hot-pressed with a machine (ZS-406BE-30-
310, Zhuosheng Machinery Equipment Co., Ltd., Dongguan, China) at 130 ◦C and 8 MPa
for 30 min. The as-prepared PPET-P composite was cut into the desired shapes for the
assembly of the wearable TEG device, and the thin copper wire and commercial silver paste
were used as the electrode of the device.

2.3. Sample Characterization

Electrical conductivity of the sample was measured using the four-point probe method
with a digital multimeter (RTS-8, Guangzhou Sitanpu Technology Co., Ltd., Guangzhou,
China). The Seebeck coefficient was calculated from the linear correlation between the
voltage generated by the thermoelectric effect and the temperature gradient across two
silver paste dots that were deposited on the sample, as shown in the Figure S3. The dots had
a diameter of 1 mm and were 6 mm separated from each other. A homemade Peltier heater
was utilized to control the sample temperature, and a Fluke 8846A digital multimeter was
used to record the thermoelectric voltage. For the σ and S values, each measurement was
repeated 5 times, and the averaged value was used in this work.

The surface morphology of the PPET-P sample was characterized using both optical
microscopy (OM) and scanning electron microscopy (SEM). For the OM measurement, a
Leica DM2700M microscope (Wetzlar, Germany) was used, with the magnification set at
500× and working in reflection mode. For the SEM measurement, a cold field-emission
scanning electron microscope (S-4800, Hitachi, Tokyo, Japan) was used. Moreover, the
crystalline structure of the sample was measured with X-ray diffraction in grazing-incident
mode (GIXRD) by fixing the sample on the silicon substrate. The GIXRD experiments were
undertaken using a Bruker D8 Advance (Bruker, Germany) setup, with the grazing incident
angle (αi), X-ray wavelength, working current and voltage set at 2.0◦, 1.54 Å, 40 mA, and
40 kV, respectively. The folding property of the sample was undertaken with a home-made
setup, which controlled the folding angle (β) of the composite sample by set the position of
the sliders. For the σ and S values of the cyclically folded samples, each measurement was
repeated five times, and the averaged value was used in this work. The stretching property
of the sample was characterized using a computerized servo material testing machine
(HZ-1007C, Dongguan LiXian Instrument Technology Co., Ltd., Dongguan, China) with a
1BB-type sample of GB/T 1040.1-2018 [22].

3. Results and Discussion

The performance of PEDOT-based TEGs is evaluated by the power factor (PF) value,
and PF = σ × S2, where σ and S represent the samples’ electrical conductivity and Seebeck
coefficient, respectively [23]. This could be attributed to the fact that the polymer materials
usually have a intrinsically low thermal conductivity value that is difficult to measure.
The conversion mechanism of TEGs was demonstrated in the Figure S1. In this work, the
PEDOT:PSS doped with EMIM:TCM (i.e., PPET) was chosen as the study subject due to
the following considerations. Firstly, the PPET could be dispersed in water to form stable
aqueous dispersion that would be suitable for the wet-coating process, and the simple
drop-casting method was used in this work. Secondly, the doping with EMIM:TCM would
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greatly improve (~1000 times higher) the thermoelectric performance of PEDOT:PSS mainly
due to the significant enhancement of the sample’s conductivity while maintaining the
Seebeck coefficient value [4,6]. Most importantly, the dried PPET-G sample showed a good
thermoelectric performance (PF = 175 µW m−1 K−2 [6]) without post-treatment, which
usually involves the application of a toxic organic solvent and cumbersome processing
procedure.

Figure 1a shows the molecular structure of the PEDOT:PSS, EMIM:TCM, and cellulose
(the primary structural element and the most important component of paper). The drop-
casting method was used to deposit the PPET aqueous dispersion on paper (PPET-P) and
glass (PPET-G) substrates, respectively. Figure 1b shows the photo image of the dried
PPET-P before and after hot-pressing. It should be noted that hot-pressing was employed
to improve the thermoelectric performance of the PPET-P. Similar strategy has been applied
by Palaporn et al. [24] and Gao et al. [25], who independently demonstrated that the
hot-pressing could enhance the thermoelectric performance of the paper-based TEGs by
improving the samples’ microstructure.
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cellulose. (b) Photo images of the drop-casted PPET-P samples before and after hot-pressing.

