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Abstract: A synergistic multi-material flame retardant system based on expandable graphite (EG),
aluminum diethylphosphinate (AlPi), melamine polyphosphate (MPP), and montmorillonite (MMT)
has been studied in glass-fiber-reinforced polyamide 6 (PA6). Analytical evaluations and fire per-
formances were evaluated using coupled thermogravimetric analysis (TGA) and Fourier-transform
infrared spectroscopy (FTIR) as well as cone calorimetry, UL-94 fire testing, and limiting oxygen index
(LOI). A combination of EG/AlPi/MPP/MMT has been shown to provide superior flame-retarding
properties when integrated at 20 wt.% into glass-fiber-reinforced PA6 (25 wt.%), achieving UL-94 V0
classification and an oxygen index of 32%. Strong residue formation resulted in low heat development
overall, with a peak heat release rate (pHRR) of 103 kW/m2, a maximum of average heat release
rate (MAHRE) of 33 kW/m2, and deficient total smoke production (TSP) of 3.8 m2. Particularly
remarkable was the structural stability of the char residue. The char residue could easily withstand
an areal weight of 35 g/cm2, showing no visible deformation.

Keywords: PA6; flame retardancy; expandable graphite; aluminum diethylphosphinate; melamine
polyphosphate; montmorillonite

1. Introduction

Non-reinforced polyamide 6 (PA6) is known for strong burn dripping behavior, extin-
guishing the upward burning process in vertical UL-94 burning tests and thus resulting in
a V2 classification. The integration of glass fibers changes two essential fire phenomena:
(1) Due to an increased melt viscosity, melt dripping is substantially reduced, stabilizing
the burning process in vertical UL-94 burning tests. Accordingly, flame spread continues
upwards, resulting in a lack of a UL-94 classification. (2) Simultaneously, protruding glass
fibers increase the surface area and provide improved thermal conductivity and pyrolysis
supply due to the “wicking effect”. Both effects substantially change the physical conditions
and accelerate the burning process [1]. Halogenated flame retardant additives (FR) have
been proven to work efficiently for glass-fiber-reinforced PA6. However, due to rising
environmental requirements and toxicity concerns, halogenated FRs are increasingly substi-
tuted [2]. Many publications have been studying phosphorous and nitrogen-containing FR
alternatives such as melamine polyphosphate (MPP) [3], melamine cyanurate (MC) [4,5],
phosphonate oligomers PSA and POSC [6], aluminum diethyl phosphinate (AlPi) [5,7,8],
zinc borate (ZB) [5,9], microencapsulated red phosphorus (RP) [10], and phosphorus oxyni-
tride (PO) [11]. Furthermore, many additives have been found to show superior fire
retardant properties in glass fiber when synergistically combined in multi-material systems.

MPP is a commonly used flame retardant additive for glass-fiber-reinforced PA6
and PA6.6 systems. Research has demonstrated that the integration of MPP triggers
the formation of a phosphorus-rich intermediate phase on the glass fiber surface. As a
result, the limiting oxygen index (LOI) can be increased for PA6 to approximately 29 vol.%
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(15 wt.% filling degree) and for PA6.6 to 38–40 vol.% (15 wt.% filling degree). The observed
difference in flame retardancy performances can be attributed to two possible modes of
action. While the incorporation of MPP in PA6.6 initiates strong crosslinking, PA6/MPP
combinations instead result in catalytical depolymerization (a decrease in viscosity [12]).
Earlier depolymerization affects the flammability behavior in two contrary phenomena.
Caprolactam is released at lower temperatures, accelerating the early flame spread since
it provides a steady fueling of combustible pyrolysis gases to the flame. On the contrary,
a lower fuel supply maintains the low flame growth rate, substantially limiting the heat
release rate potential. Both effects reduce and improve fire retardancy properties but differ
in efficiency. Additionally, decomposition products often form phosphoric acid, promoting
char formation on the polymer’s surface offering insulating characteristics [13].

Metal salts of alkyl phosphinate, such as aluminum diethyl phosphinate (AlPi), have
also been shown to provide excellent flame retardancy properties in non-reinforced PA6.6.
Two mechanisms are reported: (1) the formation of aluminum phosphate in the condensed
phase and (2) the release of diethylphosphinic acid in the gas phase [14]. However, AlPi
does not provide a V0 classification in a UL94 test when used as a single FR additive
in glass-fiber-reinforced PA6 and PA66. The performance drop can be explained by a
capillary-driven effect that accelerates the pyrolysis gas flow, suppressing the flame retar-
dant efficiency of the condensed phase mechanisms [15,16].

