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Abstract: Composites of polyurethane and graphite and polyurethane and carbon nanofibers
(PU/Graphite 0.5% and PU/CNF 1%) were synthesized and used as anodes in dual-compartment
microbial fuel cells (MFCs) for municipal wastewater treatment; electrical energy generation and
organic matter removal were assessed. The maximum power density, coulombic efficiency and
chemical oxygen demand (COD) removal efficiency in the MFCs packed with the PU/Graphite 0.5%
and PU/CNF 1% composites were 232.32 mW/m3 and 90.78 mW/m3, 5.87 and 4.41%, and 51.38 and
68.62%, respectively. In addition, the internal resistance of the MFCs with the best bioelectrochemical
performance (PU/Graphite 0.5%) was 1051.11 Ω. The results obtained in this study demonstrate the
feasibility of using these types of materials in dual-compartment MFCs for wastewater treatment
with electric power generation.

Keywords: polyurethane; graphite; carbon nanofibers; microbial fuel cell; bioelectrochemical system;
municipal wastewater

1. Introduction

Microbial fuel cells (MFC) are bioelectrochemical devices (bioelectrochemical systems)
capable of converting chemical energy, contained in a wide variety of substrates, to electrical
energy through electrochemically active microorganisms (commonly called exoelectrogens).
These microorganisms can transfer the energy generated in the system to an external
support for its use [1]. This technology is of great interest when considering its ability to
generate electricity by degrading contaminated effluents [2,3].

The performance of bioelectrochemical systems (BESs) depends on multiple factors,
such as the conductivity and microbial biocompatibility of the selected electrodes [4], the
nature and concentration of the substrate [5], the absence or presence of a cation exchange
membrane [6] and the overall design of the system [7].

Considering that the electrodes (anode and cathode) are where the transfer of electrons
occurs and that the microorganisms that inhabit the system grow and reproduce on their
surface, several authors conclude that their correct selection defines, in greater proportion,
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the system’s performance [8]. For this reason, various materials have been studied to man-
ufacture electrodes with greater conductivity and microbial affinity, among which metals,
carbonaceous materials and conductive polymers stand out [9–11]. Much of the current
research has been directed at developing and characterizing electrodes based on innovative
composites to improve the bioelectrochemical capabilities of MFC technology. For example,
Wang et al. [12] developed anodes from metal–organic structures of iron oxide on a carbon
felt matrix. These materials have been shown to increase the electrochemical capacities
and the biocompatibility of the anodes in the MFCs, promoting the adhesion of electrically
active microorganisms and favoring the secretion of proteins related to the extracellular
transfer of electrons. Liu et al. [13] synthesized nitrogen-doped carbon nanofiber anodes
for anchoring iron nanoparticles, evaluating electrical power generation in microbial fuel
cells. When carrying out the morphological and structural characterization of the mate-
rials, they found porous structures uniformly distributed in the carbon nanofiber matrix,
which favored microbial colonization in the internal part of the support. Yang et al. [14]
evaluated organic matter and ammonia removal in sediment microbial fuel cells packed
with graphene oxide-coated carbon cloth composites as anodes. The results showed that by
applying these materials, the presence of exoelectrogenic microorganisms of the genera
Sulfurovum and Lactobacillus was enriched, thus increasing the electrochemical performance
and the removal of contaminants in the system. Zhu et al. [15] applied a coating of car-
bon nanoparticles doped with N, P, S and Co heteroatoms to a carbon cloth matrix as
anodes in microbial fuel cells. The authors selected these materials due to their high bio-
compatibility, high conductivity, low cost and functionalization. It was observed that the
increase in the surface area and the porosity of the support promoted the formation of
microbial biofilm, the consumption of the substrate and the generation of electrical energy.
Moradian et al. [16] developed a carbon felt anode superficially modified with polyaniline
nanofibers, intending to increase bioelectricity and hydrogen production using xylose as a
substrate and using Cystobasidium slooffiae JSUX strain as the inoculum in a microbial fuel
cell. The results suggested that the extracellular electron transfer process and energy pro-
duction are maximized when using this type of composite material in microbial fuel cells.
Yaqoob et al. [17] built composites (derived from cellulosic waste) of polyaniline-coated
graphene oxide (GO-PANI) to promote the electron transfer rate in benthic microbial fuel
cells (BMFCs), observing a four-fold performance in the modified supports (GO-PANI)
when compared to the uncoated material. Nishio et al. [18] used urethane composites
coated with activated carbon and carbon nanotubes as anodes in microbial fuel cells. The
authors detected a considerable increase in the material’s conductivity after the coating
was carried out, confirming the capability of this type of support in bioelectrochemical
systems to generate electrical energy.