Figure 2a shows that the electrical conductivity (σ) of hot-pressed PPET-P increases
significantly with the addition of the EMIM:TCM dopant. When the molar concentration of
EMIM:TCM, n = 0 M, and the σ value of PPET0-P is 0.34 S/cm, which is 2.5 times less than
that prepared by depositing the PEDOT:PSS onto glass substrate (PPET0-G), i.e., 0.85 S/cm.
For n = 0.17 M, the σ of PPET-P shows a peak value of 62.57 S/cm, which is 184 times
that of PPET0-P. A similar phenomenon was found in the PPET-G samples, as reported
in our previous work [6]. This phenomenon could be rationalized with the fact that the
EMIM:TCM doping has changed the quaternary structure of PEDOT:PSS [26], which leads
to the formation of long-range ordered conductive paths [6,27].
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Figure 2. Performance of hot-pressed PPETn-P. (a–c) σ, S, and PF of PPET-P as a function of the
EMIM:TCM molar concentration (n). Comparison with the literature reported (d) S and (e) PF values
of paper-based thermoelectric materials [21,27–32]. In the panel (d,e), the S and PF values of this
work, represented by a red star, was highlighted with a red dashed-line circle.

Figure 2b shows that the S value of hot-pressed PPET-P decreases monotonically
with the increase in n, i.e., S decreases from 42.2 to 27.2 µV K−1 when the n increases
from 0 to 0.3 M. As a result, the PF value of hot-pressed PPET-P achieves a maximum
value of 6.82 µW m−1 K−2 for n = 0.17 M (Figure 2c). By comparing with the literature
reports, it is found that both the S and PF values of PPET0.17-P are higher than those
reported in the previous work for paper-based TEGs, as shown in Figure 2d,e. And the
detailed S, PF and conductivity values were given in the Table S1. It should be noted
that the paper/CNT hybrids show higher σ values (Figure 2d) than PPET0.17-P due to
the good conductivity of CNT. Moreover, for n = 0.17 M, the σ and PF values of PPET g
(i.e., 1163 S/cm and 175 µW m−1 K−2, respectively) are much higher than those of PPET-
P [27,28]. In the following section, the decent thermoelectric performance of hot-pressed
PPET0.17-P will be discussed by combining with the structure information.

To explore the decent thermoelectric performance of hot-pressed PPET0.17-P, the sam-
ples’ surface morphology and crystalline structure were characterized using optical mi-
croscopy (OM), scanning electron microscopy (SEM), and grazing-incidence X-ray diffrac-
tion (GIXRD), respectively. Based on these data, the structure–property correlation will
be discussed. The OM data show that the samples’ surface are fully covered by PPET,
indicated by the unique light blue feature of PEDOT:PSS (Figure 3a). Below the PPET, the
rough features of cellulose fibers are observed, indicating the PPET attached well to the
cellulose fibers. Compared to the PPET-G sample, the microstructural packing of PPET
could be changed by the tomography of the paper substrate and their interactions with
cellulose fibers. In addition, hot-pressing would improve the packing density of the cel-
lulose fibers and also the attached PPET. Further surface structure information could be
extracted from the SEM data. Figure 3b shows the plane-view SEM images of the PPET0.17-P
before and after hot-pressing. Grain-like features are observed in the PPET0.17-P sample
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before hot-pressing, which could be attributed to the localized aggregation of PEDOT:PSS
microdomains in the paper matrix. In contrast, a smooth surface structure is observed in
the hot-pressed PPET0.17-P sample, which could be attributed to the improved packing
density of cellulose fibers and associated PPET, i.e., the improved inter-grain connection of
PEDOT. The improved inter-grain connection would enable the formation of continuous
conductive paths [33]. This behavior could be further demonstrated by observing the
cross-sections of the sample. Figure 3c shows the cross-sectional SEM images of PPET0.17-P
before and after hot-pressing. The thickness of the PPET0.17-P film decreased from ~200
to ~120 µm after hot-pressing, which is consistent with the improved packing density in
the film thickness direction. In addition, the porosity of the cellulose fibers decreases after
hot-pressing. The improved packing density of fibers is expected to help the associated
PEDOT:PSS to establish long-range ordered conductive paths [19,20]; thus, a higher σ value
is achieved (Figure 2).
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Figure 3. Structure and property correlation of PPET0.17-P. (a) Optical microscopy images of PPET-P
before and after hot-pressing. (b) Plane view and (c) cross-sectional scanning electron microscopy
data of PPET-P before and after hot-pressing. (d) GIXRD data. The (1ı̄0), (110), and (200) crystalline
planes of the type I cellulose crystal and (100) crystalline plane of PEDOT crystal are indicated with
dashed lines. (e) Proposed conductive paths (indicated with dashed-line arrows) in PPET-P before
and after hot-processing. In the panel (e), the X mark circled around by dashed-line indicated the
discontinuous conductive paths due to untouched PEDOT region.