Furthermore, synergistic or catalytic effects have been reported when metal salts and
polyphosphate compounds, such as MPP and AlPi, are combined. While MPP primarily
acts in the gas phase via flame inhibition, combining AlPi and MPP results in a changed
reaction path primarily occurring in the condensed phase. The reaction is based on a
crosslinking mechanism by forming polyphosphate esters [17]. A synergistic effect of MPP
and AlPi has been demonstrated for PA6.6 [18] and PA6 [19].

A well-known strategy to reduce the pHRR or improve the LOI and UL-94 fire test-
ing performance in PA6 recipes is the combined utilization of condensed and gas phase
flame retardancy effects [20,21]. Nanofillers have been successfully tested as synergistic
additives for a variety of phosphorous FRs. They are predominantly known to improve
fire performance via structural char residue enhancement and by providing a labyrinth
effect, but can also act catalytically during polymer decomposition [13]. A recent study has
reported that a combination of MPP with MMT (nanofiller) can synergistically enhance the
flame retardancy properties of GF-reinforced PA6, resulting in an improved V0 UL94 (V)
rating [4]. MMT has been shown to reduce the pyrolysis rate through a labyrinth effect as
well as residual formation due to clay surface migration. The latter results in a clay layer
barrier that improves insulation properties against an external heat source and provides a
long-term barrier, hindering the pyrolysis gas supply [20,22]. Other studies have investi-
gated the use of expandable graphite (EG) as an alternative for phosphorus flame retardant
additives, which were shown to be very effective in non-reinforced PA6 [23,24] and only
somewhat effective in glass-fiber-reinforced PA6 [25]. EG acts physically via the formation
of a voluminous, thermally stable residue, providing excellent long-term fire protection
properties [23,25]. Due to its solely physical effect, the usage of expandable graphite has
been reported for various polymeric systems (e.g., PE [26,27], PP [28,29], PS [30], PVC [31],
ABS [32], PA6 [33]).

Recent studies have shown that expandable graphite (EG) can provide a very ef-
fective, long-term heat barrier when integrated into GF-reinforced PA6. However, no
sufficient UL-94 classification could be reached (V2) [25,34,35]. Within this study, expand-
able graphite (EG), aluminum diethylphosphinate (AlPi), melamine polyphosphate (MPP),
and montmorillonite (MMT) have been investigated as one flame retardant multi-material
system for glass-fiber-reinforced PA6. The fundamental concept is based on a combina-
tion of a long-term barrier effect (EG), char residue formation, and low pyrolysis rates
(AlPi/MPP/MMT), improving flammability and heat development properties. Flamma-
bility properties and burning behavior have been investigated using the limiting oxygen
index (LOI), UL-94 (V), and cone calorimeter tests. Coupled thermogravimetric analysis
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(TGA) and Fourier-transform infrared spectroscopy (FTIR) have been used for thermal
degradation and chemical analysis. Previous studies that have investigated the flame
retardant effect of EG on non-reinforced [23] and reinforced PA6 [25] combinations are
referred to as the work that forms the basis for the present investigation.

2. Materials and Methods
2.1. Materials and Preparation

As the matrix polymer, standard-grade polyamide 6 B27E (PA6) from BASF SE (Lud-
wigshafen, Germany) was reinforced with glass fibers (GFs) of the type CS7920, provided by
Lanxess (Cologne, Germany). The flame retardant additives used were expandable graphite
(EG) GHL HT 270 from LUH GmbH (Walluf, Germany), aluminum diethyl phosphinate
(AlPi) Exolit 1230 from Clariant AG (Muttenz, Switzerland), melamine polyphosphate
(MPP) MP200 from BASF SE (Ludwigshafen, Germany), and organic Montmorillonite MAX
CT 4260 from BYK-Chemie GmbH (Wesel, Germany). All materials are listed in Table 1.

Table 1. Polymers, fillers, and flame retardant additives used within this study.