Therefore, it can be seen that a correct selection of the anodic material will promote
the generation of electrical energy and the degradation of the substrate in microbial fuel
cells. Previous work has been focused on the development of innovative coatings that
increase the conductivity and biocompatibility of the modified materials, but due to their
low mechanical resistance and poor adhesion to the base material, this research has been
oriented towards the embedding of the materials in a highly porous matrix. The present
study focused on synthesizing graphite and carbon nanofiber-based composites embedded
in a polyurethane matrix. The composites were used as anodes in microbial fuel cells
during municipal wastewater treatment. The generation of electrical energy in the system
and the removal of organic matter contained in municipal wastewater were evaluated.
This work provides a convenient and practical method to fabricate anodes with high
surface area and low electrical resistivity, which can be used to increase the performance of
bioelectrochemical systems.
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2. Materials and Methods
2.1. Materials

The graphite was purchased from Sigma-Aldrich (Toluca, Mexico), and it had a di-
ameter greater than 20 microns and a purity of 99%. The carbon nanofibers (CNFs) were
supplied by Pyrograf Products, Inc. (Cedarville, OH, USA); these were thermally treated at
3000 ◦C to increase the degree of graphitization (PR-24-XT-HHT). In addition, they have an
average diameter of 100 nm, lengths from 50 to 200 microns, a surface area of 41 m2/g and
a purity greater than 95%. The mixture of urethanes and 4-4 diphenylmethane disocyanate
to obtain the polyurethane foam was purchased from Especialidades Químicas para el
Poliéster, S.A. de C.V. (Nezahualcóyotl, Mexico State, Mexico). Sulfuric acid (96~98%),
potassium dichromate (96~98%), mercury sulfate (>98%), silver sulfate (>98%) and potas-
sium biphthalate (>99.95%), used during the determination of chemical oxygen demand
(COD), were purchased from FERMONT (Monterrey, Mexico). The cation exchange mem-
brane used in the MFCs was purchased from Membranes International Inc. (Ringwood, NJ,
USA) (CXM-200, standard thickness 0.45 ± 0.025 mm).

2.2. Preparation of PU/Graphite and PU/CNF Composites

For the manufacture of foamed polymers composed of 0.5% wt./wt. of graphite and
1% wt./wt. of CNFs (concentrations selected from the maximum loading percentage of
the conductive materials in the polyurethane matrix), 1.3 g of graphite and 2.6 g of carbon
nanofibers were dispersed in 150 mL of polyol by mechanical stirring until homogeneous.
Subsequently, 64 mL of disocyanate was added to each sample and mixed for 60 s with a
double-blade homogenizer at 4000 rpm. The already foamed system was allowed to settle
for 25 min. Finally, the foam was cured in an oven at 100 ◦C for 4 h (Figure 1). Table 1
shows the composition used to prepare each composite.
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Table 1. Amount of reactants used in anode preparation.

