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Abstract: In this study, as a product from the efficient Achmatowicz rearrangement and mild subse-
quent hydrogenation–reduction reactions of biorenewable C5 alcohols derived from lignocellulose,
pentane-1,2,5-triol was successfully used after oxypropylation in the preparation of rigid polyurethane
foams—one of the most important classes of polymeric materials. Despite the broad range of ap-
plications, the production of polyurethanes is still highly dependent on petrochemical materials
considering the need of renewable raw materials and new process technologies for the production
of polyol or isocyanate components as a key point for the sustainable development of polyurethane
foams. The synthesized oxypropylated pentane-1,2,5-triol was analyzed using proton NMR spec-
troscopy, hydroxyl number, and viscosity, whereas the newly obtained foams incorporated with up to
30% biorenewable polyol were characterized using compressive stress, thermogravimetry, dynamic
mechanical analysis, and scanning electron microscopy. The modified rigid polyurethanes showed
better compressive strength (>400.0 kPa), a comparable thermal degradation range at 325–450 ◦C,
and similar morphological properties to those of commercial polyurethane formulations.

Keywords: pentane-1,2,5-triol; polyurethanes; Achmatowicz rearrangement; biorenewable C5 alcohols;
oxypropylation

1. Introduction

Nowadays, polyurethanes are a key class of polymeric materials and, among them,
polyurethane foams (PUFs) correspond to 67% of the total polyurethane consumption [1,2].
PUFs show better thermal insulation properties than other commercially available insulat-
ing materials such as mineral wool or expanded polystyrene, making them the first choice
for a wide range of applications such as automotive, electronics, furnishing, footwear, pack-
aging, or construction materials [3–6]. Efforts of the polyurethane industry are currently
focused on the replacement of petro-based feedstocks with bio-based ones [7–12].

The first attempts for a green and sustainable PUFs were the inclusion of polyols
derived from natural sources, such as vegetable oils [13,14], agricultural wastes [15,16],
and lignocellulosic biomass [17–19]. Different vegetable oils, such as castor oil [20,21],
soybean oil [13,22], palm oil [23,24], rapeseed oil [25,26], tung oil [15,27], mustard seed
oil [28,29], or canola oil [30,31], were used as precursors for the preparation of bio-polyols
and the corresponding environmentally friendly bio-based PUFs [32,33]. Several studies
have reported the preparation of bio-polyols or addition of post-agricultural products
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from corn stalks [34,35], cotton stalks [36], and wheat stalks [37–39] to develop PUF for-
mulations. Among the bioresources utilized for the production of bio-based polyurethane
foams, elastomers, coatings, and adhesives, lignin plays a key role, being the most abun-
dant product on the Earth and a major component of lignocellulose [40–42]. Usually, for
the preparation of the desired PUFs, lignin was used as an unmodified additive [43,44],
liquefied by hydroxyl-containing compounds [45,46], or converted into bio-polyol via the
oxypropylation process [47–49]. The latter case comprises the use of a suitable catalyst, tem-
perature, and pressure during the course of the oxypropylation [50]. Valuable polyurethane
structures were obtained on the basis of bio-renewable polyols such as self-healing and
antibacterial materials, as well as controlled-release fertilizers [51]. In order to obtain
or improve key parameters of bio-based PUFs, some inorganic filling materials such as
nano-silica, aluminum silicate, and ferroso-ferric oxide nanoparticles were added into
polyurethane formulations to enhance their physical–mechanical [52], dielectric [53], and
magnetic properties [54], respectively.

The other major lignocellulose component, hemicellulose, possesses an abundance of
xylans and is mainly composed by pentoses, which are used in the production of furfural.
Furfural is defined as an easily accessible, cheap, and important bio-based compound, find-
ing application in the synthesis of different chemicals, but its main part during production
is usually hydrogenated to the C5 alcohol form—furfuryl alcohol [55,56]. The C5 alco-
hols are important materials for the industry assuming their application in polyurethane,
polyester, polyether, and fuel additive production [57], and they were synthesized via
hydrolysis or hydrogenolysis of the furan ring in very harsh conditions [58–60]. The syn-
thesis of pentane-1,2,5-triol (125PTO) is not well studied, since Simeonov et al. reported a
high-yielding preparation of 125PTO from furfuryl alcohol [61,62]. Here, the catalytically
challenging reactions have been avoided using the Achmatowicz rearrangement product
and easily accessible catalysts in mild conditions. Initially, furfuryl alcohol was converted
into 6-hydroxy-(2H)-pyran-3(6H)-one (Achmatowicz intermediate) via the Achmatowicz
rearrangement reaction in the presence of titanium silicalite, and next, 125PTO was ob-
tained after Pd/C hydrogenation and NaBH4 reduction of the Achmatowicz intermediate.
Furthermore, a flow chemistry synthesis based on Ru/C-catalyzed hydrogenation has also
been reported [61]. Alternatively, 125PTO can be prepared via the gas-phase hydrogenation
reaction catalyzed by modified Ni and/or Pt mesoporous silica catalysts. The conversion
and selectivity of the newly prepared catalysts reached approximately 100% based on the
intermediate product [62].