Materials Type/Code Manufacturer

polyamide 6 (PA6) B27E BASF SE, Ludwigshafen
glass fiber (GF) CS7920 Lanxess AG, Cologne

expandable graphite (EG) GHL HT 270 LUH GmbH, Walluf
aluminum diethylphosphate (AlPi) Exolit 1230 Clariant AG, Muttenz

melamine polyphosphate (MPP) MP200 BASF SE, Ludwigshafen
organic montmorillonite (MMT) MAX CT 4260 BYK-Chemie, Wesel

The multi-material systems were produced using a co-rotating, twin-screw extruder
DSE ZSE HP 27 from Leistritz GmbH (Nuremberg, Germany). Barrel temperatures were
controlled between 240 and 220 ◦C; the screw speed was held constant at 100 rounds per
minute (rpm) at a feed rate of 10 kg per hour (kg/h). The multi-material systems containing
EG, AlPi, MPP, and MMT were premixed in a universal powder mixer (200 u/min; 15 min)
before processing. Two gravimetrical side feeding units were used for glass fibers and
the premixed multi-material additive mixture. The strand was drawn off via a water bath
chipped to granulate, and dried afterward before further processing. Injection molding
was used to mold plate geometries (100 × 100 × 2 and 4 mm3), which were then further
processed via sawing and milling to generate sample geometries following the individual
testing standards. Formulations tested and discussed within this study are listed in Table 2.

Table 2. Overview of all polymeric material recipes prepared and tested within this study.

Sample Code PA6
wt.%

GF
wt.%

EG
wt.%

MMT
wt.%

AlPi/MPP (3:2)
wt.%

a 75 25 0.0 0 0
b 72 25 0.0 3 0
c 55 25 20.0 0 0
d 65 25 19 1 0
e 55 25 15.0 0 3.0/2.0
f 55 25 15.0 1.0 2.4/1.6
g 65 25 7.5 0.2 1.4/0.9
h 55 25 15.0 0.4 2.8/1.4
i 65 25 7.5 0.5 1.2/0.8

2.2. Thermal and Gas Analytics

Thermogravimetric analysis (TGA) and coupled Fourier-transform infrared spectrome-
try (FTIR) were used to analyze changes in the decomposition behavior. TGA measurements
were conducted at various heating rates of 2.5, 5, and 10 K/min under a nitrogen atmo-
sphere, using constant temperature ramps between 50 and 800 ◦C. Therefore, an STA F3
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449 Jupiter from Netzsch GmbH (Selb, Germany) was used. Decomposition/pyrolysis
gases were transferred from the TGA exhaust to the FTIR gas cell Tensor 2 from Bruker
Corp. (Billerica, MA, USA) via a coupled and temperature-controlled transfer line (230 ◦C).
Due to the transfer time between the TGA exhaust and FTIR measurement, a signal delay
between TGA and FTIR of about 30 s had to be considered. Activation energies were
calculated from non-isothermal TGA measurements using a method suggested by Ozawa
and Vyazovkin [36–38]. Calculations were performed using an open access calculation tool.
The descriptions and download link can be found in [39].

2.3. Fire Testing

To study fire retardancy properties, limiting oxygen index (LOI), UL-94, and cone
calorimeter (CC) tests were conducted. All testing devices were from Netzsch Taurus
Instruments GmbH (Weimar, Germany).

The LOI fire test is particularly useful to track flammability properties occurring from
slight formula changes within multi-material flame retardant systems. The testing setup
includes a vertically clamped sample (125 × 10 × <10 mm3), which is surrounded by a
controlled N2/O2 atmosphere. During the testing routine, a 50 watt propane flame is
systematically applied to the sample in a candle-like setup from above. If the sample is
ignited, flame propagation is observed, the propagation time and distance are measured,
and the N2/O2 atmosphere contents are systematically adjusted. The resulting key figure
“limiting oxygen index” (LOI) represents the lowest atmospheric oxygen content needed
to provide either 50 mm downward fire propagation or 3 min of burning time. Tests were
conducted following the DIN EN ISO 4589-2 [40] standards.

UL-94 (vertical) fire testing setups are used to study the self-extinguishing proper-
ties and fire-dripping behavior of polymeric materials under normal atmospheric condi-
tions. During the test, a 50 watt methane flame is applied from underneath the sample
(125 × 13 × <13 mm3) following a standardized routine. After the testing flame is removed,
burning times and dripping behavior are observed. Testing results are then clustered
into three classifications from best to worst: V0, V1, and V2. V0 represents instant self-
extinguishing behavior with no burn dripping. V2 classifications allow burn dripping and,
compared to V0 classifications, longer burning times. Tests were conducted in accordance
with the DIN EN 60695-11-10 [41] standards.