Anode Graphite, g CNF, g Polyol, mL Diisocyanate, mL

PU (blank) - - 150 64
PU/Graphite 0.5% 1.3 - 150 64

PU/CNF 1% - 2.6 150 64
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2.3. Material Characterization

Figure 1 shows a diagram of the synthesis process and the characterization of the
manufactured materials. For the qualitative identification of the components of the 0.5%
PU/Graphite and 1% PU/CNF anodes, infrared spectra of the samples of each of the
components were carried out. A Nicolet Magna 550 spectrophotometer was used in a
wavelength range of 4000 cm−1 to 400 cm−1. Previously, the samples were dried in a
vacuum oven at 100 ◦C for 15 h. The spectra obtained were normalized in absorbance and
subsequently analyzed in transmittance to discuss the results. To analyze the morphology
and the state of dispersion and spatial distribution of the particles (graphite and CNF) in
the PU/Graphite 0.5% and PU/CNF 1% anodes, a SEM analysis was performed using a
scanning electron microscope JEOL JMS-7401F (Akishima, Tokyo, Japan) field emission
detector, applying a voltage of 6 kV using a secondary electron detector at a working
distance between the objective lens and the sample of 6.0 mm. The samples analyzed
were prepared from cryogenic fractures of the composites. The cross-section of the fracture
fragments was coated with Au-Pd for further analysis. Finally, for the identification of the
electrical conductivity of the samples, an electrical resistivity analysis was carried out in a
desktop digital teraohmmeter of the Keithley brand, model 6517B (Tektronix, Beaverton,
OR, USA). The tests were carried out at 500 V, in a range of 2 µA.

2.4. MFC Construction and Operation

Figure 2 shows the configuration of the MFCs used in the experiments. Double-
compartment microbial fuel cells were used, with an approximate volume of 2000 mL
(1000 mL in each compartment), adding a piece of graphite felt (10 × 10 × 0.8 cm) in the
cathode compartment (cathode) and 1000 mL of deionized water as the cathodic
solution; this compartment was externally oxygenated with a Boyu brand air pump
(11.6 cm long × 7 cm wide × 5.6 cm high) coupled to an Imagitarium brand 4-way air con-
trol valve (7.6 cm long × 5.8 cm wide × 10.9 cm high). One of the previously synthesized
supports (anode) (PU, PU/Graphite 0.5% and PU/CNF 1%) was placed in the anode com-
partment, with 1000 mL of raw municipal wastewater (without prior treatment) as substrate
and inoculum (the physicochemical characteristics of wastewater are shown in Table 2).
A pre-hydrated cation exchange membrane (in 5% NaCl solution for 12 h at 40 ◦C) was used
to separate the compartments. The distance between the anode and cathode was 3 cm.

Polymers 2023, 15, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 2. Schematic illustration of the MFCs used in the present study. 

Cell monitoring was carried out using a digital multimeter (Fluke 289—Trendcap-
ture) with which the voltage (V) of each cell was determined 2 times a day (morning and 
night) during the entire reaction (48 days, from which the first 30 days were for the devel-
opment of the biofilm on the surface of the anodes, and on day 31, the MFCs were fed 
with recently collected municipal wastewater and the monitoring of the kinetics began), 
using an external resistance of 1 kΩ to close the circuit and a stainless steel wire as an 
electron collector. 

The volumetric power density (mW/m3) generated in the MFCs was calculated as 𝑃 𝑈𝐼𝑉 ∗ 1000 (1) 

where U is the voltage (V), I is the electric current (A) and V is the volume of the anode 
compartment [19]. On the other hand, the coulombic efficiency (%) was calculated as 

𝐸 𝑀 𝐼𝑑𝑡𝐹𝑏𝑉 𝛥𝐶𝑂𝐷 (2) 

where M = 32 is the molecular weight of oxygen, I is the electric current (calculated from 
the voltage generated by the MFC), F = 96,485.33 C/mol is Faraday’s constant, b = 4 is the 
number of electrons exchanged per mole of oxygen, VAn is the volume of the substrate in 
the anode compartment (1 L) and ΔCOD is the difference in COD over time [20]. Finally, 
the chemical oxygen demand (COD) was determined at the beginning and end of the re-
action to evaluate the removal of organic matter in the system [21]. 