In the present study, the preparation of the oxypropylated biorenewable pentane-1,2,5-triol
obtained via Achmatowicz rearrangement and batch reduction reactions was investigated.
The successful inclusion of that bio-based 125PTO polyol into new polyurethane formu-
lations at quantities up to 30%, and its subsequent influence on the physical–mechanical,
thermal, and morphological properties of modified rigid PUFs was also reported.

2. Experiment
2.1. Materials

Catalyst titanium silicalite was synthesized as described previously with some
modifications [61]. Rigid PUF insulating system “Elastopor” (BASF) was used for PUF
preparation. It includes polyol A component containing polyether polyol, catalyst, surfac-
tant, foam agent, and isocyanate B component consisting of polymeric diphenylmethane
4, 4′-diisocyanate (pMDI—31 wt% of isocyanate groups). Furfuryl alcohol, sodium borohy-
dride (NaBH4), propylene oxide (PrO), pyridine, acetic anhydride, potassium hydroxide,
potassium carbonate, magnesium sulfate, hydrochloric acid, acetonitrile, ethyl acetate,
hexane, methylene chloride, ethanol, methanol, and isopropanol (Sigma Aldrich–Merck,
Darmstadt, Germany) were used as received.
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2.2. Instruments and Methods
1H NMR spectra were recorded on a Bruker Avance II apparatus operating at 600 MHz.

For the measurements, 12 mg of sample were dissolved in 0.7 mL deuterated solvents
(DMSO-d6, and CDCl3). The viscosity of samples was measured on a Rheometer RheoStress
600 (Thermo Haake, Waltham, MA, USA) using 500 µL drops at 25 ◦C. The compressive
strength and the compressive modulus of elasticity were tested at a 5 mm/min displace-
ment rate of the compression plate on a “TIRA TEST 2300” (Schalkau, Germany) testing
machine using ISO 844 [63]. The maximum force inducing a 10% relative strain was
determined by decreasing the foam height in relation to the initial height according to
the direction of foam growth on 5 × 5 × 5 cm cubes. Thermogravimetric analyses were
performed on a TGA4000 (PerkinElmer, Shelton, CT, USA) combined with a gas chro-
matograph and mass-selective detector. The equipment is supplied with PYRIS6 software
(PerkinElmer, Shelton, CT, USA) measuring mass change in inert gas flow (argon) with a
controlled-temperature elevation of approximately 10 mg samples. Dynamic Mechanical
Analyzer-Q800 (TA Instruments, New Castle, DE, USA) was used for determining the vis-
coelastic properties of PUFs as a function of temperature on bar samples with dimensions
25 × 5 × 5 mm. The foam structure was analyzed using scanning electron microscope
(SEM) Philips 515 (Eindhoven, The Netherlands) with secondary electron image detectors
(SEI), acceleration voltage 30 kV, magnification 40,000×, and 5 × 5 mm thin sheets. The
hydroxyl number (OH no) of samples was determined using an acylation method with
acetic anhydride in pyridine as the medium. An excess of acetic anhydride after hydrolysis
and the obtained acetic acid was titrated by standard potassium hydroxide solution and
phenolphthalein as an indicator. The foaming process was analyzed in accordance with
ASTM D7487-13e [64] through implementation of the PUF cup test and measuring PUF’s
cream, gel, and tack-free times. The apparent density of foams (the ratio of foam weight
to its geometrical volume) was determined for cube-shaped samples with a side length of
50 mm in accordance with ISO 845 [65]. The closed cell content and the water absorption of
the obtained PUFs were determined in accordance with standard procedures ISO 4590 and
ISO 2896, respectively [66,67]. Dimensional stability of the foams was carried out in the
thermostating process of samples at temperatures −25 ◦C and 100 ◦C in 48 h. The result of
this test included a change in linear dimensions of PUFs in accordance with ISO 2796 [68].
The bio-based mass content of the PUFs was calculated as a percentage of the total mass of
samples available in accordance with ISO 16620-4 [69].