The cone calorimeter testing method is a valuable tool to gain insights into the burning be-
havior under enforced flaming conditions. During the testing routine, 100 × 100 × < 50 mm3

sample geometry is placed underneath the cone heater. Pyrolysis gases are ignited via
piloted ignition and the burning process is monitored by tracking the heat development
over time until complete combustion. The amount of heat released as well as the heat
development characteristics provide important information about the functionality of the
flame retardant formulation. Within this study, tests have been conducted using three
heater capacities 35, 50, and 65 kW/m2 in order to calculate the heat release parameter
(HRP). The appropriate literature targeting the correct use and interpretation of important
key figures can be found in [42–45]. The sample geometries used were 100 × 100 × 4 mm3.
All tests were repeated at least three times, and averaged curves are presented in the results
section. Tests were conducted in accordance with the DIN ISO 5660-1 [46] standards.

2.4. Char Residue Analysis

Char residue analysis was conducted using a SEM Ultra Plus system from Zeiss
(Oberkochen, Germany). Samples were taken via cone calorimeter testing after complete
combustion and prepared using platin–palladium.

3. Results and Discussion
3.1. Thermal Analysis and Evolved Gas Analysis—TGA-FTIR

TGA measurements were taken to evaluate the decomposition behavior of all of the
tested formulations. Tests were performed at heating rates of 2.5, 5, and 10 K/min under



Polymers 2023, 15, 4100 5 of 15

a nitrogen atmosphere. The results presented in Figure 1 show TGA-FTIR results for a
heating rate of 10 K/min without (A) and with in situ FTIR coupling (B).
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Figure 1. (A) TGA analysis measured at a heating rate of 10 K/min under a nitrogen atmosphere.
The mass loss tracked over a constant heating rate gives insights about the decomposition process
of a polymeric system. (B) Corresponding FTIR evolved gas analysis at the DTG (mass derivative)
peak temperature.

The TGA analysis of PA6 containing 25 wt.% glass fibers showed a single gravimetrical
step with the DTG peak appearing at approximately 451 ◦C (Figure 1A). Once a temperature
of 500 ◦C was reached, all polymer fractions had evaporated, leaving only the glass fiber
residue (25 wt.%). The evolved gases found were caprolactam (with a lactam peak at
1715 cm−1 and a fingerprint pattern at 1305, 1352, and 1361 cm−1), CO2 (at 2360 and
671 cm−1), ammonia (at 930 and 965 cm−1), CH2 groups (at 2940, 2865, and 1140 cm−1),
and some traces of CO (at 2114 and 2174 cm−1) (Figure 1B). These gas phase products have
also been found in numerous other studies as part of the PA6 decomposition [47–50]. When
3 wt.% MMT is integrated, no observable changes in the decomposition onset temperature
can be identified (Figure 1A). However, the DTG peak appears to occur slightly earlier at
around 445 ◦C (also found in [51]). This earlier gravimetrical decrease corresponds to a
higher concentration of caprolactam in the gas phase (1715 cm−1), which can be observed
through a relative comparison of the FTIR peak heights between caprolactam and CH2
(Figure 1B). Also, a lower amount of CH3 and CO2 seems to be evaporated, which indicates
an additional formation of intermediate aromatic compounds or intermediate bonding
with the MMT surface. Since the residual fraction measured at 500 ◦C is in accordance
with the filler integration (GF + MMT) and no changes within the gas phase composition
occurred, no alterations of the main decomposition path of PA6 can be observed after the
integration of MMT. This effect has also been discussed in other studies [52,53].