2.5. MFC Electrochemical Characterization 
The variable resistance method was used to determine the polarization and power 

density curves, which consisted of applying an external resistance to the system that var-
ied from 50 × 10-3 to 100 kΩ once the voltage stabilized after feeding the system with a new 
sample of raw municipal wastewater and waiting for the open-circuit voltage (OCV) to 

Figure 2. Schematic illustration of the MFCs used in the present study.



Polymers 2023, 15, 4177 5 of 12

Table 2. Physicochemical analysis of raw municipal wastewater.

Parameters Raw Municipal Wastewater

Color Dark grey
Odor Strong pungent
pH 9.24

Electrical conductivity 1.12 mS/cm
Chemical oxygen demand 703.13 mg/L

Temperature 24–27 ◦C

Cell monitoring was carried out using a digital multimeter (Fluke 289—Trendcapture)
with which the voltage (V) of each cell was determined 2 times a day (morning and night)
during the entire reaction (48 days, from which the first 30 days were for the development
of the biofilm on the surface of the anodes, and on day 31, the MFCs were fed with recently
collected municipal wastewater and the monitoring of the kinetics began), using an external
resistance of 1 kΩ to close the circuit and a stainless steel wire as an electron collector.

The volumetric power density (mW/m3) generated in the MFCs was calculated as

PV =
UI
V

∗ 1000 (1)

where U is the voltage (V), I is the electric current (A) and V is the volume of the anode
compartment [19]. On the other hand, the coulombic efficiency (%) was calculated as

ECb =
M

∫ t
0 Idt

FbVAn∆COD
(2)

where M = 32 is the molecular weight of oxygen, I is the electric current (calculated from
the voltage generated by the MFC), F = 96,485.33 C/mol is Faraday’s constant, b = 4 is the
number of electrons exchanged per mole of oxygen, VAn is the volume of the substrate in
the anode compartment (1 L) and ∆COD is the difference in COD over time [20]. Finally, the
chemical oxygen demand (COD) was determined at the beginning and end of the reaction
to evaluate the removal of organic matter in the system [21].

2.5. MFC Electrochemical Characterization

The variable resistance method was used to determine the polarization and power
density curves, which consisted of applying an external resistance to the system that varied
from 50 × 10−3 to 100 kΩ once the voltage stabilized after feeding the system with a new
sample of raw municipal wastewater and waiting for the open-circuit voltage (OCV) to
reach a steady value. The power density obtained by this method was normalized to the
volume of the anode compartment in m3.

3. Results and Discussion
3.1. Materials and Composites Analysis
3.1.1. Infrared Chemical Composition Analysis

Figure 3 shows the infrared spectrum of the fabricated materials. The main bands
found are typical of a PU matrix reinforced with carbon-based particles; the presence of
carboxylic groups on the strong bands is observed at 1719 and 1089 cm−1. The two bands
observed between 2976 and 2863 cm−1 were attributed to symmetric and non-symmetric
stretching of the CH2 bond. Polymerized urethanes are in the regions of 3334 and 1225 cm−1

and 1502–1543 cm−1. These bands are typical of the stretching C=O and NH bonds [22–24].
Finally, it is worth mentioning that there was no hydroxyl peak at 3450 and 2312 cm−1,
indicating that all isocyanates contained in the pre-polymer constituents were fully used,
which translates into the null existence of OH groups in the composites. An excess of
OH groups favors crosslinking and a more flexible polymeric structure with a variable
degree of branching and, consequently, different physical properties [25,26]. The above
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suggests that CNFs and graphite do not intervene in the foaming reaction, altering the ratio
of isocyanate and polyol in the formulation. However, they can influence the mechanical
properties by intervening in the nucleation and, consequently, the morphology of the final
composite [27].
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3.1.2. Scanning Electron Microscopy Morphological Analysis

