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Abstract: Polyurethane (PU) composite is increasingly used as a repair material for civil engineering
infrastructure, including runway, road pavement, and buildings. Evaluation of polyurethane grouting
(PUG) material is critical to achieve a desirable maintenance effect. This study aims to evaluate the
flexural behavior of normal concrete repaired with polyurethane grout (NC-PUG) under a three-point
bending test. A finite element (FE) model was developed to simulate the flexural response of the
NC-PUG specimens. The equivalent principle response of the NC-PUG was analyzed through a
three-dimensional finite element model (3D FEM). The NC and PUG properties were simulated
using stress–strain relations acquired from compressive and tensile tests. The overlaid PUG material
was prepared by mixing PU and quartz sand and overlayed on the either top or bottom surface of
the concrete beam. Two different overlaid thicknesses were adopted, including 5 mm and 10 mm.
The composite NC-PUG specimens were formed by casting a PUG material using different overlaid
thicknesses and configurations. The reference specimen showed the highest average ultimate flexural
stress of 5.56 MPa ± 2.57% at a 95% confidence interval with a corresponding midspan deflection
of 0.49 mm ± 13.60%. However, due to the strengthened effect of the PUG layer, the deflection of
the composite specimen was significantly improved. The concrete specimens retrofitted at the top
surface demonstrated a typical linear pattern from the initial loading stage until the complete failure
of the specimen. Moreover, the concrete specimens retrofitted at the bottom surface exhibit two
deformation regions before the complete failure. The FE analysis showed good agreement between
the numerical model and the experimental test result. The numerical model accurately predicted the
flexural strength of the NC-PUG beam, slightly underestimating Ke by 4% and overestimating the
ultimate flexural stress by 3%.

Keywords: concrete; polyurethane; finite element analysis; polyurethane grout material; flexural strength

