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Abstract: Homopolymers of n-butyl acrylate, methyl methacrylate, styrene, and their random copoly-
mers were prepared via interface-initiated polymerization of emulsion gels at 20 ◦C. The polymeriza-
tion was conducted in a free radical polymerization manner without inert gas protection. Compared
with the polymers synthesized at 60 ◦C, the polymerization of emulsion gels at 20 ◦C produced
homo- and copolymers with a higher molecular mass and a narrower molecular mass distribution.
The polydispersity indices for the polymers synthesized at 20 ◦C were found to be between 1.12
and 1.37. The glass transition temperatures for the as-synthesized butyl acrylate copolymers agree
well with the prediction from the Gordon–Taylor equation. Interface-initiated room-temperature
polymerization is a robust, energy-saving polymerization technique for synthesizing polymers with
a narrow molecular mass distribution.

Keywords: narrow molecular mass distribution; radical polymerization; emulsions; room-temperature
polymerization

1. Introduction

Polymerization in emulsion systems is an important technique used to produce poly-
mers, latexes, composites, and porous materials [1–4]. At least 20 million tons of polymer
materials are produced via emulsion techniques worldwide each year [2]. Usually, emulsion
polymerization is conducted at elevated temperatures (60 ◦C or above) in order for suffi-
cient numbers of radicals to form through thermal decomposition of initiators. However,
high-temperature polymerization destabilizes colloidal structures and consumes tremen-
dous amounts of energy [1,5,6]. With the Paris Agreement, conducting polymerization at
room temperature became a key criterion for green polymer industries [6,7]. Additionally,
conducting polymerization at high temperatures is not suitable for a system consisting of
temperature-sensitive molecules, such as proteins [8,9].

Room-temperature polymerization can be achieved through several initiation meth-
ods. For example, 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), a low-temperature
initiator, decomposes at 30 ◦C with a half-life of 10 h [10]. Low-temperature initiators
require strict regulations and safety measurements as they may explode accidentally under
ambient conditions. Redox initiators can initiate polymerization at room temperature
efficiently, but metal complexes are usually required [11–14]. Photo and γ-radiation are
also used for initiating polymerization at room temperature [9,15,16], but they are limited
by production scale and may not work for some systems [17]. The interfaces in emulsions
were found to lower the activation energy for initiator decomposition, consequently ini-
tiating polymerization at room temperature [1,18]. Interface initiation does not require
hazardous compounds or additional devices to conduct room-temperature polymerization
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in an emulsion system. Therefore, interface initiation is considered an efficient eco-friendly
technique for room-temperature polymerizations.

When producing a high-performance polymer, a narrow molecular mass distribution
is desired [19]. Currently, narrow molecular mass distribution is mainly achieved through
controlled free radical polymerizations or living radical polymerizations [20–22]. Compared
with free radical polymerization, the experimental requirement and costs for conducting
living radical polymerization are remarkably high [21]. A robust, energy-efficient, and
cost-effective technique for producing polymers with a narrow molecular mass distribution
is important for green polymer industries.

Herein, we report using emulsion gels as polymerization media to produce vinyl
homopolymers and copolymers with a narrow molecular mass distribution at room tem-
perature (20 ◦C). The room-temperature polymerization was achieved through the thermal
decomposition of 2,2′-azobisisobutyronitrile (AIBN) at emulsion interfaces [1]. For com-
parison, the polymers synthesized in emulsion gels at 60 ◦C were also characterized as
demonstrated in Figure 1. This work not only demonstrates the effectiveness of conducting
room-temperature polymerization in emulsion systems but also provides a cost-effective
technique for producing polymers with a narrow molecular mass distribution.
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Figure 1. The structures of styrene, n-butyl acrylate (BA), methyl methacrylate (MMA), and their
corresponding homopolymers.

2. Results and Discussion

Increasing emulsion viscosity stabilizes oil–water interfaces, which enhances interface
initiation at room temperature [1,23]. Emulsion gels were obtained by adding fumed silica
particles into emulsions. Chain-like fumed silica particles bridged monomer-dispersed
phases in emulsions to form a three-dimensional network, leading to gelation in emulsions
or emulsion gels [5,24]. All the emulsions used in this study were in their gel state, as seen
in Figure 2. Different monomers did not affect the gel stability with the compositions used
in this study. The emulsion gels remained stable without phase separation for weeks in
ambient conditions.