Figure 4 shows the morphology of the PU foam matrix synthesized from the polyol
with isocyanate mixture. In general, it can be observed that the foams have an open cell
structure, which increases the surface area and the transfer of filtered matter through the
material. However, domains of the polymeric matrix can be observed without completing
the structure of the cell in its entirety. On the other hand, the system’s porosity is not very
homogeneous and has pores ranging from 0.04 mm to 0.5 mm.
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Figure 5 shows the composites made with 0.5% wt./wt. of graphite in different
magnifications. In Figure 5a, it can be seen that graphite (at this concentration) preserves
the cellular structure of PU to a greater extent, so the material has lower density and
resistance to flow. However, short domains of the polymeric matrix are still observed
because most of the pores tend to end in a break in the cellular structure. In Figure 5b, it can
be seen (circled in red) that the added particles could function as points of pore generation
or thinning of the polymeric matrix, while Figure 5c shows that the added graphite is
anchored to the surface of the PU matrix and that this generates roughness and microcracks
in the polymeric matrix, which could lead to the porosity of the cellular structure.
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Figure 6 shows the composites made with 1% wt./wt. of CNFs at different magnifica-
tions. It is observed (Figure 6a) that the use of nanoparticles shortens the domains of the
polymer matrix, preventing the formation of a cellular structure in the system, decreasing
the volume of the material obtained and increasing its density and resistance to the flow of
a medium through the material. In addition, it is observed that the polymeric domains have
a higher roughness in relation to the pure PU matrix. Such roughness is suggested to be
formed by the dispersion of the agglomerates and nanoparticles of the CNFs on the surface
of the polymeric matrix during the foaming reaction (see Figure 6b) [28]. In Figure 6c, it can
be observed that the forces during foaming that occur in the composite formation reaction
generate the homogeneous dispersion of the nanoparticles; however, it causes the rupture
of the CNF agglomerates to different degrees, causing the CNFs to be obtained individually
(enclosed in red circles), as well as agglomerates of various sizes (framed in red dotted
boxes). Quiang et al. [29] found that adding carbon particles produces roughness on the
surface of the polymer matrix, which results in a greater surface area that could be used in
absorption applications. Similar results were obtained by Shi et al. [28], mentioning that
carbon-based particles could be firmly anchored to the surface of a PU matrix, making it
rougher. In addition, they mention that a smaller particle has a higher velocity (higher
kinetic energy) in the dispersion promoted by the foaming process, thus leading to a greater
adhesion of the particles to the PU foam. Additionally, various reports have mentioned that
PU foam microstructures in which carbon particles are added trigger heterogeneous cell
nucleation and decrease cell size [30,31], suggesting that the observed structural differences
are mainly due to the dispersion obtained depending on the carbon structure used.
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3.1.3. Electrical Conductivity Analysis

The electrical conductivity obtained by the composites of PU/Graphite 0.5% and
PU/CNF 1% was 1.54 × 10−9 S/m and 1.13 × 10−9 S/m, respectively. When conductive
particles/nanoparticles (such as carbon-based ones) are added to a polymer matrix after a
specific concentration of particles is reached, an interconnecting network is generated and
promotes the electron flow through the material, known as tunneling. However, this effect
only succeeds if the particles/nanoparticles are in contact or have relatively short distances
between them. For this specific case, a slight increase in electrical conductivity can be
attributed to the fact that the CNFs and graphite have a high dispersion and distribution,
hindering the formation of conductive pathways. Also, it is worth mentioning that the
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methodology used does not allow the use of CNFs or graphite at high concentrations; it
also promotes compounds with polymer-coated particles, so it is complicated to generate
the tunneling effect [32–34].

3.2. Power Generation in MFCs
3.2.1. Power Output

As shown in Figure 7, the maximum power density reached was 35.51 ± 0.02 mW/m3,
232.32 ± 0.02 mW/m3 and 90.78 ± 0.03 mW/m3 corresponding to the synthesized compos-
ites based on PU, PU /Graphite 0.5% and PU/CNF 1%, respectively. The values obtained
represent an increase of 6.5 (PU/Graphite 0.5%) and 2.5 times (PU/CNF 1%) the power
density achieved by polyurethane foam (PU) in its pure state (this material could be gener-
ating an electric current due to the exposure of the stainless steel collector to the anodic
solution and the microorganisms in the system). These results are similar to those reported
by Liu et al. [35] (486.6 mW/m3) but higher than those obtained by Chaijak et al. [36]
(3.26 µW/m3). This confirms the effect that embedded materials (graphite and CNFs) have
on the overall performance of MFCs, by increasing the electrical conductivity and surface
area of the synthesized anodes. Finally, it is important to highlight the behavior shown
in this figure, where a constant increase in power density is observed as a function of the
oxidation of the substrate by microbial action; as the concentration of the substrate in the
system decreases, the power density generated in the MFCs also decreases [37].
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3.2.2. Coulombic Efficiency