When EG is integrated into reinforced PA6, a second decomposition step between
270 and 330 ◦C can be observed, resulting in a slight gravimetrical decrease of approx-
imately 2.5 wt.%. Once the temperature exceeds 330 ◦C, the decomposition process ac-
celerates, with a DTG peak appearing at 437 ◦C. The residual fraction left at 500 ◦C of
44 ± 1 wt.% is in accordance with the expected range; thus, no additional char forma-
tion can be observed. The slightly lower onset temperature for decomposition can be
attributed to the expansion mode of EG, causing the sulfuric blowing agent to decompose
and gasify. Compared to PA6 GF formulations, FTIR analyses reveal no changes within the
gas phase composition. Thus, no alterations of the main decomposition path are triggered
by EG integration.
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When integrating EG (15 wt.%), AlPi (3 wt.%), and MPP (2 wt.%) as a multi-material
system into glass-fiber-reinforced PA6, two gravimetrical decomposition steps can be
observed (Figure 2A). Similar to recipes based on glass-fiber-reinforced PA6 and EG, the
initial gravimetrical step occurs between 270 ◦C and 330 ◦C marking the start of the EG
expansion process. Exceeding 330 ◦C, the decomposition process accelerates between
400 and 470 ◦C. The DTG peak occurs at 443 ◦C, which is slightly higher than that observed
for reinforced PA6/EG formulations (437 ◦C). The residue formation of 41 ± 1 wt.% (500 ◦C)
is in line with expectations. Similar results have been reported in previous studies for
non-reinforced PA6 [23,25,35].
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Figure 2. (A) TGA analysis measured at a heating rate of 10 K/min under nitrogen atmosphere. The
mass loss tracked over a constant heating rate gives insights about the decomposition process of a
polymeric system. (B) Corresponding FTIR evolved gas analysis.

When MMT is additionally added into the formulation with EG (15 wt.%), AlPi
(2.4 wt.%), MPP (1.6 wt.%), and MMT (1 wt.%) as a multi-material system, only slight
changes within the TGA measurements can be observed. The DTG peaks shift slightly
to a lower temperature of around 429 ◦C. The char residue at 600 ◦C remains within the
expected range of 40 ± 1 wt.%. FTIR gas phase analysis also indicates no changes in the gas
phase composition for any of the tested multi-material formulations (Figure 2B). However,
a shift in the gravimetrical decomposition step toward lower temperatures indicates an
accelerated depolymerization effect as well as early evaporation of the EG intercalated
blowing agent. All major TGA data are summarized in Table 3.

Table 3. TGA measurement summary of the most important key figures and activation energies
calculated using the Ozawa–Flynn–Wall method, with TGA heating rates of 2.5, 5, and 10 K/min.

Sample
Code

PA6
wt.%

GF
wt.%

EG
wt.%

MMT
wt.%

AlPi/MPP (3:2)
wt.%

T99% Onset
◦C

Residue
%

Activation Energy
Ozawa

a 75 25 0 0 0.0 417.1 24.8 211
b 72 25 0 3 0.0 417.1 27.4 221
c 55 25 20 0 0.0 410.1 43.3 200
d 55 25 15 0 3.0/2.0 407.3 40.7 194
e 55 25 15 2 1.8/1.2 403.4 39.55 239

3.2. Burning Behavior—Cone Calorimeter

The cone calorimeter results of all glass-fiber-reinforced formulations tested within this
study are discussed in the following section. The results are presented in Figures 3 and 4.
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Figure 3. (A) Cone calorimeter results measured at 50 kW/m2. (B) Heat response parameters
calculated from the cone calorimeter results at 35, 50, and 65 kW/m2.
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Figure 4. (A) Cone calorimeter results measured at 50 kW/m2. (B) Heat response parameters
calculated from the cone calorimeter results at 35, 50, and 65 kW/m2.

Non-modified glass-fiber-reinforced PA6 is usually characterized by a steep increase
in the heat release rate (HRR) (Figure 3A). Since a large fraction of polymeric fuel had
been burned by the time the peak heat release rate (pHRR) was reached, the subsequent
steep HRR decrease could be attributed to a quick reduction in the pyrolysis gas flow rate.
No plateau formation could be observed for the given sample thickness, indicating no
stationary burning state. Thus, further acceleration of the heat development would likely
occur for thicker samples. By incorporating MMT into the glass-fiber-reinforced PA6, a
substantial change in the burning characteristics could be observed. Ignition occurred
slightly earlier, followed by a steep increase in the HRR and a subsequent plateau formation.
Since the heat development continuously decreased since then, decay of the pyrolysis gas
evaporation could be assumed. As a result, the pHRR decreased by about 57% compared
to the non-flame retardant PA6/GF.