1. Introduction

Repair and protective techniques are applied to civil engineering infrastructure, in-
cluding reinforced concrete structures, roads, and runways, by exposing damaged sections
and changing them with cement-based composites [1–5]. Due to the cracking of the re-
placed materials and further penetration of degradation substances into concrete structures,
the functions of the repaired section may deteriorate again [6,7]. Water can be an essential
carrier for aggressive, penetrating substances [6]. Thus, efficient means to restrict water
penetration into repaired areas and underlying concrete structures is critical for preserving
their high resilience and extended lifetimes. Alternative materials of polymeric resins,
including methyl methacrylate (MMA), epoxy resins, furan resins, polyurethane resins,
urea formaldehyde, and unsaturated polyester resins, are available to maintain concrete
structure effectively. Moreover, latex (polymer suspension in water), powder, and resin
(liquid form) are all common types of polymer modifiers. Similarly, there are polymer
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modifiers, which include styrene butadiene rubber (SBR) emulsion, ethylene vinyl acetate
(EVA), polyacrylate (PAE) emulsion, epoxy resin (EP), polyvinyl alcohol vinyl acetate,
ethylene vinyl acetate, and acrylic acid [8–12]. PU is a hard polymer with good wear-
resistance characteristics [13]. The PU-cement-based composite was reportedly employed
in retrofitting structures after a seismic event because of its high bending and low compres-
sive strength reduction [14]. Polyurethane gout materials have been used in several repair
projects, including highway crack treatment, high-speed railway track slab raising, emer-
gency reinforcement of water conservation projects, and repair of rigid pavement [15–18],
as depicted in Figure 1. Similarly, closed-cell one-component hydrophobic polyurethane
foam can be used to stabilize expansive soil [19], whereas polyurethane grouting materials
are employed for repair of road and runway facilities [20].
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The numerical analytical method has been utilized to investigate the performance
of concrete materials under static loadings, which is considered isotropic and homoge-
nous for numerical simulation [21–24]. The numerical analysis was carried out using the
finite element approach, demonstrating that the numerical analysis could be utilized as
an evaluation tool for analyzing the different performance of the polyurethane-concrete
composite [25–28]. Hala et al. [25] conducted an experimental study and numerical analysis
on the ballistic resistance of high-performance fiber-reinforced concrete panels coated with
polyurethane materials. The numerical models adequately predict the ballistic strength of
the panels under independent ballistics tests. Sing et al. [29] evaluated the compression,
tension, and flexural properties of four epoxy grouts and developed a finite element model
to simulate composite repaired pipes. The result showed good agreement between the
FE models and the experimental test result with a margin error of less than 10%. It was
discovered that by modifying the infill parameters in the finite element model to simulate
the usage of different infill materials for the repair, a 4–8% increase in burst pressure can be
produced. Shigang et al. [30] performed numerical simulations of the polyurethane polymer
concrete specimens in compression under different strain rates utilizing explicit numerical
methods based on LS-DYNA codes. The failure factors of polymer concrete at the mesoscale
level were numerically analyzed. The result indicated that the novel dynamic properties of
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the material attributed to the damage and failure mode of the interface and elastic/plastic
properties of the polyurethane polymer composites. Chen et al. [31] conducted a long-term
study and numerical simulation of PU foam insulation on concrete dams under extreme
cold conditions. The FE analysis on the composite profiled sheet deck formed by apply-
ing polyurethane and polyvinyl chloride tubes was studied by [32]. Manjun et al. [28]
established the FE model to simulate the shear failure process of polyurethane–bentonite
composite specimens under variable angle shear test; the results indicated that the FE
model result is consistent with the experimental result. Somarathna et al. [33] studied the
dynamic mechanical properties of concrete retrofitted with polyurethane coating mate-
rial subjected to quasi-static and dynamic loads simulated via a three-point bending test.
The failure mechanism between the PU grout and concrete under the influence of moisture
was investigated using digital image correlation [34]. Huang et al. [35] proposed a calcu-
lation technique to determine the deformation of precast concrete frame assembled with
artificial controllable plastic hinges, and performed seismic analysis. The result showed that
artificial controllable plastic hinges effectively reduced the base shear of the frame structure.
The seismic performance of corrosion-damaged reinforced concrete columns strengthened
with a bonded steel plate (BSP) and a high-performance ferrocement laminate (HPFL) was
evaluated [36]. Zhang et al. [37] developed a numerical model and reliability-based analysis
of the flexural strength of concrete beams reinforced with hybrid basalt fiber-reinforced
polymer and steel rebars.

Studying the performance properties of composite concrete retrofitted with polyurethane
grout under FE simulation requires considerable attention, as most previous studies paid
attention to the experimental investigation, even though experimental studies were an
appropriate means of understanding the structural response. Experimental studies are ex-
pensive, time-consuming, and unviable, especially for comprehensive or parametric studies.
Thus, when accurately calibrated and validated, the FE analysis technique is an alternative
way of investigating the structural responses. This study intends to investigate the effective-
ness and capacity of the PU material prepared by combining bio-based polyurethane (castor
oil) and quartz sand as a coating material for a concrete beam subjected to a three-point
bending test and a developed FE simulation of the concrete–polyurethane grout (NC-PUG)
under a flexural load. The equivalent principle response of the NC-PUG was analyzed
through a three-dimensional finite element model (3D FEM). The NC and PUG properties
were simulated using stress–strain relations acquired from compressive and tensile tests.
The concrete damage plasticity model (CDPM) available in commercially available FE
software ABAQUS 2021 [38] is utilized to model the response of normal concrete and
polyurethane grout material.

2. Materials and Methods
2.1. Materials

Grade 42.5R ordinary Portland cement was used to produce a concrete mixture, and its
chemical compositions are summarized in Table 1. The fine aggregate in this study was
a river sand with 2650 kg/m3 density 2.63 fineness modulus. The coarse aggregate is the
crushed natural stone with 10 mm aggregate size and 2.67 fineness modulus. Figure 2
presents the distribution of the aggregate sizes used. The quartz sand has particles the size
of 0.5–1.0 mm and density of 1430 kg/m3. The desired workability of the concrete was
maintained by adding polycarboxylate-based superplasticizer at 0.15% of the weight of
cement to obtain required workability.

Table 1. Cement chemical composition.