The crystalline structure of the PPET0.17-P samples were characterized with GIXRD.
Figure 3d shows that the neat paper sample has three diffraction peaks with a diffraction
angle 2θ at around 14.5◦, 16.5◦, and 22.5◦, respectively. They are attributed to the (1ı̄0), (110),
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and (200) crystalline planes of the type I cellulose crystal. These crystalline features are
attributed to the native cellulose [34]. Note that four polymorphs of the cellulose crystals
have been reported, namely, cellulose I, cellulose II, cellulose III, and cellulose IV, and they
have different unit cells [35]. The crystalline features of cellulose crystal are also found in
the PPET0.17-P samples before and after hot-pressing, with no change of the peak position.
This phenomenon could be rationalized with the fact that the mixing with PPET and hot-
pressing did not change the crystalline structure of the cellulose. It is inferred that the
interactions among PPET and cellulose fiber stay mainly in the surface layer of the cellulose
fiber. These interactions are dominated by the formation of hydrogen bonding, which has
been demonstrated by Deng et al. [21]. In addition, a new peak with 2θ = 6.6◦ is found
in the PPET0.17-P sample, and hot-pressing does not change the peak position. This peak
is attributed to the (100) crystalline plane of PEDOT crystals [36]. Thus, the hot-pressing
does not change the crystalline structures of cellulose and PEDOT. It is supposed that the
influence of paper substrate and hot-pressing on the thermoelectric performance of PPET
mainly lies in the higher level, for example, long-range ordered conductive paths.

In this section, the structure–property correlation of the PPET-P sample is discussed
by taking the substrate and hot-pressing effect into consideration. As demonstrated in
the previous works, EMIM:TCM would interact strongly with the PEDOT:PSS via ion
exchanges [37,38], which enables the structural rearrangement of PEDOT chains that form
long-range ordered conductive paths when they are dried in glass or silicon substrates. The
long-range ordered conductive paths of PPET-G have been revealed by the synchrotron
radiation small-angle X-ray scattering and micro-Fourier transform infrared spectroscopy
results, as demonstrated by Li et al. [4]. In contrast, PPET would penetrate into the pores
of the paper substrate that results in the PEDOT chains and grains being scattered over
in the thickness direction (Figure 3e). As a result, the PEDOT chains/grains could not
pack densely with each other to form an efficient conductive path. Thus, the PPET-P
samples have much lower σ and PF values than those of PPET-G. Moreover, this drawback
could be alleviated by hot-pressing, which causes the dense packing of cellulose fibers and
the associated PPET to smear off the grain boundaries in PPET-P (Figure 3b). A similar
phenomenon has also been reported by Palaporn et al. [24]. As schematically illustrated in
Figure 3e, the ionic conductive path is improved in the hot-pressed PPET-P sample.

