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Abstract: Polymer matrix wave transparent composites are used in a variety of high-speed commu-
nication applications. One of the applications of these involves making protective enclosures for
antennas of microwave towers, air vehicles, weather radars, and underwater communication devices.
Material performance, structural, thermal, and mechanical degradation are matters of concern as
advanced wireless communication needs robust materials for radomes that can withstand mechanical
and thermal stresses. These polymer composite radomes are installed externally on antennas and are
exposed directly to ambient as well as severe conditions. In this research, epoxy resin was reinforced
with a small amount of quartz fibers to yield an improved composite radome material compared to a
pure epoxy composite with better thermal and mechanical properties. FTIR spectra, SEM morphology,
dielectric constant (Er) and dielectric loss (δ), thermal degradation (weight loss), and mechanical
properties were determined. Compared to pure epoxy, the lowest values of Er and δ were 3.26 and
0.021 with 30 wt.% quartz fibers in the composite, while 40% less weight loss was observed which
shows its better thermal stability. The mechanical characteristics encompassing tensile and bending
strength were improved by 42.8% and 48.3%. In high-speed communication applications, compared
to a pure epoxy composite, adding only a small quantity of quartz fiber can improve the composite
material’s dielectric performance, durability, and thermal and mechanical strength.

Keywords: epoxy composites; dielectric properties; mechanical properties; radome material

1. Introduction

Polymer wave transparent composites are used as an integrated component in wireless
communication [1]. Polymer composite radomes, which are electromagnetically transpar-
ent, are applied to protect fragile antenna systems [2] mounted on different types of aircrafts
or aerospace vehicles, radar antennas, and communication and microwave systems from
harsh external environments [3]. Their performance depends on how much they affect or
interfere with electromagnetic waves or signal transmission [4]. In high-speed communica-
tion, low dielectric constant (Er) polymers and their composites are attractive materials for
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making antenna dielectric layers, printed circuit boards (PCBs), cables, and radomes [4].
Low Er and low loss factor (δ) are crucial for aircraft radomes, weather radar protection,
and other aerospace applications [5]. Reinforcement, matrix, and interface phases make
up most composite materials which have benefits of high specific strength, high specific
modulus, and great designability [6]. Different manufacturing techniques for reinforced
composites include hand lay-up, filament winding, molding, pultrusion, melt mixing, and
other molding processes [7].

Wave transmission performance is mostly assessed by the dielectric constant (Er) and
dielectric loss factor (δ) of the composite material [8]. The Er determines the dielectric or
polarization of the composite, which is the capacitance ratio of the same size capacitor with
dielectrics under vacuum. The δ defines the portion of EM waves that is consumed during
its transmission through the material or medium [9]. Relation between the total dielectric
loss value (α) of EM wave transmitted in the medium [10] is given by Equation (1):

α = Er
1/2 × f × tanδ (1)

where Er = dielectric constant, f = frequency, and tanδ = dielectric loss tangent.
The mechanism of EM transmission is shown in Figure 1. Dielectric characteristics

can significantly and directly impact the performance of electronic devices by resistance–
capacitance (RC) delay and crosstalk noise [11]. Stable dielectric materials are characterized
by minimal variation in Er, a low δ, high breakdown strength [12], and mechanical and
thermal stability [13]. Equation (2) indicates the relationship between the signal delay time
and the losses which is:

td =
l +
√

εr

c
(2)