Material
Oxides

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 LOI

Cement 23.27 4.41 2.45 62.85 1.42 0.48 0.21 2.57 0.08 1.82
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The PU binder was synthesized through a polymerization reaction between polyaryl
polymethylene, isocyanate (PAPI), and castor oil, mixed at the mix ratio of 6:1, and placed
in a container. A homogenous solution was produced after 2 min of rigorous mixing with
hand mixer set at high speed [17,39,40]. Table 2 shows the physical and performance
indexes of the PU binder.

Table 2. Physical and performance parameter of PU binder.

PU Materials Viscosity (CPS) Appearance
Curing Age (h) Tension Property

(MPa)Initial Final

Castor oil 35,000 Grey/white
sticky - - -

PAPI 250 Brown
transparent - - -

PU binder - - 3.5 72 5.5

2.2. Specimen Preparation

Table 3 shows the mix proportion for the preparation of concrete mixture and PU
grouting materials. The NC mix was poured into beam molds with defined dimensions of
100 × 100 × 400 mm3. To obtain a satisfactory level of compaction, the cast specimens were
put on the vibrating table. They were then left at room temperature for around 24 h before
being removed from the mold. Furthermore, all the specimens were cured for 28 days prior
to the test.

Table 3. NC and PUG design mix.

Mix ID Cement (kg/m3) Sand (kg/m3)
Coarse aggregate
(kg/m3) Water (kg/m3)

NC 425 718 966 170

PU/Quartz sand
(weight ratio)

PU binder (200 g)

Castor oil (g) PAPI (g) Solvent (g)

PU grout 1:0.5 167 33 8.4

After 28 days, all samples were air dried for seven days to make sure that all the
surface moisture was completely dried before PU grouting was overlaid. The prepared PU
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grouting materials were synthesized by mixing quartz sand and PU binder using a mixing
ratio of 1:0.5 in relation to weight. A homogenous mixture of quartz sand and PU binder
was obtained by rigorous mixing of the two components using a hand mixer at high speed.
Table 3 presents the preparation process of the PUG. The synthetic route toward producing
the PUG binder and its microphase structure is shown in Figure 3a,b. Therefore, the PUG
was cast either at the top and bottom or both surfaces of the concrete beam at 5 mm and
10 mm thicknesses, as indicated in Table 4. The NC-PUG composite configuration used to
conduct flexural tests is shown in Table 4. The graphical representation process of preparing
the composite beam and strengthened with PU grouting material is depicted in Figure 4.
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Designation

PU Grout Layer Thickness (mm)

Top Surface Bottom Surface

NC-PUG0
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2.3. Test Methodology
2.3.1. NC Compressive Test

The NC cube compression test was conducted following 50081-2002 [41] using 100 cube
specimens. The 20-ton loading capacity (WDW 200E) universal testing machine was used
to test the NC compressive strength. Three samples were tested after 28 days of curation,
and the average was considered as the strength of normal concrete.

2.3.2. The NC-PUG Flexural Test

Figure 5 presents the setup for the flexural strength test. The NC-PUG flexural behavior
was tested according to the Chinese national standard GB/T 50081-2002 [41]. Using a
300 mm clear span loading and a 0.85 size reduction coefficient, a three-point bending
method was used to calculate the flexural stress [41]. The UTM was set at 0.05 mm/min
displacement-controlled loading and the specimens were loaded until complete specimen
failure. The NC-PUG flexural strength was determined based on Equation (1). Moreover,
three LVDTs were attached to the test specimen to monitor the deflection at midspan and
two end supports, as illustrated in Figure 5. To add the load to the test sample, a load



Polymers 2023, 15, 4114 7 of 17

cell was coupled to the apparatus. The datasets for time, load, and displacement were
simultaneously captured with a static data collecting system.

fy =
Pl
bh2 × 0.85 (1)

where f y is the NC-PUG and the flexural strength (MPa); P represents the maximum applied
load (KN); l represents the distance of the two supports (mm); and h and b represent the
height and width of the beam section (mm), respectively.
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3. Result and Discussion
3.1. Flexural Response of NC-PUG