2.3. Synthesis of 6-Hydroxy-(2H)-pyran-3(6H)-one

Furfuryl alcohol (20.0 g), distilled before experiment, was dissolved in acetonitrile
(200 mL) and then the catalyst TS-1 (2.0 g) was slowly added to the solution. It was followed
by dropwise addition of aq. H2O2 (37%, 30 mL), and the reaction mixture was heated
and stirred at 40 ◦C for 5 h. The reaction progress was monitored through thin layer
chromatography (EtOAc/Hexane = 1:1) following the full consumption of furfuryl alcohol.
The crude mixture was filtered and the obtained filtrate was evaporated. Next, it was
dissolved in methylene chloride and dried over magnesium sulfate to give 6-hydroxy-(2H)-
pyran-3(6H)-one (21.6 g, 94% yield), without the need of further purification. The product
was obtained as pale-yellow oil that crystallizes at −12 ◦C.

1H NMR (600 MHz, CDCl3): d = 6.98 (dd, 1H), 6.18 (d, 1H), 5.64 (d, 1H), 4.58 (d, 1H),
4.15 (d, 1H), 3.80 ppm (s, 1H).

2.4. Synthesis of Pentane-1,2,5-triol

A mixture containing 6-hydroxy-(2H)-pyran-3(6H)-one (12.6 g, 0.11 mol), ethanol
(280 mL), and catalyst Pd/C (1.3 g, 10 wt%) was allowed to react in H2 atmosphere at room
temperature for 5 h. The obtained mixture was then filtered through a layer of Celite®

and the solvent was evaporated to yield 12.0 g of pale-yellow oil. The crude product was
dissolved in methanol (200 mL) and NaBH4 (11.7 g, 0.31 mol) was slowly added in portions
at 0 ◦C. The reaction mixture was warmed to RT and stirred for 24 h. After that, a prepared
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solution of i-PrOH/HCl was slowly added to the reaction suspension up to pH = 2 in
order to decompose the boronic complexes. This was followed by addition of potassium
carbonate (saturated solution in MeOH) to neutralize the added acid. The mixture was
filtered through a paper filter and nylon membrane filter (pore size 0.45 µm, diameter
47 mm), followed by solvent evaporation and preparation of the desired product as oil
(12.1 g, 97% yield).

1H NMR (400 MHz, DMSO-d6): d = 3.44–3.34 (m, 3H), 3.29–3.22 (m, 2H), 1.56–1.47 (m, 1H),
1.47–1.35 ppm (m, 2H), 1.24–1.15 ppm (m, 1H);

2.5. Treatment of Pentane-1,2,5-triol by Propylene Oxide

Equipped with a magnetic stirrer, thermometer, reflux condenser, and dropping funnel,
4.3 g of biorenewable pentane-1,2,5-triol and 0.13 g of potassium hydroxide (~3.0% by
weight) were charged into a glass reactor as a catalyst. The reaction system was heated
at 120 ◦C and propylene oxide was charged into the dropping funnel. The temperature
increased to 130 ◦C and, at this point, PrO (~8.0 mL) was added dropwise until the reaction
temperature started to decrease, and the addition of propylene oxide was stopped. The
reaction mixture was stirred additionally at 130 ◦C for 4 h and finally was subjected to
vacuum drying (10 mm Hg, 110–115 ◦C) until a constant mass of the oxypropylated polyol
(10.2 g).

1H NMR (400 MHz, DMSO-d6), d = 5.12–4.80 (m, 3.6H), 3.80–3.10 (m, 13.4H), 1.85–1.18 (m,
4H), 1.04–0.92 ppm (m, 10.9H);

2.6. Preparation of Rigid Polyurethane Foams

The rigid PUFs were prepared by mixing polyol A component and isocyanate B com-
ponent of the rigid PUF insulating system at a weight ratio 1:1.2 (isocyanate index = 110).
After intensive stirring for 10 s, the mixture was poured into a mold of dimensions
180/130/130 mm. Additionally, to initial polyurethane formulation (F-1) without biore-
newable polyol, three types of rigid PUFs were prepared in this study, incorporating
10 wt% (F-2), 20 wt% (F-3), and 30 wt% (F-4) of biorenewable polyol through partial re-
placement of standard petrochemical polyol. Obtained PUFs were conditioned for 24 h
at normal conditions after removal from the mold and cut to appropriate size for the
different characterizations.