In bioelectrochemical systems, the coulombic efficiency determines the fraction of
electrons recovered as electrical energy from the oxidation of a substrate. The coulombic
efficiency obtained by the composites synthesized based on PU, PU/Graphite 0.5% and
PU/CNF 1% was 1.73, 5.87 and 4.41%, respectively (Table 3). As mentioned by Zhang
et al. [38], the use of substrates rich in organic matter of high complexity in MFCs can
severely diversify the number of metabolic pathways (methanogenesis, nitrification, denitri-
fication, sulfate-reduction, among others) carried out by microorganisms in the system. The
latter strongly affects the overall performance of MFCs, such as the municipal wastewater
used in the present study [39,40]. Despite the above, the results demonstrate the feasibility
of using this type of material as anodes in a bioelectrochemical system to generate electric
power.
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Table 3. Coulombic efficiency obtained by the MFC devices.

Anode Coulombic Efficiency (%)

PU (blank) 1.73
PU/Graphite 0.5% 5.87

PU/CNF 1% 4.41

3.3. COD Removal in MFCs

Figure 8 shows the COD removal efficiency in dual-compartment MFCs. It can be
observed that the PU, PU/Graphite 0.5% and PU/CNF 1% composites achieved a removal
efficiency of 86.04, 51.38 and 68.62% of the COD present in the wastewater, respectively. The
morphological analysis of the synthesized materials indicates a decrease in the diameter
of the pores of the polyurethane matrix when embedding the graphite and CNF particles,
causing an increase in the surface area of the manufactured composites but decreasing
the transfer rate of the substrate to the microorganisms that inhabit the support. Various
authors identify the distribution of the substrate and its interaction with microorganisms in
the system as one of the main variables that decreases the generation of electrical energy
and the removal of organic matter in MFCs [41,42]. This phenomenon could explain the
results obtained, which are inconclusive because such behavior can be modified when using
systems with assisted stirring or continuous feeding because, in this study, the experiments
were carried out in a batch regime [43].
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3.4. Polarization and Power Curves

Figure 9 shows the electrochemical characterization of the MFC that produced a better
performance (PU/Graphite 0.5%) during the experiments. The maximum power density
reached was 302.99 mW/m3 at a 550.45 mA/m3 current density. These values indicate the
maximum possible performance of the MFC once the value of the external resistance is
equaled to the value of the internal resistance (1051.11 Ω, value calculated from the slope
of the potential curve) of the system, maintaining the same configuration, substrate and
materials used for its construction and operation [44,45].
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4. Conclusions

The results obtained in this study, such as the maximum power density
(232.32 mW/m3 and 90.78 mW/m3), coulombic efficiency (5.87 and 4.41%), COD removal
efficiency (51.38 and 68.62%) and internal resistance (1051.11 Ω, value calculated only
for the first mentioned synthetized material) of the MFCs packed with the PU/Graphite
0.5% and PU/CNF 1% composites, demonstrate the feasibility of using polyurethane,
graphite and carbon nanofiber composites in dual-compartment microbial fuel cells for
electric power generation and contaminated effluent treatment. The low production cost
of this type of material (considering the low graphite and CNF loading percentages in the
polyurethane matrix) makes its use and potential scaling even more attractive, so this will
be our research group’s main objective of future study. Finally, embedding other more
conductive materials or functionalizing the materials already in use could considerably
increase the composites’ electrical conductivity, decreasing the system’s internal resistance.
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