Table 5 summarizes the response of the NC repaired with the PU grout material under
flexural load. The average of the three samples tested under each testing condition was
computed, and the flexural and deflection response was considered based on the 95%
confidence level. As shown in Table 5, the control sample (NC-PUG0) reveals the high-
est average ultimate flexural stress of 5.56 MPa ± 2.57% against the concrete specimen
retrofitted with the PUG grouting material; furthermore, a minimum mid-span deflec-
tion of 0.49 mm ± 13.60% was recorded for the control sample. However, the ultimate
flexural stress of the specimens retrofitted with the PU grouting materials demonstrated
reduced flexural strength with increasing deflection, as presented in Table 6. The flexural
response is seen in Figure 6, showing the decreasing and increasing pattern of the NC-PUG
composite due to the retrofitting effect of the PU grout material and casting configuration.
The specimen repaired with a 5 mm thick PUG overlaid at the bottom surface (NC-PUGB5)
and top-bottom surface (NC-PUGTB5) showed nearly the same ultimate flexural stress
of 4.30 MPa ± 1.77% and 4.35 MPa ± 3.62%, respectively, which are lower than that of
the reference specimen by 22.66% and 21.76%, respectively. The mid-span deflection of
NC-PUGB5 is 2.19 mm ± 5.26%, and that of NC-PUGB5 is 1.40 mm ± 1.66%. The specimen
retrofitted with 5 mm and 10 mm overlaid the PU grout material at the top surface exhibits
the ultimate flexural stress of 3.39 MPa ± 6.80% and 3.63 MPa ± 3.72%, which are lower
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than the flexural strength of the specimen retrofitted at the bottom surface. This behavior is
attributed to the specimen attaining a maximum carrying load and then failing. The con-
crete section no longer bears the applied load. At this stage, the overlaid PU grout sustained
the applied load to some specific point before the ultimate failure of the NC-PUG compos-
ite, indicating the viscoelastic properties of polyurethane, which tend to make concrete
more ductile and less brittle. Following the experimental research utilizing polyurethane
demonstrates that PU is a very strain rate-sensitive elastomer, with a significant change in
performance from rubbery to leathery in response to increased strain rates [42–45].

Table 5. The flexural response of concrete retrofitted with PU grout material.

Specimen ID Code Flexural Strength
(MPa)

L-Deflection
(mm)

Max Deflection
(mm)

R-Deflection
(mm)

Reference 1 5.478 0.42 0.57 0.42
2 5.746 0.36 0.43 0.34
3 5.478 0.35 0.47 0.38
Confidential level (0.95) 5.56 ± 2.57% 0.38 ± 9.29% 0.49 ± 13.60% 0.38 ± 9.73%

NC-PUGB5 1 4.371 2.07 2.46 2.71
2 4.32 2.2 2.60 2.43
3 4.21 2.32 2.56 2.30
Confidential level (0.95) 4.30 ± 1.77% 2.19 ± 5.26% 2.54 ± 2.62% 2.48 ± 7.81%

NC-PUGT5 1 3.662 2.32 2.46 2.42
2 3.174 1.73 1.81 1.71
3 3.330 2.24 2.22 2.21
Confidential level (0.95) 3.39 ± 6.80% 2.09 ± 14.10% 2.16 ± 14.04% 2.11 ± 15.95%

NC-PUGT10 1 3.723 1.35 1.34 1.24
2 3.702 0.97 1.1 1.04
3 3.46 1.14 1.36 1.21
Confidential level (0.95) 3.63 ± 3.72% 1.15 ± 15.25% 1.27 ± 10.55% 1.16 ± 8.57%

NC-PUGTB5 1 4.440 1.38 1.48 1.27
2 4.155 1.43 1.2 1.28
3 4.67 1.40 1.45 1.39
Confidential level (0.95) 4.35 ± 3.62% 1.40 ± 1.66% 1.38 ± 10.32% 1.31 ± 4.68%

Table 6. Mechanical characteristics of NC and PUG.