where “Er” is the relative permittivity, “c” is the speed of light, “l” is the transmission
distance, and “td” is the signal delay time. Reflection of EM waves mainly occurs at the
interface between the medium and air. Impedance matching theory describes that when
the Er of material is higher, there would be more EM wave reflection, thus reducing the
transmission efficiency of electromagnetic waves [14]. The losses occur due to the po-
larization process of the medium in the external electric field due to EM wave energy
loss [15]. Radome materials provide hindrance to electromagnetic waves [16] by reflec-
tion and absorption which cause energy loss, resulting in a reduction in communication
performance [17].
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Furthermore, apart from dielectric properties, many other requirements must be
satisfied before the use of polymer materials in high-speed communications [18]. Impor-
tant requirements include mechanical properties, moisture uptake, adhesion to substrate
materials, and chemical and thermal stability [19]. Low Er polymers that can be used in high-
speed communication equipment [18] includes polyimides, bismaleimide, epoxy, phenolic,
poly(benzoxazole)s, poly(arylether)s, poly(tetrafluoroethylene), and polyester resin [18]
which allow us to make customized shapes of radomes with good performances [19,20].
Epoxy resins are potentially and economically more appealing [20] for preparing low Er
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and δ composites [21] as they have the least impact on signal transmission [16]. However,
above ambient conditions, their properties can deviate due to their dimensional instabil-
ity [22] which limits their use in radomes at higher service temperatures [23]. For longer
service life applications, there are several challenges for polymeric composite radomes
including variations in dielectric properties [10], a lower mechanical integrity, and thermal
instability [24]. Besides their dielectric properties, they require reasonable mechanical and
thermal strength, durability, a long service life, and low cost [25].

Strategies to mitigate these challenges include replacing these polymer composites
with smart materials, ceramics, or metamaterials, using filler doping, surface modification,
functionalization, and multilayer dielectric structures, incorporation of porous structure
into the polymer to increase air gaps, and use of hybrid composite, nanomaterials, 3D
materials, or low-cost alternatives with improved or at least comparable performance.
Maintaining long-term and reliable performance at higher temperatures is still a chal-
lenge [26]. Some of the scientific and technical challenges include how to (i) realize the
synergistic improvement of the wave transmission performance, mechanical properties,
and high-temperature resistance through integrated structure/function design for new
generation radomes [18]; (ii) design and synthesize high performance composite radomes
to withstand high working temperatures while keeping their stability and performance
intact [10]; (iii) improve the surface characteristics, interface properties, and interfacial
adhesion of fibers; (iv) analyze and characterize the surface performances of fiber compos-
ites and the transmission process of electromagnetic wave at the interface; (v) establish
wave transparent models to relate the molecular chain electromagnetic wave transmission
mechanism and characteristics; and (vi) dynamically simulate the reflection, loss, and trans-
mission process of electromagnetic wave, and to illustrate the transmission mechanism [25].
Glass fibers possess several advantageous characteristics such as low Er and δ, reasonable
mechanical strength, higher softening point, and good adhesion compatibility with epoxy
resin which render them suitable as reinforcement in composites. Additionally, they of-
fer benefits, including excellent dielectric properties, high strength to weight ratio, high
modulus, corrosion resistance, high-temperature resistance, and a minimal environmental
footprint [27]. In a composite structure, the combined area or link between the resin and
fibers is known as the interface. The fiber–resin adhesion is responsible for weak or strong
interfaces which play an important role in the functionality of reinforced composites [28].
Due to their excellent dielectric, mechanical, and thermal properties, quartz fibers are
recognized as the best fibers among the glass fiber family [29]. Moreover, they have good
adhesion compatibility with polymeric resins [30].

Compared to pure epoxy composites, reinforced glass fiber composites can withstand
higher temperatures (≥300 ◦C) for longer durations while retaining their mechanical and
thermal stability along with the desired electric performance [31]. Glass fibers are suitable
in electronic applications and radome manufacturing due to their dielectric stability, low
moisture absorption, good mechanical, and thermal stability [32]. However, the final
properties of composites depend on the properties and proportion of the constituents,
which can be estimated through the rule of mixtures for the evaluation of composite
properties [33].

Extensive research has been carried out to investigate the properties of fiber-reinforced
composites [12]. Selecting the most suitable reinforcing fibers [34] and polymer matrix [35]
is beneficial to obtaining polymer fiber-reinforced composites for radome applications [36].
Keeping in view the above challenges, the current study aimed to fabricate composite rein-
forcing the polymer matrix with glass fibers for radome applications which will have
excellent wave transmission performance, reasonable mechanical strength, and high-
temperature resistance. However, this study is concentrated on the influence of embedding
quartz fiber quantity to attain combination of specific characteristics include low Er and
low δ, mechanical integrity, and low moisture absorption. A fiber-reinforced composite
radome material was fabricated by embedding a small fraction of quartz fibers in epoxy
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resin. The dielectric constant, dielectric loss, moisture absorption, mechanical properties,
and thermal stability were evaluated.