The polymerizations of emulsion gels at 20 ◦C and 60 ◦C were conducted as free
radical polymerization without inert gas protection. Initiator AIBN decomposed efficiently
at emulsion interfaces at 20 ◦C, consequently initiating polymerization [18,23]. At 60 ◦C,
thermal initiation of AIBN in the bulk phase occurred [1]. A monomer-to-polymer conver-
sion of 70% was reached within 6 h for most of the polymerizations conducted at 60 ◦C
and 5–7 days for those conducted at 20 ◦C. For n-butyl acrylate (BA), the conversion at
60 ◦C only reached 50% within 6 h due to the relatively low reactivity of BA [25,26]. Slower
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polymerizations at 20 ◦C are likely because only the AIBN molecules at the interfaces are
decomposed [1,18,27]. Although AIBN keeps migrating to the interfaces [18], the overall
initiation rate at 20 ◦C is smaller compared with that at 60 ◦C [23]. A reduced initiation
efficiency (<0.4) at 20 ◦C also contributes to the smaller polymerization rate [28]. The
resulting monoliths are white and uniform in their appearance (Figure 2). The nuclear
magnetic resonance spectra for the extracted polymers and their tacticity analysis can be
found in the Supplementary Materials.
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Figure 2. Appearance of the emulsion gel and the as-synthesized polymer composite monolith.

The differences in molecular mass were observed for the extracted polymers synthe-
sized at different temperatures. As seen in Table 1, the weight average molecular masses
for poly(butyl acrylate) (PBA), polystyrene (PS), poly(methyl methacrylate) (PMMA), and
butyl acrylate copolymers synthesized at 20 ◦C are significantly greater than those of their
counterparts synthesized at 60 ◦C. For example, the PBA synthesized at 60 ◦C is glue-
like due to its very small molecular mass of 31 kg/mol. The PBA synthesized at 20 ◦C
has a much greater molecular mass (757 kg/mol) and appears to be a rubbery material
with a well-defined shape. The molecular masses and the PDI values for the homo- and
copolymers synthesized at 60 ◦C are in line with those synthesized using conventional
free radical polymerizations [29]. This suggests that emulsion gel itself has little effect on
polymerizations conducted at high temperatures.

Table 1. The molecular mass and polydispersity index (PDI) of the extracted polymers from emul-
sion gels.

Polymer
20 ◦C 60 ◦C

Mw (kg/mol) PDI Mw (kg/mol) PDI

PBA 757 1.26 31 2.46
PS 1661 1.37 172 2.04

PMMA 674 1.12 108 3.86
Butyl acrylate-co-styrene 50/50 1807 1.17 96 3.06
Butyl acrylate-co-MMA 50/50 888 1.25 257 1.96

Polymerization in an emulsion system is primarily carried out in micelles. As the
combination is the probable termination mechanism [30], the number of propagating
chains and their probability of collision within micelles are reduced. Compared with other
polymerization techniques, polymers with a higher molecular mass can be produced using
emulsion polymerization [2,31]. Based on the decomposition rate constants for the AIBN
in emulsion gels (kd ~ 10−8 and 10−6 s−1 at 20 ◦C and 60 ◦C, respectively) [23,32–34],
the concentration of radicals generated at 20 ◦C is much smaller than that of radicals
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produced at 60 ◦C. With a reduced radical concentration, the number of propagating
chains is considerably smaller in emulsion gels at 20 ◦C. Additionally, a highly viscous
environment in emulsion gels also decreases polymer chain mobilities as the termination is
diffusion-controlled [35,36]. The propagating chains in emulsion gels have a much smaller
probability of colliding with each other or terminating at 20 ◦C. Polymer chains grow to
a considerable length until the polymer particles become too large to stabilize [37]. As a
result, polymers with a high molecular mass were produced in emulsion gels at 20 ◦C.