This behavior remained constant for various external heater capacities applied. When
comparing the heat release parameter (HRP), which was calculated from cone calorimeter
tests conducted at heater capacities of 35, 50, and 65 kW/m2, MMT-modified samples
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showed substantially lower pHRR development (19 ± 0.3 versus 7.1 ± 1.3). Given that
only 3 wt.% of the polymer was substituted by MMT, the decrease in the pHRR by 35%
compared to PA6/GF is remarkable. Accordingly, independent of the fire scenario, PA6/GF
equipped with MMT showed superior fire behavior. This observation is in good agreement
with findings in other studies, such as [51,52,54]. Two principal phenomena have been
attributed to the performance increase:

• Labyrinth effect: Nanodispersed MMT platelets form a labyrinth-like structure in the
composite, increasing the material viscosity due to stronger material–particle interac-
tion and extending the path of pyrolysis gases into the gas phase. As a consequence,
the rate of gasification drops, which reduces the amount of available fuel and, thus,
the burning rate. It is furthermore assumed that, for some polymeric systems, the
formation of intermediate aromatic structures is favored. Thus, the labyrinth effect
results in a prolonged meso-phase retention time, which increases the probability
of (intermediate) char formation. Similar findings have been reported for many au-
thors for various nano-scale systems. The relevant literature can be found in [55,56],
although it is not limited to these references.

• During the cause of a fire, MMT starts to migrate to the burning surface and accumu-
lates to increase the char yield. This enhances the barrier formation, which reduces
heat re-radiation toward lower layers of non-decomposed polymer fractions. As a
consequence, lower decomposition/evaporation rates limit the fuel supply and thus
the heat development. Studies reporting similar observations can be found in [54,57],
although they are not limited to these references.

When integrating 20 wt.% EG, EG/MMT, or EG/AlPi/MPP/MMT into glass-fiber-
reinforced PA6, a substantial polymer fraction is substituted by the flame retardant ad-
ditive system (Figure 4A). Hence, generally, lower heat development is to be expected.
Since EG is the major flame retardant additive component providing improved thermal
conductivity properties, heat can penetrate and dissipate more quickly over the entire
cross-section. As the EG expansion and barrier formation proceed, the thermal isolation
performance increases, counteracting the external heat penetration, lowering the heat pen-
etration depth, and thus reducing heat development over time. Since barrier formation
is a time-consuming process and residue formation in early burning stages needs some
time to develop a sufficient thermal barrier, the heat release rate of formulations solely
containing EG is relatively higher than that found for formulations additionally containing
MMT or AlPi/MPP/MMT. By integrating MMT into the formulation, the EG barrier effect
is combined with the previously described labyrinth effect. However, since the observable
effect on the heat development is rather long-term and no change in the pHRR can be
detected, the labyrinth effect is assumed to be abrogated by the expansion process. Hence,
in formulations containing PA6/GF/EG/MMT, no synergistical effect could be observed
for MMT integration.

By integrating AlPi/MPP in addition to EG/MMT into glass-fiber-reinforced PA6,
the pHRR and average HRR are substantially reduced compared to EG and EG/MMT
formulations. AlPi/MPP has been reported to react mostly in the mesophase, forming an
aluminum phosphate residue [35,58]. When additionally combined with MMT, studies
found a strong residue-solidifying effect [59], which could also be identified for formu-
lations within this study. Furthermore, the decomposition mechanism of MPP partially
evaporates melam and inert gases such as ammonia, providing an additional cooling and
dilution effect [12]. The combination of long-term (EG) and short-term (AlPi/MPP) residue
formation, pyrolysis gas stream reduction (MMT; labyrinth effect), improved residual
stability (AlPi/MPP/MMT), and gas phase dilution (MPP) is thus found to work syner-
gistically as a multi-material flame-retarding system for glass-fiber-reinforced PA6. The
positive effect is also maintained over a set of different external heat capacities, resulting in
a lower HRP of 1.1 (Figure 4B), indicating excellent flame retardancy performance with low
sensitivity to environmental conditions.
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The described results fit well with findings in previously published studies. MMT has
been found to substantially decrease the burning rate in non-reinforced (e.g., [24,60]) and
glass-fiber-reinforced (e.g., [54]) PA6, observable in a lower pHRR and prolonged burning
times using cone calorimeter tests. Various combinations of PA6/AlPi/MMT (e.g., [7])
and PA6/AlPi/MPP/MMT (e.g., [59]) have been extensively investigated, particularly
distinguishing phosphorus/MMT combinations to provide improved intumescent char
formation. This effect is generally dedicated to a lower melt viscosity and nano-particle
surface migration, accumulating and stabilizing residue formation on the polymer sur-
face [61]. Glass-fiber-reinforced formulations containing EG and EG/AlPi/MPP have also
been investigated (e.g., [23,25,35]). Results showed the lowest pHRR for PA6/GF formula-
tions solely containing EG (<<100 kW/m2), whereas formulations based on EG/AlPi/MPP
exceeded a pHRR rate of >100 kW/m2. Despite the apparently very low pHRR values, no
UL-94 V0 classification could be achieved [25].