2. Materials and Methods
2.1. Materials

The experimental materials used in the preparation of reinforced composite samples
in this research study were epoxy resin and quartz fibers. Their properties are mentioned
in Tables 1 and 2. Epoxy resin was procured from RESSICHEM Pakistan Ltd. (Karachi,
Pakistan). It was a two-part epoxy resin (A) with an amine curing agent (B). Quartz fiber
fabric was supplied by Shan Associates Pakistan Ltd. (Lahore, Pakistan)

Table 1. Properties of epoxy resin [37].

Phase Density Dielectric
Constant

Dielectric
Loss

Epoxy
Content EEW Tensile

Strength Tg

(g/cc) E δ % g/g.eq MPa ◦C

Liquid 1.25 3.9–4.3 0.02 23 185 300 215

Table 2. Properties of quartz fiber fabric [38].

Weave Density SiO2
Dielectric
Constant

Dielectric
Loss

Tensile
Strength

Softening
Point

Type (g/cc) % E δ GPa ◦C

Plain 2.20 99.99 3.78 0.002 1.75 1600

2.2. Composite Property Estimation

Using the rule of mixture (ROM) for evaluating composite properties [39], the dielectric
constant and dielectric loss of composite were estimated [40]. The estimated Er and δ values
of the quartz fiber/epoxy composites along with their identification are given in Table 3.

Table 3. Identification scheme for quartz fiber/epoxy composites.

Sample ID EQ-20 EQ-25 EQ-30 EQ-35

Epoxy resin 0.80 0.75 0.70 0.65

Quartz fiber 0.20 0.25 0.30 0.35

Estimated Er 4.03 4.02 4.00 3.98

Estimated δ 0.046 0.045 0.044 0.042

2.3. Composite Sample Preparation

Quartz fiber/epoxy composites were prepared according to the schematic shown in
Figure 2. Quartz fiber fabric sheets were weighed, washed with ethanol to remove any
organic contamination, and air dried for 30 min. The polymer resin matrix was prepared
by adding curing agent (200 gm) slowly to the epoxy resin (500 gm) and then gently mixed.
The epoxy resin solution was embedded with 15%, 20%, 25%, 30%, and 35% quartz fabric
sheets which were stacked layer by layer in a mold and then hot pressed.

The composite laminates were taken out and then underwent a thermal curing process.
The samples prepared for this study were obtained after curing. In Figure.1, “A” refers to
epoxy resin, “B” refers to amine curing agent, blue arrow represents cold process (ambient)
and red arrow represents hot process (heating).The experimental conditions used for
preparation of the quartz fiber/epoxy composites are given in Table 4.
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Table 4. Preparation conditions for quartz fiber/epoxy composite.

Resin Fiber Impregnation Pressing Curing Conditions

Fraction Fraction min bar Cure Post Cure

0.80 to 0.65 0.20 to 0.35 30 10 140 ◦C and 12 h 140 ◦C & 3 h

2.4. Characterization

The details of the characterization methodologies used to determine the quartz
fiber/epoxy composite properties are given in Table 5.

Table 5. Characterization methodologies for quartz fiber/epoxy composite.

Test Equipment Used

Functional groups FTIR- Perkin Elmar Spectrum 100 (Waltham, MA, USA)
400–4000 cm−1

Dielectric constant PNA Network Analyzer 8326 Agilent
Frequency used 2 GHz (Santa Clara, CA, USA)Dielectric loss

Tensile strength
Trapezium, AGX-Plus, Tokyo, Japan

Test speed 2 mm/min, 50 KN
Bending strength

Interlaminar shear strength

Morphology SEM-JSM 6490 A, EOL Tokyo, Japan
Accelerating voltage 20 KV

Thermal degradation
Weight loss (%)

TGA Q600 SDT, TA Instruments,
SHIMADZU, Tokyo, Japan

Heating rate = 20◦ C/min (N2 flow)

3. Results and Discussion

In this section, the experimental results are presented which include the chemical
structure, morphology, electrical, mechanical, and thermal properties.