Material Compressive
Strength (MPa)

Elastic
Modulus (GPa)

Tensile
Strength (MPa)

Density
(kg/m3)

NC (C50) 48.67 32.29 4.76 2400
PUG 19.89 36.67 14.29 2400

Additionally, deflection due to the applied load was recorded at the two end supports,
as shown in Figure 7. As shown in Figure 7, the deflection at the end support showed
increasing and decreasing behavior according to the overlaid thickness and configura-
tion. Reference specimens exhibit the lowest average deflection of 0.49 mm ± 13.60% and
0.38 mm ± 9.73% at the left and right support, respectively. This deflection is drastically
increased due to the PU grouting effect, as exhibited in NC-PUGB5, which records an
average deflection of 2.54 ± 2.62% and 2.48 ± 7.81% at the left and right support, re-
spectively. The support deflection tends to decrease with a change in the PUG overlaid
thickness and casting position. The support deflection of composite specimens with a
5 mm thick PUG cast at the top surface is reduced by 14.6% compared to the composite
specimen cast with a 5 mm PUG overlaid thickness at the bottom surface. The support
deflection decreased further in the specimen cast with a 10 mm thick PUG overlaid at the
top surface. Hence, the record lowest recorded support deflection of 1.27 mm ± 10.55% and
1.16 mm ± 8.57%, respectively, was obtained. An improvement in the support deflection
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was observed in the NC-PUGBT5 specimen when compared to the NC-PUGT10 composite
specimen. This result indicated that the deflection behavior of concrete can be improved
with PUG grouting materials, and was more pronounced when the PUG overlaid was cast
at the bottom surface. A related study by Somarathna et al. [33] reported that concrete
specimens retrofitted externally reveal a higher strain during ultimate failure due to the
elastomeric coating on the impact face under quasi-static testing.
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3.2. Finite Element Modeling of NC-PUG Beam

The finite element modeling (FEM) and analysis (FEA) of the NC-PUG beam were
carried out using the FE software ABAQUS 2021 [46]. FEM can help evaluate the proper-
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ties of the concrete-to-polyurethane grout composite (NC-PUG). The details of the FEM,
including the geometry, meshing, and boundary conditions, are presented in this section.
This section presents the FE model development to evaluate the flexural responses of the
NC-PUG beam.

3.3. Boundary Conditions, Loading Analysis, and Interaction

The specimens were fixed from the bottom steel support (Figure 8a). Displacement-
controlled type of loading was applied to the simulation system. The NC-PUG contact was
regarded for surface-to-surface relations. The firm contact without penetration was em-
ployed, and the shear characteristic was defined using the “penalty” function. The friction
coefficient 0.4 between the NC substrate and PUG layer interface was considered. The
NS surface was designed as the master surface, while the PUG surface was set as the
slave surface.
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3.4. Element Type and Mesh Size

Figure 8 presents a typical FE model of the NC, PUG, and NC-PUG composite beams.
The NC and PUG were designed as three-dimensional eight-node composites with a
reduced integration point (C3D8R) that was adopted for NC and PUG. The contact surface
between NC and PUG used common mesh seeds to ensure accuracy. A sensitivity analysis
was conducted with various mesh sizes, and the finest mesh with a size of 10 mm was
selected according to the mesh convergence learning process.

3.5. Contact Modeling

The interaction between the NC and PUG grouting material was defined using surface-
to-surface contact obtained in ABAQUS. The contact pair in the FE models consists of NC
and PUG. The contact surface associated with the NC was used for the master surface,
and the PUG contact surface was selected as the slave surface. Similarly, the contact
surface associated with the NC-PUG composite was used as the master surface. A friction
coefficient of 0.4 was used between the two components [47]. The normal contact behavior
was assumed to be hard contact, allowing for the transmission of the surface’s pressure
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and separation when the pressure was zero or negative. The NC was designated as the
host element.

3.6. Material Constitutive Model

The ABAQUS concrete damage plasticity (CDP) model simulated the NC and PUG’s
material behavior. The CDP is a uniaxial compression and uniaxial tension plasticity model
that describes the inelastic and damage behavior of concrete. The yielding criteria defined
by Lee et al. [48] were adopted in this study. The concrete was characterized using the
CDP model. The material properties of grade C50 concrete and PUG grouting material are
summarized in Table 6.