3. Results and Discussion

Furfuryl alcohol, the hemicellulose-based product, was chosen as a starting compound
for efficient preparation of pentane-1,2,5-triol. First, it was converted via Achmatowicz
rearrangement to Achmatowicz intermediate, 6-hydroxy-(2H)-pyran-3(6H)-one, and the
latter yielded the desired 125PTO after hydrogenation via mild batch reduction reaction.
The synthesis of 6-hydroxy-(2H)-pyran-3(6H)-one via Achmatowicz rearrangement from
furfuryl alcohol was achieved in 94% conversion using the titanium silicalite (TS-1) catalyst
and 30% hydrogen peroxide system in acetonitrile at 40 ◦C (Scheme 1). Next, the con-
version of the Achmatowicz intermediate to pentane-1,2,5-triol was performed via batch
hydrogenation induced by the Pd/C catalyst, and immediate mild NaBH4 reduction at
room temperature resulted in a 97% conversion (Scheme 1). Oxypropylation of the thus-
prepared pentane-1,2,5-triol with propylene oxide was obtained in the presence of KOH as
the catalyst at 130 ◦C, yielding bio-based polyol. It was found that pentane-1,2,5-triol and
propylene oxide reacted at a ratio of 1:3.0 measured gravimetrically and 1:3.6 determined
by 1H NMR data, and therefore, all three hydroxyl groups of 125PTO reacted at least to one
equivalent of PrO (Scheme 1).
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The three-step preparation of oxypropylated 125PTO achieved on the basis of biore-
newable furfuryl alcohol was followed by 1H NMR spectroscopy. Firstly, hemicellulose
derivative C5 furfuryl alcohol was reacted with the titanium silicalite catalyst—a 30%
hydrogen peroxide system—in a rearrangement reaction, leading to the Achmatowicz
intermediate possessing the 1H NMR spectrum shown in Figure 1a. The high yield conver-
sion of the furfuryl alcohol precursor into the Achmatowicz rearrangement intermediate
was confirmed through 1H NMR spectroscopy, revealing sharp signals assigned to pro-
tons of the cyclic product containing alkene—6.98 ppm (dd, 1H) and 6.18 ppm (d, 1H);
methine—5.64 (d, 1H); methylene—4.58 ppm (d, 1H) and 4.15 ppm (d, 1H); and hydroxyl
protons—3.80 ppm (s, 1H). In the second step, an approximately quantitative conver-
sion of the Achmatowicz intermediate to pentane-1,2,5-triol with the 1H NMR spectrum
presented in Figure 1b was achieved via combined batch hydrogenation induced by the
Pd/C catalyst and immediate mild NaBH4 reduction. 1H NMR spectroscopy data show
signals assigned to protons of linear product 125PTO—3.44–3.34 (m, 3H, for -OCH- and
-OCH2-), 3.29–3.22 (m, 2H, for -OCH2-), 1.56–1.47 (m, 1H, for -CH2-), 1.47–1.35 ppm (m,
2H, for -CH2-), and 1.24–1.15 ppm (m, 1H, for -CH2-). The third step completes the re-
action of 125PTO with propylene oxide in the presence of potassium hydroxide as the
catalyst. The successful preparation of oxypropylated pentane-1,2,5-triol was also attested
via 1H-NMR analysis (Figure 1c) to show signals of protons at 5.12–4.80 (m, 3.6H, for
-OCH-), 3.80–3.10 (m, 13.4H, for -OCH- and -OCH2-), 1.85–1.18 (m, 4H, for -CH2-), and
1.04–0.92 ppm (m, 10.9H, for -CH3-).

The properties of the hydroxyl products related to PUF formulations are shown
in Table 1.

Table 1. Properties of hydroxyl products related to rigid polyurethane foam system.

Property Pentane-1,2,5-triol Oxypropylated 125PTO Polyol Component

Viscosity (mPa·s) 60 180 430
OH no. (mg KOH/g) 1380 * 410 300

* Theoretically calculated value.

The treatment of pentane-1,2,5-triol by propylene oxide reduces the hydroxyl number
to 410 mg KOH/g and increases the viscosity to 180 mPa·s of bio-based polyol. This
helps the newly obtained 125PTO polyol to approach properties similar to those of the
initial polyol component used for the preparation of rigid PUFs and, in addition, to fulfil
the requirements that a given polyol should possess when used in rigid polyurethane
foam formulations—a hydroxyl number between 300 and 800, and a viscosity below
300 Pa·s [47,48].