3.1. Chemical Structure by FTIR

Figure 3 shows the FTIR spectra of pure epoxy composites and reinforced epoxy
composites with an increasing fraction of quartz fibers (0.20, 0.25, 0.3, 0.35). The FTIR
spectra showed -OH stretching (bands at 3439 cm−1 and 2922 cm−1), C-N-C stretching
(1174.3 cm−1), C=O (1645 cm−1), symmetric and asymmetric C-O-C stretching (1099 cm−1),
C-H deformation (801.2 cm−1), Si-O-Si deformation (467.7 cm−1), and Si-OH compression
(891.3 cm−1 and 1005 cm−1) bands. The spectra showed polymerization of the thermoset
epoxy resin [38] during curing. Irrespective of the embedding quartz fiber content in
the epoxy resin, the identical spectra showed the existence of organic and inorganic net-
works [39] due to the crosslinking of the epoxy/amine upon curing.
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3.2. SEM Morphology

Figure 4a–e shows the SEM morphology of the composites (EQ-20, EQ-25, EQ-30,
EQ-35) embedded with increasing fractions of quartz fibers from 0.20 to 0.35. Fiber–resin
adhesion can be seen from these images which was due to the fair adhesion compatibility
of quartz fibers with epoxy resin. The fair fiber–resin adhesion and increasing quartz fiber
proportion showed a better structural appearance of composites. The fibers in EQ-30 and
EQ-35 were tightly packed compared to those in EQ-20 and EQ-25 which shows the even
distribution with increasing fiber content in the resin. As the fiber fabric fraction increased,
the plies were aligned well and tightly bonded and the chance of fiber pull out was reduced.
Fewer voids were also observed in the localized areas in these composites which might be
due to early crosslinking there or the trapping of air bubbles. Despite the higher fraction
of quartz fibers, it might be possible that during layer-by-layer stacking, the fabric plies
were moved slightly from their exact location upon pressing. During compaction, the load
was transmitted from the liquid resin to the fiber fabric which finally resulted in a uniform
and compact composite structure. Overall, the composite structure was improved with the
addition of a small amount of quartz fibers.
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3.3. Electrical Properties

According to the law of energy conservation [21], the electromagnetic (EM) waves
passing through a medium are divided into a transmitted wave, reflected wave, and
loss [40]. Reflection occurs at the interface between the medium and air [41]. According
to impedance matching theory [42], a larger Er of the material increases the EM wave
reflection, with an ultimate reduction in its transmission efficiency due to polarization
phenomena of the medium in the external electric field [43].

The dielectric constant (Er) and dielectric loss factor (δ) of the pure epoxy composite
was 4.1, and for the quartz fiber/epoxy composite EQ-20, it was 3.31, 3.28 for EQ-25, 3.26
for EQ-30, and 3.26 for EQ-35. These measured Er and δ values were different from those
estimated from the rule of mixture for composite property estimation [44]. The lowest
value of Er was 3.26 with quartz factions of 0.30 and 0.35. The results showed that Er varied
by 1.5% from 3.31. These decreasing values are due to the interfacial polarization of the
composite. The dielectric constant became fixed and was not reduced further even with
increasing quartz fiber fraction. Increasing the quartz fiber fraction packed the composite
structure and reduced the local charge displacement towards the electric field. The epoxy
resin embedded with quartz fibers formed a heterogeneous structure due to their organic–
inorganic nature. Upon curing of the epoxy resin, space charge polarization was created
with the compact interfacial boundaries and random movement of ions was restricted.
Thus, ionic conductivity becomes lower with increasing dielectric dispersion in both the
real and imaginary parts of Er. In the composites EQ-30 (0.30) and EQ-35 (0.35), due to the
relatively lower resin faction compared to EQ-20 and EQ-25, the curing reaction progressed
quickly. Thus the epoxy/amine crosslinking contributed towards the dominancy of dipole
relaxation over the ionic conductivity, which ultimately reduced the dielectric constant [45].
Moreover, these fiber-reinforced composites are composed of heterogeneous materials that
behave differently when exposed to applied electric fields. If they become polarized, their
structure leads to polarizability, consequently lowering their Er.