3.7. Material Constitutive Model of NC

The CDP model consisted of concrete compression and tensile damage; Figure 9
presents the stress–strain curves of the NC. The compressive stress–strain curve is clas-
sified into three parts. The first part is the elastic up to 0.4 f mm. The second section
is the ascending parabolic part starting from 0.4 f mm to f mm, which is calculated from
Equation (2)—according to EC2—and the third part linearly descends from f mm to 0.85
f mm.

σc = fcm

[
kn−n2

1+(k−2)n

]
n = εc

εco
, k = Ecεco/ fmm

(2)

where εc represents the compressive strain, σc represents the NSC compressive stress,
fmm represents the ultimate compressive stress, εco represents the strain corresponding to
fmm which is equal to 0.002, and the ultimate strain εcu is equal to 0.0035 [49]. Ec is the
modulus of elasticity. Figure 1b shows the tensile stress–strain curve, in which the stress
rises proportionately to the strain before cracking. The tensile strength (ft) is calculated
using Equation (3) [50], and the equivalent strain (εck) is defined as ft/Ec.

ft = 0.395 f 0.55
cu (3)
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Figure 9. Concrete-damaged plasticity model of NC in (a) stress–strain in compression, (b) stress–
strain in tension, and (c) stress–crack width.

The relationship between tensile stress and cracking width is calculated using the
fracture energy cracking model to define the tensile behavior of the NSC after cracking.
The fracture was obtained from CEP-FIP [51] using Equation (4).

G f = G f 10

(
fc

10

)0.7
(4)

where parameter Gf represents the fracture energy in Nmm/mm2, and the diameter of the
coarse aggregate is approximately 16 mm. Hence, Gf10 = 0.003 Nmm/mm2. The concrete



Polymers 2023, 15, 4114 12 of 17

compressive and damage coefficient, i.e., dc and dt, represents the damage behavior of the
concrete. Thus, dc = 1 – fmm/σc and dt = 1 – ft/σt.

3.8. Model Validations

Figures 10–14 compare the flexural load–deflection curves between the experiments
and the numerical model for each specimen condition. The FE analysis showed good agree-
ment between the numerical model and the experimental test result. The initial stiffness (Ke)
of the load–deflection curves between the numerical and experiment were compared for
each specimen. Initial stiffness is explained as the ratio of 45% of the maximum load (P0.45)
to the corresponding deflection (∆0.45) as described by the ACI 318M-05 [52] and given in
Equation (5).

Ke =
P0.45

∆0.45
(5)
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Figure 15. Scatter of test-to-prediction ratios for Ke and Pu. 

Table 7. Comparison of experimental results with FE model predictions. 

No. Specimens Ke 
kN/mm 

KN 
kN/mm  

Pu 
(kN) 

PN 
(kN) 

Ke/KN Pu/PN 

1 NC 22.880 18.511 18.260 18.427 1.230 0.991 
2 NC-PUGB5 3.661 3.963 14.400 15.365 0.924 0.937 
3 NC-PUGT5 7.914 7.585 12.340 12.788 1.048 0.964 
4 NC-PUGT10 3.541 3.275 12.210 12.034 1.081 1.014 
5 NC-PUGBTB5 6.038 6.245 13.850 14.100 0.966 0.982 

Figure 14. Validation of CDPM under flexure. (a) Numerical and experimental stress–strain models;
(b) FEM and stress distribution for NC-PUGTB5.

The relationship between the flexural stress and mid-span deflection showed a linear
pattern at the initial loading stage for the reference, and all the specimens were retrofitted at
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the top surface, as shown in Figures 10–12, regardless of the PUG grout overlaid thickness.
Common behaviors were observed for both the FE model and experimental test results.
Under these conditions, deflection continuously increases with the applied loads until the
specimen reaches the ultimate load and then fails in flexure. Nearly equal ultimate flexural
stress was observed between the FE simulation and experimental test result.