The multi-material formulation (EG/AlPi/MPP/MMT) also showed superior prop-
erties regarding the residue stability. Figure 5 shows images of samples before and after
cone calorimeter testing. The residue stability is visualized with a one kilogram weight,
representing an area load of 35 g/cm2. No penetration of the weight into the residue surface
could be identified.
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Smoke production is another important property in fire critical applications. The
general tendency of a burning material to generate smoke was evaluated via the key figure
total smoke production (TSP) and that measured during cone calorimeter tests.

The TSP measured for all of the tested formulations was in a range between 1.2
and 8 m2 (Figure 6). Formulations containing only AlPi/MPP or MMT compared to
non-modified PA6/GF resulted in a slightly lower TSP between 6.5 and 7, which can be
attributed to an overall reduction in the burning rate. The lowest value was observed
for formulations containing only EG, since the flame retardancy mechanism is solely
physical and provides an overall very low burning rate through voluminous residue
formation. Through the integration of AlPi/MPP and MMT, the decomposition path is
slightly disturbed, which leads to more incomplete combustion than that found solely for
EG integration. As a consequence, the smoke production increases to 4.3 m2. All major
cone calorimeter results are listed in Table 4.
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Figure 6. Total smoke production (TSP) measured via cone calorimeter testing with a heater capacity
of 50 kW/m2.

Table 4. Summary—fire testing results using cone calorimeter; 50 kW/m2.

Sample
Code

PA6
wt.%

GF
wt.%

EG
wt.%

MMT
wt.%

AlPi/MPP (3:2)
wt.%

tign
s

pHRR
kW/m2

THE
MJ/m2

MAHRE
kW/m2

TSP
m2

a 75 25 0 0 0.0 128 ± 4 531 ±
100 109 ± 10 235 ± 29 8.0 ± 0.0

b 72 25 0 3 0.0 112 ± 1 226 ± 8 68 ± 0 118 ± 8 7.0 ± 0.0
c 55 25 20 0 0.0 60 ± 1 134 ± 7 31 ± 5 66 ± 6 1.2 ± 0.2
d 55 25 15 0 3.0/2.0 56 ± 4 155 ± 6 35 ± 5 64 ± 3 4.3 ± 0.2
e 55 25 15 1 2.4/1.6 123 ± 2 102 ± 8 21 ± 4 33 ± 1 3.8 ± 0.2

3.3. Burning Behavior—UL-94 and LOI

UL94 and LOI tests are used to evaluate self-extinguishing and ignitability properties,
as well as those of polymeric materials. Figure 7 represents a selection of testing results
conducted within this study.
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Figure 7. LOI and UL-94 testing results conducted for a sample thickness of 2 mm. (A) Results
for singular and multi-material flame retardant additive integration. (B) Results of different filling
degrees for two EG/AlPi/MPP/MMT formulations.
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In contrast to net PA6, which attains a V2 classification due to significant burn drip-
ping, glass-fiber-reinforced PA6 did not achieve a UL-94 V classification. Burn dripping
could not occur since the presence of glass fibers increased the melt viscosity. This also
affected the LOI value, which reached 22% and was in good agreement with the literature
values [62,63]. PA6/GF formulations containing 20 wt.% EG exhibited slightly better re-
sults in UL-94 (V2 classification) and LOI tests (24%). EG acts exclusively as a physical
barrier, restricting the rate of pyrolysis gas that fuels the flame. EG is generally known to
exhibit weaker performance in flammability tests because the barrier layer formed during
the early burning stages takes some time to achieve sufficient effectiveness in order to stop
the ignition process [25]. By integrating EG/AlPi/MPP as a multi-material system into
PA6/GF formulations, the oxygen index could be improved to reach 28%. However, the
UL-94 testing results did not demonstrate any improvement. This behavior aligns with the
findings of a previously published study [25].