δ of the pure epoxy composite was 0.035, δ of quartz fiber/epoxy composite EQ-20
was 0.030, EQ-25 was 0.028, EQ-30 was 0.021, and that of EQ-35 was 0.021. Increasing the
material thickness leads to higher transmission losses, but it’s worth noting that in this
study, the thickness remained constant at 3 mm for all composite samples. The presence
of quartz fibers changed the composite structure and thus δ was further decreased upon
increasing the fiber fraction. Pure epoxy composite exhibits a consistent structure, yet in
quartz fiber/epoxy composites, the epoxy, interface, and the fibers collectively contribute
to the occurrence of losses. Due to the fast curing, the higher crosslinking density and
more stable composite structure resulted in a lower dielectric loss in these composites
compared to the pure epoxy/amine composite. Increasing the fiber quantity caused the
fibers to embed with epoxy more firmly and restricted the free movement of ions, resulting
in a decrease in polarization and reduction in dielectric loss factors by up to 40% from
0.035. The minimum value of δ was 0.021 for EQ-30 and EQ-35. This can be attributed to
the fact that the minimum dielectric loss factor did not change even upon an increase in
the quartz fraction. It is said that the addition of quartz fiber can significantly reduce the
energy dissipation during transmissions of EM waves through this composite material [46].
The performance of wave transparent composites can be estimated by its dielectric loss
factor (δ) which is a significant indicator [47]. In high-speed communication, a lower value
of δ is critically important as transmission depends directly on the cumulative dielectric
loss factors [1,30].

3.4. Mechanical Properties

The tensile strength can be defined as the maximum stress that a material can bear
before breaking when it is allowed to be stretched or pulled against the applied load [48].
The tensile strength of the composites in this research were determined and the results
are shown in Figure 5. As can be seen from the figure, EQ-35 exhibited the highest tensile
strength. In comparison to the pure epoxy composite (97.66 MPa), the addition of a quartz
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fiber fraction into the composite tended to increase the tensile strength. EQ-20 showed
a tensile strength of 166.3 MPa, EQ-25 showed a tensile strength of 170.35 MPa, EQ-30
showed a tensile strength of 194.26 MPa, and EQ-35 showed a value of 226.15 MPa.
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The results show that the tensile strength improved significantly by adding a small
quantity of reinforcing fibers. This increase was mainly due to the presence of quartz fibers.
Other contributing factors include fair adhesion of the fiber–resin matrix, crosslinking of
the epoxy resin, and applied pressure during composite manufacturing. Due to inclusion
of quartz fibers, the composite structure exhibits heterogeneity, which enables it to absorb
more stress and exhibits less deformation compared to pure epoxy resin. The fractured
specimen is shown in Figure 6; the deformation started from the surface and then a
huge amount of energy was absorbed at the fiber–resin interfaces. The tensile load was
distributed across the epoxy resin, then at interface and subsequently transferred to the
quartz fibers, resulting in overall higher tensile strength.
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From these results, we found that tensile strength was enhanced upon increasing
the fiber fraction, and EQ-35 (0.35) had the highest tensile strength (226.15 MPa). This
was a result of the effective wetting of quartz fibers by the epoxy resin and the improved
interfacial bonding resulting from the greater contact area between the fibers and resin.
These all contributed to increasing the tensile strength.