On the other hand, two deformation regions were observed in the NC-PUG composite
specimens strengthened with the PUG overlaid cast at the bottom surface or top-bottom
surface, as revealed in Figures 13 and 14, before complete failure. Under this configuration,
polyurethane grout material was cast at the tension zone of the composite specimen,
and polyurethane exhibited viscoelastic properties in response to the increased deflection
without significance stress. This behavior tends to change the concrete’s brittle nature to a
ductile state; polyurethane is a very strain rate-sensitive elastomer, with a significant change
in performance from rubbery to leathery in response to increased strain rates. As a result,
two deformation regions occurred during testing. Region (i): the initial loading condition;
the relationship between flexural stress and deflection exhibits a flat slop with a drastic
increase in mid-span deflection under continuous loading. The magnitude of the applied
load became noticeable when the deflection reached a significant level, which marked the
second deformation region. Region (ii): under this region, the relationship between the
flexural stress and mid-span deflection exhibits a sharp slope. Both the applied load and
deflection are increased rapidly until the test specimen fails in flexure. The two deformation
regions demonstrated by these test specimens are caused by the viscoelastic behavior of
polyurethane subjected to tensile stress at the tension zone of the composite specimens.

Table 7 presents the observed initial stiffness (Ke) and ultimate flexural stress (Pu)
with numerical values, and the experimental test result-to-predicted value ratio of Ke and
Pu is depicted in Figure 15. Table 7 and Figure 15 show that the FE model had accurately
estimated the flexural responses of the NC-PUG beam and slightly underestimated Ke by
4% and overestimated Pu by 3%. The standard deviation of the flexural strength of the
test specimen-to-prediction ratios of Ke and Pu are 0.1 and 0.02, respectively. The results
indicated that the developed FE model predicts the flexural behavior and elastic stiffness of
the NC-PUG specimens more accurately. It indicates that 80% of the predictions are within
the range of ±10% of the prediction, as shown in Figure 15.

Table 7. Comparison of experimental results with FE model predictions.

No. Specimens Ke kN/mm KN kN/mm Pu
(kN)

PN
(kN) Ke/KN Pu/PN

1 NC 22.880 18.511 18.260 18.427 1.230 0.991
2 NC-PUGB5 3.661 3.963 14.400 15.365 0.924 0.937
3 NC-PUGT5 7.914 7.585 12.340 12.788 1.048 0.964
4 NC-PUGT10 3.541 3.275 12.210 12.034 1.081 1.014
5 NC-PUGBTB5 6.038 6.245 13.850 14.100 0.966 0.982

Standard deviation 7.221 5.519 2.194 2.251 0.106 0.026
Mean 8.807 7.916 14.212 14.543 1.049 0.977
Cov (%) 82 69.7 15.4 15.5 10.1 2.6
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4. Conclusions

This study investigated the flexural behavior of the NC specimens retrofitted with a
polyurethane grouting material of different thicknesses and configurations. The concrete
beam specimens were subjected to a three-point bending test. The composite NC-PUG
specimens were formed by casting the polyurethane grouting material at either top and/or
bottom or both top-bottom surfaces. Moreover, finite element models were developed to
simulate the flexural response of the NC-PUG specimens. The following conclusion can be
drawn to summarize the findings.

The reference specimen (NC-PUG0) showed the highest average ultimate flexural
stress of 5.56 MPa ± 2.57% at a 95% confidence interval with a corresponding mid-span de-
flection of 0.49 mm ± 13.60%. However, due to the strengthened effect of the polyurethane
grout, the deflection of the composite specimen was significantly improved.

1. The configuration and/or position of the PU grout material cast influenced the rela-
tionship between the flexural stress and mid-span deflection. Specimens retrofitted at
the bottom surface exhibit two deformation regions.

2. The effect of the PU grouting material changes the brittle nature of concrete to a more
ductile state due to the viscoelastic behavior of polyurethane. This behavior is more
effective on the specimen retrofitted at the bottom surface.

3. The FE analysis showed good agreement between the numerical model and the
experimental test result. The numerical model accurately predicted the flexural
strength of the NC-PUG beam, slightly underestimating Ke by 4% and overestimating
Pu by 3%.
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