Mechanical properties including foldability and stretchability also play important
roles in the paper-based thermoelectric and their applications in wearable electronics. This
is because they determine the overall performance and stability of the flexible TEGs [5].
In this section, the mechanical properties of the hot-pressed PPET0.17-P are studied. The
mechanical stability of the hot-pressed PPET0.17-P sample was evaluated using the cyclic
folding test. Figure 4a shows the maximum folding angle (β = 120◦) of the sample. For a
typical folding cycle, the β value increases gradually from 0◦ to 120◦ and then returns to 0◦,
which is controlled by the slider of the tester. The σ and S values of the cyclically folded
samples were collected, and the typical values are shown in Figure 4b. For clarity reason,
the change in the σ and S values as a function of the cyclic folding times is indicated by
the ratio of the cyclically folded value to the original one. Both σ and S values keep almost
constant at 100%, indicating the superior folding stability of the hot-pressed PPET0.17-P
samples. In addition, the maximum cycling times (10,000) used in this work is almost
10 times larger than that reported in the literature for paper-based thermoelectric generators
(Figure 4c) while maintaining the integrity of the appearance (Figure S2), indicating un-
precedent folding stability was achieved in the hot-pressed PPET0.17-P sample. Moreover,
the stretchability of the hot-pressed PPET0.17-P sample was also measured. Figure 4d shows
that the hot-pressed PPET0.17-P sample has tensile strength and elongation at break values
of 17.5 MPa and 7.2%, respectively. These values are lying between those of the neat paper
and the PPET0.17-P sample without pressing, indicating that a balanced stretching perfor-
mance was achieved in the hot-pressed PPET0.17-P sample. These improved mechanical
stabilities would be expected to endow the TEGs with better overall performance.
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Figure 4. Mechanical behavior of hot-pressed PPET0.17-P. (a) Photo images of the paper sheet folded
to an obtuse angle (β = 120◦) by a home-made folding tester [39]. (b) Changes in σ and S of PPET0.17-P
samples as a function of cyclic folding times. (c) Comparison with the literature reports about the
maximum folding times of paper-based thermoelectric generators [25,27,29,31,40–43]. The value of
this work was highlighted by a red star. (d) Tensile stress behavior of the neat paper substrate and
PPET0.17-P sample before and after hot-pressing.

To demonstrate the thermoelectric performance of the PPET-P in practical applications,
the hot-pressed PPET0.17-P sheets were cut into rectangular shape and assembled into TEGs.
Figure 5a shows the photon image of the PPET0.17-PTEG consisting of five couples of legs.
The TEG device could be worn in the front arm (Figure 5b). The PPET0.17-PTEG generated
an output voltage of 158 µV at a temperature difference of 2.44 K. Although this value is
far below the minimum value required to power wearable electronics (~1 mV [44,45]), it
could be increased by increasing the numbers of leg pairs and the temperature difference.
However, these studies are out the scope of the present work. Meanwhile, the hot-pressed
PPET0.17-P sheet also has the advantages of the paper substrate [13], which could be easily
cut into different shapes (Figure 5c) such as sun, moon and star. This feature would enable
the wide applications of PPET-P in the flexible electronics.
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4. Conclusions

A paper-based thermoelectric material was successfully prepared by drop-casting com-
bined with hot-pressing. The as-prepared PPET-P show decent thermoelectric performance,
i.e., PF = 6.82 µW m−1 K−2 for PPET0.17-P, which is better than the reported performance
for paper-based thermoelectric in the literature. This phenomenon was attributed to the
synergistic effect of high-performance thermoelectric ink (PPET) and the post-treatment
with hot-pressing. It has been demonstrated that the performance of PPET-P could be
improved by hot-pressing via increasing the packing density of cellulose and associated
PPET, which improved the inter-grain connection of PEDOT. Moreover, the PPET0.17-P
sheet showed unprecedent folding stability with cyclic folding times as high as 10,000,
and also good stretchability. Together with the good tailorability inherited from the paper
substrate, the PPET0.17-P sheet can be fabricated into wearable TEGs, which are attractive
for the potential applications in light-weight, environmentally friendly, and disposable
wearable electronics.
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