The renewable 125PTO-based polyol was introduced into the rigid PUF compositions
in quantities up to 30 wt%, replacing the original system’s polyol component. Initially, the
oxypropylated product was added to the polyol A component of the polyurethane system
and thoroughly mixed. Next, an isocyanate-containing B component of the rigid PUF
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insulating system was included to such a prepared polyol mixture. After short intensive
stirring, the whole mixture was poured into a mold where polyurethane foam started to
rise and form (Scheme 2).
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The investigation of the reactivity of the new insulating PUFs shows that the cream
time, gel time, and tack-free time are similar to those of the standard system (Table 2).
The density of the new rigid PUFs increases with the amount of added 125PTO polyol,
whereas the percentage of the closed cell content decreases with the quantity of incorporated
biorenewable polyol (Table 2). The bio-based mass content of rigid PUFs with 10, 20, and
30% of added bio-based polyol is enhanced to 1.95, 3.90, and 5.85%, respectively (Table 2).
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Table 2. Characteristic data, reaction times, and properties of obtained rigid polyurethane foams.

Characteristic Data F-1
(0%)

F-2
(10%)

F-3
(20%)

F-4
(30%)

Polyol (g) 10.0 9.0 8.0 7.0
pMDI (g) 12.0 12.0 12.0 12.0
Oxypropylated 125PTO (g) 0 1.0 2.0 3.0
wt (%) (based on polyol component) 0 10 20 30
wt (%) bio-based content (based on PU foam) 0 1.95 3.90 5.85
Reaction time at 25 ◦C cup test
- Cream time (s) 20.2 ± 0.4 19.7 ± 0.4 19.5 ± 0.3 19.7 ± 0.3
- Gel time (s) 133.8 ± 2.5 119.1 ± 2.3 112.8 ± 2.2 116.5 ± 2.1
- Tack-free time (s) 185.6 ± 2.6 203.5 ± 2.8 198.7 ± 2.7 186.8 ± 2.5
Apparent density (kg/m3) 52.8 ± 1.5 56.0 ± 1.7 59.1 ± 1.8 64.3 ± 2.0
Closed cell content (%) 97.4 ± 1.3 97.2 ± 1.4 93.0 ± 1.4 90.4 ± 1.5

The presence of the oxypropylated bio-based product in the rigid polyurethane com-
positions causes a favorable effect on their physical–mechanical properties as well. The
compressive strength at 10% relative deformation increases from 389.9 kPa for the standard
composition (F-1) to 442.4, 409.9, and 474.9 kPa for rigid PUFs with 10, 20, and 30% of added
bio-based polyol (F-2, F-3, and F-4), respectively, as shown in Figure 2. A similar relation-
ship can be observed for the modulus of elasticity at compressive strength. It increases from
7.78 MPa for composition F-1 to 8.83, 8.21, and 9.47 MPa for compositions F-2, F-3, and F-4,
respectively (Figure 2). The obtained results show that biorenewable 125PTO polyol can be
successfully implemented in the preparation of new rigid PUF insulations with improved
exploitation characteristics such as higher density and better mechanical properties.
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An investigation of dimensional stability of rigid PUFs shows that polyurethane foams
containing oxypropylated 125PTO (F-2, F-3, and F-4) possess identical and even better
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dimensional stability to the standard polyurethane composition F-1 determined at −25 ◦C
and 100 ◦C for 48 h (Table 3).

Table 3. Dimensional stability of rigid polyurethane foams.

Dimensional Stability (%) F1
(0%)

F2
(10%)

F3
(20%)

F4
(30%)

48 h, −25 ◦C
- Length (%) 2.1 ± 0.4 1.8 ± 0.3 1.1 ± 0.3 0.0 ± 0.0
- Width (%) 2.2 ± 0.5 0.0 ± 0.0 0.9 ± 0.2 0.0 ± 0.0
- Thickness (%) 2.9 ± 0.8 0.9 ± 0.2 1.0 ± 0.3 0.0 ± 0.0
48 h, 100 ◦C
- Length (%) −2.1 ± 0.3 −0.9 ± 0.2 0.0 ± 0.0 −0.4 ± 0.1
- Width (%) 2.6 ± 0.5 1.7 ± 0.4 1.8 ± 0.4 0.6 ± 0.2
- Thickness (%) 0.3 ± 0.1 0.7 ± 0.2 −0.7 ± 0.2 0.0 ± 0.0