The polydispersity indices (PDIs) for the polymers synthesized at 20 ◦C were found
to be between 1.12 and 1.37, which are in line with those synthesized from living radical
polymerizations [38,39]. The GPC traces of the polymers synthesized in emulsion gels are
shown in Figure 3 and the Supporting Information. The polymerization in emulsion gels did
not proceed in a living radical manner. No known living radical agent was included in the
emulsion gels. Only a trace amount of calcium was detected in the fumed silica used in this
study, which rules out the possibility that the transition metal impurities alter the kinetics of
the polymerization in emulsion gels. The results from inductively coupled plasma atomic
emission spectroscopy (ICP) can be found in the Supporting Information. One possible
reason for the obtained narrow molecular mass distribution may be the less pronounced
side reactions at 20 ◦C. For example, β-scission and intramolecular transfer can alter the
structure and the chain length of the resulting polymers at high temperatures [30,40]. These
side effects are greatly reduced at 20 ◦C because of their high activation energies [30].
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Figure 3. The light-scattering detector intensity (solid line) and the refractive index detector intensity
(dashed line) obtained from gel permeation chromatography as a function of the elution time for the
extracted butyl acrylate-co-styrene 50/50 polymers synthesized at 20 ◦C and 60 ◦C.

Low polymerization temperature should not be considered as the only reason con-
tributing to narrow distribution. Room-temperature interface-initiated polymerization in
emulsions without fumed silica produced the PS with a PDI value around 3~4 [5]. Sim-
ilar results were also reported for room-temperature emulsion polymerization initiated
by photo- or redox initiators, where PDI values of 2~12 were observed for PS and butyl
acrylate copolymers [31,41,42]. Similar to the reason leading to high molecular masses, the
relatively small radical concentrations from the interface initiation and the high viscosity in
the emulsion gels greatly reduce the probability of chain termination.

The stability of silica gels increases as the temperature decreases [43]. The propagating
chains can grow without early termination until the polymer particles reach their critical
size for super swelling [37]. Once the critical size has been reached, the polymer particles
are no longer stable in emulsion gels and tend to precipitate. As the number of the
propagating chains is considerably small in the polymerization of emulsion gels at 20 ◦C,
most of the polymer chains reach their maximum lengths and consequently produce a
narrower molecular mass distribution. In sum, the narrow molecular mass distribution of
the polymers synthesized in emulsion gels at 20 ◦C is the result of synergistic effects from a
low temperature, small radical concentration, and high viscosity.
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The role of fumed silica particles in the polymerization of emulsion gels is somewhat
complicated. On the one hand, fumed silica induces gelation and stabilizes the oil–water
interfaces in emulsion gels [5,44,45]. It facilitates AIBN decomposition and reduces the
probability of propagating chain collision. On the other hand, the silanol groups on
fumed silica surfaces react with radicals [32]. In the presence of silica, the PDI values
generally increase for polymers synthesized using bulk polymerization, especially those
synthesized via living radical polymerization [46–48]. In contrast, the cationic surfactants,
e.g., cetyltrimethylammonium bromide (CTAB), can adsorb onto silica surfaces in emulsion
gels and block the negatively charged silanol groups [32]. As a result, the side reactions
between silanol groups and the propagating chains, which broaden the molecular mass
distribution, are minimized in emulsion gels [32].

The glass transition temperatures (Tg) for the extracted polymers were determined
from differential scanning calorimetry (DSC) thermograms. The glass transition tempera-
tures for the polymers synthesized at 20 ◦C and 60 ◦C are close to each other (Figure 4b).
This suggests that the compositions of the copolymers are less sensitive to polymerization
temperature. The reactivity ratios of a monomer are dependent on temperature, i.e., the
lower the temperature, the smaller the reactivity ratio [25]. For the monomers used in
this study, their reactivity decreased with decreasing temperature at a similar scale [25].
Although the overall polymerization rate decreased, the ratios at which different monomers
reacted with a propagating chain remained similar at 20 ◦C and 60 ◦C. The compositions
of the as-synthesized copolymer and consequently the glass transition temperatures re-
mained similar.
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The thermograms for BA-co-styrene copolymer and the respective homopolymers
(PBA and PS) synthesized at 20 ◦C are plotted in Figure 4a. PBA and PS showed a glass
transition at −42 ◦C and 89 ◦C, respectively. For BA-co-styrene copolymers, the glass
transition temperatures gradually increased with increased styrene content in the polymer-
ization. The glass transition temperatures of the copolymers with different compositions
are compared with the theoretical results predicted using Gordon–Taylor equation [49], or