The stress–strain curves obtained during the bend strength test are shown in Figure 7.
The bending strength of the pure epoxy composite was 155.3 MPa, that of the quartz
fiber/epoxy composite EQ-20 was 209.66 MPa, EQ-25 was 240.63 MPa, EQ-30 was 322.99 MPa,
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and EQ-35 was 330.69 MPa. Bending strength was found to increase with the increase
in quartz fibers due to their better interfacial adhesion with the epoxy resin. The highest
value of bending strength was observed for EQ-35 which was 53.03% higher than that
of the pure epoxy composite. Embedding quartz fibers enhanced the bending property
twofold and the addition of fibers raised the strength in a linear trend. The bending load
was distributed among the resin, at the interface, and on reinforcing fibers. The quartz
fiber/epoxy composites’ ability to resist and bear bending load was increased. The highest
value of bending strength of EQ-35 was 330.69 MPa, which was slightly higher than that of
EQ-0.30 (322.99 MPa). The woven quartz fiber fabric evenly absorbed the stresses hence
resulted in a higher bending strength. The fractured specimen presented brittle nature of
both the quartz fibers and cured epoxy resin as shown by Figure 6. Upon curing epoxies
exhibit toughness; nevertheless, the inclusion of quartz fibers imparts a geometric structure
and form thereby augmenting their toughness. The increased values of tensile strength and
bending strength are indicative of the durable composite structure.
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3.5. Thermal Degradation (Weight Loss)

The weight loss (%) of the pure epoxy and reinforced composites is shown in Figure 8.
Thermogravimetric analysis (TGA) can determine a material’s thermal stability and thermal
decomposition. The weight loss (%) of epoxy, and the EQ-20, EQ-25, EQ-30, and EQ-35
composites were evaluated by TGA with rising temperatures. The initial decomposition
of the epoxy composite started from the softening of the polymer composite at 215 ◦C,
followed by a major degradation at 230 ◦C; then, 70% of the weight was lost at 326 ◦C,
and its further decomposition continued with the rising temperature until its complete
degradation.

Apart from the epoxy composite, the quartz fiber/epoxy composites (EQ-20, EQ-25,
EQ-30, and EQ-35) decomposed differently with a smaller amount of weight loss. The initial
decomposition of sample EQ-20 (0.20 quartz fiber) started at 245 ◦C; for EQ-25 (0.25 quartz
fiber), it started at 280 ◦C; for sample EQ-30 (0.30 quartz fiber), it started at 290 ◦C; and
for sample EQ-35 (0.35 quartz fiber), it started at 308 ◦C. Significant degradation in these
composites was observed within the temperature range of 285 ◦C and 650 ◦C. The major
weight loss was observed due to the decomposition of the epoxy resin which is a polymeric
component. It was seen that increasing the fraction of quartz fibers provided better thermal
stability to the composite compared to the pure epoxy composite. This was evident from
the decreasing weight loss of 74.25%, 71.3%, 70.3%, and 64.15%, respectively. Increasing the
fraction of quartz fibers reduced the epoxy faction in the reinforced composite.
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Moreover, the lower quantity of epoxy resin was efficiently cured by limiting the
molecular chain’s thermal vibration up to some extent. In this manner, heat conduction
becomes lower and thus, the quartz fiber/epoxy composite exhibited better thermal stability
than the pure epoxy composite. Embedding a small quantity of quartz fibers into the epoxy
resin increases the manufacturing cost roughly by 15 to 20% when compared to producing
pure epoxy composite, all in pursuit of achieving enhanced properties.

4. Conclusions

In this work, fiber-reinforced composite radome material was prepared, for commu-
nication applications, to withstand high working temperature, mechanical, and thermal
stability compared to pure epoxy composites. Our research delved into the impact of
embedding quartz fibers and determining their optimal quantity required to achieve en-
hanced electrical, mechanical, and thermal performance in epoxy composites. Quartz
fiber/epoxy (EQ) composites were prepared through hand lay-up, compression molding
process followed by thermal curing. FTIR analysis indicated the presence of organic and
inorganic networks (-OH, C=O, C-N-C, C-H, and Si-O-Si) while SEM morphology showed
fair fiber–resin adhesion, interfacial bonding, and compact structure of EQ composites.