Thermal degradation properties of PUFs were studied through thermogravimetric
analyses (TGAs). The TGA data in Figure 3 depict that polyurethane foams with added
bio-based polyol (F-2, F-3, and F-4), and the standard polyurethane foam (F-1) possess
no significant difference in their thermal stability. The first weight loss at about 5% can
be observed between 175 and 250 ◦C. It corresponds to the evaporation of low-molecular-
weight products such as water, blowing agent, and some monomers. Most of the PUFs’
chemical bonds have not begun to break up in this stage. The major decomposition step for
all samples indicating weight loss at about 75% starts at 275 ◦C and finishes at 475 ◦C. Here,
the first stage at 275–375 ◦C is mainly connected with the initial degradation of urethane,
urea, and isocyanurate bonds [70]. In the second degradation stage at 375–475 ◦C, the
decomposition of urethane bonds continues and accomplishes a dissociation of polyol
segments [71,72]. The char residue at the end of the degradation process is 15.0% for
standard polyurethane composition F-1, whereas it is 18.5, 21.7, and 20.7% for those
modified with oxypropylated polyol compositions F-2, F-3, and F-4, respectively.
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Further investigation of the thermal properties of PUFs was achieved through dy-
namic mechanical analysis (DMA), which measures the response of a given material to
a cyclic deformation as a function of temperature. Usually, DMA results exhibit three
main parameters: (i) the storage modulus, showing the elastic response to the deformation;
(ii) the loss modulus, yielding the plastic response to the deformation; and (iii) tan δ, which



Polymers 2023, 15, 4148 9 of 13

is the loss-to-storage-modulus ratio, useful for the determination of occurrence of molecular
mobility transitions known as the glass transition temperature (Tg). The sample with 10%
of biorenewable 125PTO-based polyol shows an average Tg of −57.9 ◦C and −52.7 ◦C,
whereas the foam with standard polyol exhibits a Tg of −59.9 ◦C and −67.1 ◦C, parallel
and perpendicular to the growth direction, respectively (Figure 4). The increment in Tg
was also observed for the sample with 20% of biorenewable polyol, showing an average
Tg of −36.7 ◦C and −44.8 ◦C, and for foam with 30% of bio-based polyol, representing
an average Tg of −51.0 ◦C and −35.9 ◦C, parallel and perpendicular to the growth direc-
tion, respectively. Obviously, an increase in the glass transition temperature for modified
samples F-2, F-3, and F-4 in both foam growth directions can be seen in the investigated
temperature range compared with standard sample F-1. This also indicates a possible
increase in branching points, some restricted segmental motions, and a slight decrease in
the elastic properties of the modified samples containing renewable polyol [72].
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Figure 4. Dynamic mechanical analysis showing tan δ of rigid polyurethane foams with different
contents of oxypropylated biorenewable product determined parallel and perpendicular to foam
growth direction.

The morphological properties of those modified with 125PTO-based polyol PUFs
were analyzed using scanning electron microscopy. PUF samples for SEM observation
were cut from the perpendicular orientation to the foam growth direction. It can be seen
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from Figure 5 that the cell size of standard foam (F-1) and the foam with 10% of added
biorenewable polyol (F-2) is smaller than that of the foams with 20 and 30% contents of
bio-based polyol (F-3 and F-4), respectively. The cell size of foams with a lower content of
125PTO-based polyol varies in the range of 350± 50 µm, whereas the cell size of foams with
a higher amount of added oxypropylated product is altered in the range of 480 ± 80 µm.
Therefore, the use of oxypropylated 125PTO in quantities up to 30% is beneficial for the
enhancement in cell size, i.e., thermal insulation ability of PUFs improves even the slight
increase in their apparent foam density.
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4. Conclusions

Biorenewable oxypropylated pentane-1,2,5-triol was synthesized from furfuryl al-
cohol via Achmatowicz rearrangement, subsequent batch hydrogenation–reduction re-
actions, and the terminative oxypropylation process. Bio-based polyol was successively
introduced in new rigid polyurethane foam compositions at amounts up to 30% in place
of standard polyol. The obtained polyurethane foams containing renewable polyol at-
tained better compressive strength (>400.0 kPa), a comparable thermal degradation range
at 325–450 ◦C, and similar morphological properties to those of the initial petro-based
commercial polyurethane formulation. The modified rigid foams can be successfully
implemented in the preparation of construction, industrial, and household insulations.
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