Tg =
Tg,BAwBA + KTg,2w2

wBA + Kw2
(1)

where Tg,BA and Tg,2 are the glass transition temperatures for the homopolymer of BA and
the second monomer (styrene or MMA), respectively. wBA and w2 are the weight fractions
for BA and the second monomer in their copolymers, respectively. K is the Gordon–Taylor
coefficient, which is related to the volume expansion during glass transition. The value
of K is 0.86 for BA-co-styrene copolymers and 0.82 for BA-co-MMA copolymers [50]. The
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glass transition temperatures of the copolymers generally fit well with the Gordon–Taylor
model, as seen in Figure 4b. This suggests that the copolymerization in emulsion gels was
conducted similarly to the conventional copolymerizations.

3. Conclusions

We have shown the effectiveness of using interface-initiated polymerization in emul-
sion gels to produce homo- and copolymers at 20 ◦C. A low temperature, small radical
concentration, and high-viscosity environment lead to the formation of polymers with a
high molecular mass and narrow molecular mass distribution. The composition of the
resulting copolymers is less sensitive to the polymerization temperature. Polymerization in
emulsion gels provides not only an energy-efficient technique but also a robust method of
producing polymers with a narrow molecular mass distribution.

4. Experimental Section

Styrene and methyl methacrylate were purchased from Aldrich, Darmstadt, Ger-
many, and n-butyl acrylate was obtained from Greagent, Shanghai, China. All monomers
were purified by passing them through a base-activated alumina column before use. 2,2′-
azobisisobutyronitrile (Greagent, Shanghai, China) was purified via recrystallization from
methanol and dried in a vacuum oven for 12 h to eliminate solvent residue. Cetyltrimethy-
lammonium bromide (Aldrich, Delhi, India) and fumed silica (Cab-O-Sil M5, Cabot, Inner
Mongolia, China) were used as received.

Emulsion gels were prepared using the following procedure: 2.0 mL of monomer,
0.105 g of fumed silica, and 0.04 g of AIBN were mixed in a glass vial first, and then 0.5 mL
of 0.5 M CTAB aqueous solution was added. The mixtures were mixed using a vortex
mixer for 1 min to form stable emulsion gels. The polymerization of the emulsion gels
was conducted in an ambient, dark environment at 20 ◦C or 60 ◦C. After the completion
of the polymerization, the polymerized samples were dried under ambient conditions
and then under vacuum to remove water and unreacted monomers. The conversions
were determined by comparing the sample masses before and after the polymerization by
subtracting the masses of fumed silica and CTAB.

For polymer extraction, the as-synthesized monoliths were dissolved in toluene.
A methanol solution (methanol/deionized water: 85/15 by volume) was used to pre-
cipitate polymers from toluene. The extracted polymers were washed with methanol and
dried under vacuum before characterization.

The molecular mass and the polydispersity index were measured in tetrahydrofuran
using gel permeation chromatography (Waters E2695, Milford, MA, USA) with a Heleos
light-scattering detector and a refractive index detector (Optilab rEX, Phoenix, AZ, USA).
Differential scanning calorimetry measurements were taken using a DSC 25 (TA Instru-
ments, New Castle, DE, USA) with a scan rate of 10 ◦C/min. The thermograms from the
second heating procedure were plotted. Inductively coupled plasma–atomic emission
spectroscopy (ICP) was measured using a Avio 200 (PerkinElmer, Waltham, MA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15204081/s1, S1: Nuclear magnetic resonance (NMR) spectra for the
polymers synthesized at 20 ◦C; S2: GPC traces for the polymers synthesized at 20 ◦C; S3: Composition
of fumed silica. Reference [51] is cited in the Supplementary Materials.
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