Compared to the pure epoxy resin embedding a small fraction (0.30) of quartz fibers in
epoxy, decreased the dielectric constant by 22% (4.10 to 3.21) and the dielectric loss factor by
40% (0.035 to 0.021). This addition of quartz fibers substantially reduced the polarizability
of polarized molecules by decreasing their dielectric constant and transmission loss which
is advantageous in radome applications. Embedding quartz fiber up to 30% (wt./wt.)
significantly improved the mechanical properties with a 49.72% increase in tensile strength
and 52.01% rise in bending strength. Beyond this fiber loading, tensile strength was
increased but the rise in the bending strength was not exceptional. Moreover, lower
weight losses (65%, 44.3%, 39.5%, 36.7%, and 29%) refers to the higher thermal stability
of EQ composites when compared to the pure epoxy composite. The enhanced electrical,
mechanical, and thermal properties can be attributed to the inclusion of quartz fibers, good
interfacial properties, fair adhesion compatibility, and a compact and balanced composite
structure. In conclusion, adding a small quantity (0.30) of quartz fibers into an epoxy
resin yields excellent dielectric characteristics with improved mechanical and thermal
properties. Compared to pure epoxy resin composites, quartz fiber/epoxy composites
exhibit substantial potential for applications in radomes.
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2023, 24, 48–56. [CrossRef]

31. Khajeh, A.; Mustapha, F.; Sultan, M.T.H.; Bánhegyi, G.; Karácsony, Z.; Baranyai, V. The Effect of Thermooxidative Aging on the
Durability of Glass Fiber-Reinforced Epoxy. Adv. Mater. Sci. Eng. 2015, 2015, 372354. [CrossRef]

32. Wallenberger, F.T. Structural Silicate and Silica Glass Fibers. In Advanced Inorganic Fibers: Process-Structure-Properties-Applications;
Springer: Boston, MA, USA, 2000; pp. 129–168. [CrossRef]

33. Shah, J.R.; Thanki, S. Investigation of the Tensile Properties in Continuous Glass Fiber-Reinforced Thermoplastic Composite
Developed Using Fused Filament Fabrication. J. Test. Eval. 2023, 51. [CrossRef]

34. Pan, L.; Ali, A.; Wang, Y.; Zheng, Z.; Lv, Y. Characterization of effects of heat treated anodized film on the properties of
hygrothermally aged AA5083-based fiber-metal laminates. Compos. Struct. 2017, 167, 112–122. [CrossRef]

35. Zong, L.; Zhou, S.; Sun, R.; Kempel, L.C.; Hawley, M.C. Dielectric analysis of a crosslinking epoxy resin at a high microwave
frequency. J. Polym. Sci. B Polym. Phys. 2004, 42, 2871–2877. [CrossRef]

36. Botelho, E.C.; Nohara, E.L.; Rezende, M.C. Lightweight structural composites with electromagnetic applications. In Multifunction-
ality of Polymer Composites: Challenges and New Solutions; Elsevier: Amsterdam, The Netherlands, 2015. [CrossRef]

37. Rajamanikandan, T.; Banumathi, S.; Karthikeyan, B.; Palanisamy, R.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Investigation of dielectric
and mechanical properties of Lignocellulosic Rice Husk Fibril for high and medium voltage electrical insulation applications.
J. Mater. Res. Technol. 2023, 22, 865–878. [CrossRef]

38. Birsan, G.; Bria, V.; Bunea, M.; Circiumaru, A. An experimental investigation of thermal properties of fabric reinforced epoxy
composites. Mater. Plast. 2020, 57, 159–168. [CrossRef]

39. Gonon, P.; Sylvestre, A.; Teysseyre, J.; Prior, C. Combined effects of humidity and thermal stress on the dielectric properties of
epoxy-silica composites. Mater. Sci. Eng. B 2001, 83, 158–164. [CrossRef]