Contrary to the results discussed earlier in the cone calorimeter section, the integration
of MMT nanocomposites into PA6/GF showed a deteriorating effect on the oxygen index,
measured to be reaching 19%. No UL-94 classification could be achieved. This effect has
also been reported in the literature [54,63]. Nanofillers have been investigated in various
material systems and have been found to perform equally or worse in LOI and UL-94, but
they perform substantially better in cone calorimeter tests. The effect is attributed to a
change in melt viscosity, which alters the melt and burn dripping behavior. UL-94 and LOI
fire tests are sensitive to melt dripping, since combustible fuel is physically removed from
the burning area. The higher melt viscosity given through nanofiller integration suppresses
a strong melt flow, negatively affecting UL-94 and LOI fire testing results [54,63]. However,
when integrating MMT in the multi-material formulation PA6/GF/AlPi/MPP/MMT, a
significant improvement in UL-94 and LOI fire testing results can be observed. Figure 7B
shows the UL-94 and LOI fire testing results for two formulations, with filling degrees of
10 wt.% and 20 wt.%. Interestingly, formulations containing a lower MMT loading level
(0.2 wt.%) perform better at a lower filling degree, but do not achieve a sufficient UL-94
V0 classification at a higher filling degree of 20 wt.%. Formulations containing 0.5 wt.%
and 1 wt.%, on the other hand, do not provide a UL-94 classification for a filling degree of
10 wt.% but provide a UL-94 V0 classification when 20 wt.% of the multi-material mixture
is added into the system. All data are summarized in Table 5.

Table 5. Summary—UL-94 and LOI testing results.

PA6
wt.%

GF
wt.%

EG
wt.%

MMT
wt.%

AlPi/MPP (3:2)
wt.%

UL-94
2 mm

t1
s

t2
s Cign

LOI
2 mm

%

75 25 0 0 0.0 HB—full burn to holder yes 22.0 ± 0.2
72 25 0 3 0.0 HB—full burn to holder yes 20.9 ± 0.2
55 25 20 0 0.0 V2 10 ± 2 8 ± 3 yes 36.0 ± 0.1
55 25 15 0 3.0/2.0 V2 6 ± 7 7 ± 3 yes 28.8 ± 0.2
55 25 15 1 2.6/1.4 V0 0 ± 0 0 ± 0 no 32.1 ± 0.2

Cign: cotton ignition.

3.4. Char Residue Analysis

Char residue analysis was conducted using SEM analysis of the residual fractions left
after cone calorimeter testing. Figure 8 shows a selection of images taken from various
formulations. Residual fractions of PA6/GF/MMT can be described as a non-connected
glass fiber network (Figure 8A). MMT could also be visually identified as agglomerated
white powder fractions, yet it cannot be optically presented due to image resolution
boundaries. Additionally, integrating EG into the system provides more voluminous
sponge-like residue characteristics, whereas a combination of crosslinked char residue and
residual polymer fractions acts as glue between the three-dimensional glass fiber network
(Figure 8B). This is further improved via the addition of AlPi/MPP (Figure 8C,D). The
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aluminum phosphate residue, which is a result of AlPi/MPP decomposition, increases the
amount of charring between the glass fibers and expanded graphite particles. This results
in a more char-like structure, which provides superior structural stability, as previously
shown in Figure 5.
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4. Conclusions

This paper has investigated a multi-material flame retardant additive system based
on EG, AlPi, MPP, and MMT in glass-fiber-reinforced PA6. This study was able to show
that the sole integration of EG, while exhibiting excellent flame retardant properties in
cone calorimeter tests, did not achieve a satisfactory UL-94 classification at a filler content
of 20 wt%. By additionally adding AlPi, MPP, and MMT, a synergistic effect could be
achieved, resulting in a stable V0 classification and good cone calorimeter properties. The
synergistic effect was attributed to a combination of functional thermal barrier formation
(EG), improved char formation (AlPi/MPP), and the labyrinth effect (MMT). Consequently,
pyrolysis gas flow rates decreased, leading to lower flammability overall and heat develop-
ment characteristics.
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