40. Rulf, B. Transmission of microwaves through layered dielectrics—Theory, experiment, and application. Am. J. Phys. 1988, 56,
76–80. [CrossRef]

41. Sebastian, M.T. Dielectric Materials for Wireless Communication; Elsevier: Amsterdam, The Netherlands, 2008. [CrossRef]
42. Joshi, S.C.; Bhudolia, S.K. Microwave-thermal technique for energy and time efficient curing of carbon fiber reinforced polymer

prepreg composites. J. Compos. Mater. 2014, 48, 3035–3048. [CrossRef]
43. Giere, A.; Zheng, Y.; Maune, H.; Sazegar, M.; Paul, F.; Zhou, X.; Binder, J.R.; Muller, S.; Jakoby, R. Tunable dielectrics for microwave

applications. In Proceedings of the 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, Santa Re, NM,
USA, 23–28 February 2008. [CrossRef]

44. Peters, S.T. Handbook of Composites, 2nd ed.; Springer Science & Business Media: Carlifornia, CA, USA, 1998.
45. Fujimoto, D.; Mizuno, Y.; Takano, N.; Sase, S.; Negishi, H.; Sugimura, T. Low-transmission-loss modified cyanate ester materials

for high-frequency applications. In Proceedings of the 2nd International IEEE Conference on Polymers and Adhesives in
Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599), Zalaegerszeg, Hungary,
23–26 June 2002. [CrossRef]

46. Nallayan, W.A.; Vijayakumar, K.R.; Rasheed, U.T. Comparison of the Effect of Curing on the Properties of E-Glass/Cyanate
modified Epoxy Cross Plied Laminates. IOP Conf. Ser. Mater. Sci. Eng. 2017, 197, 012002. [CrossRef]

47. Retailleau, F.; Allheily, V.; Merlat, L.; Henry, J.F.; Randrianalisoa, J.H. Experimental characterization of radiative transfer in
semi-transparent composite materials with rough boundaries. J. Quant. Spectrosc. Radiat. Transf. 2020, 256, 107300. [CrossRef]

48. Pal, T.; Pramanik, S.; Verma, K.D.; Naqvi, S.Z.; Manna, P.K.; Kar, K.K. Fly ash-reinforced polypropylene composites. Handb. Fly.
Ash 2021, 9, 243–270. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1039/C7TC00222J
https://doi.org/10.1016/j.compscitech.2017.03.027
https://doi.org/10.1002/mop.25127
https://doi.org/10.1007/978-1-4419-0736-3_1
https://doi.org/10.1016/j.polymertesting.2019.106224
https://doi.org/10.1080/14658011.2021.2021726
https://doi.org/10.18038/estubtda.1247951
https://doi.org/10.1155/2015/372354
https://doi.org/10.1007/978-1-4419-8722-8_6
https://doi.org/10.1520/JTE20220643
https://doi.org/10.1016/j.compstruct.2017.01.066
https://doi.org/10.1002/polb.20154
https://doi.org/10.1016/B978-0-323-26434-1.00012-X
https://doi.org/10.1016/j.jmrt.2022.11.145
https://doi.org/10.37358/MP.20.2.5362
https://doi.org/10.1016/S0921-5107(01)00521-9
https://doi.org/10.1119/1.15436
https://doi.org/10.1016/B978-0-08-045330-9.X0001-5
https://doi.org/10.1177/0021998313504606
https://doi.org/10.1109/ISAF.2008.4693753
https://doi.org/10.1109/POLYTR.2002.1020193
https://doi.org/10.1088/1757-899X/197/1/012002
https://doi.org/10.1016/j.jqsrt.2020.107300
https://doi.org/10.1016/B978-0-12-817686-3.00021-9

	Introduction 
	Materials and Methods 
	Materials 
	Composite Property Estimation 
	Composite Sample Preparation 
	Characterization 

	Results and Discussion 
	Chemical Structure by FTIR 
	SEM Morphology 
	Electrical Properties 
	Mechanical Properties 
	Thermal Degradation (Weight Loss) 

	Conclusions 
	References

