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Abstract: In this research, a self-reinforced composite material was manufactured using a single
polyethylene material, and this self-reinforced composite material has excellent recyclability and is
environmentally friendly compared to composite materials composed of other types of material, such
as glass fiber reinforced composites (GFRP) and carbon fiber reinforced composites (CFRP). In this
research, the manufactured self-reinforced composite material consists of an outer layer and an inner
layer. To manufacture the outer layer, low density polyethylene (LDPE) films were laminated on high
density polyethylene (HDPE) fabrics and knitted fabrics, and composite materials were prepared
at various temperatures using hot stamping. A 3D printing process was utilized to manufacture
the inner layer. After designing a structure with a cross-sectional shape of a triangle, circle, or
hexagon, the inner layer structure was manufactured by 3D printing high-density polyethylene
material. As an adhesive film for bonding the outer layer and the inner layer, a polyethylene-based
self-reinforced composite material was prepared using a low-density polyethylene material. Input
data for simulation of self-reinforced composite materials were obtained through tensile property
analysis using a universal testing machine (UTM, Shimadzu, Kyoto, Japan), and the physical property
values derived as output data and actual experimental values were obtained. As a result of the
comparison, the error rate between simulation data and experimental data was 5.4% when the
shape of the inner layer of self-reinforced composite material was a hexagon, 3.6% when it was a
circle, and 7.8% when a triangular shape showed the highest value. Simulation in a virtual space
can reduce the time and cost required for actual research and can be important data for producing
high-quality products.

Keywords: polyethylene-based self-reinforcing composites; hot stamping; recyclability; interfacial
bonding force; compression simulation

1. Introduction

Self-reinforced composite (SRC) is a composite material manufactured by melting and
recrystallizing the matrix at an appropriate temperature and pressure with the same poly-
meric reinforcement and matrix [1–6]. SRC is a composite material manufactured using the
same polymer, and has excellent recyclability compared to composite materials composed
of other types. It has the advantage of excellent compatibility [7–11]. in the research of
Chandran and Padmanabhan, the interface of the self-reinforced composite material was
observed, and it was confirmed that the interfacial bonding force was higher than that of
the existing composite material, which is a heterogeneous material [12]. Accordingly, it is
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a product that can replace existing glass fiber reinforced plastics (GFRP) and carbon fiber
reinforced plastics (CFRP) in some industrial fields [13–18].

As a study for manufacturing self-reinforced composite materials, Loos et al. devel-
oped a new technology to produce SRC using bi-component tape material [19]. In this
research, a copolymer with a lower melting point than bi-component tape material was
used as a matrix, and methods for manufacturing SRC included a powder impregnation
method, solvent impregnation method, and film lamination method. The solution impreg-
nation method has good impregnability because the resin is dissolved in a solvent, but it
has the fatal disadvantage of poor productivity because the solvent volatilization time is
long [20,21]. On the other hand, the film lamination method is a method that is widely used
due to a simple manufacturing process. Since it is manufactured with a relatively simple
process, it has excellent productivity and has the advantage that the physical properties of
the manufactured product are uniform [22–26]. Santos has conducted research on several
types of self-reinforced composite materials manufactured using a single polymer such
as polypropylene, polyester, and polyamide [27]. The tensile strength, flexural strength,
and impact strength of self-reinforced composites using a single material were analyzed.
However, no research has been conducted on self-reinforced composite materials using
polyethylene in any research.

Therefore, in this study, a polyethylene material-based self-reinforced composite
material was manufactured using the film lamination method, and a physical property
database was established according to the manufacturing process conditions. Through
this, we tried to secure the reliability of the simulation value. The material property
database was used as input data for simulation, and output data, which are the result of
the simulation, were also derived. The self-reinforced composite material manufactured
in this study consists of an outer layer and an inner layer. To manufacture the outer
layer, low density polyethylene (LDPE) films were laminated on high density polyethylene
(HDPE) fabrics and knitted fabrics, and composite materials were prepared at various
temperatures using hot stamping. A 3D printing process was utilized to manufacture
the inner layer [28–30]. First, after designing a structure with a cross-sectional shape of a
triangle, circle, or hexagon, the inner layer structure was manufactured by 3D printing high-
density polyethylene material. An inner layer with a thickness of 20 mm was manufactured
using HDPE plastic for 3D printing. As an adhesive film for bonding the outer layer and
the inner layer, a polyethylene-based self-reinforced composite material was prepared
using a low-density polyethylene material. Input data for the simulation of self-reinforced
composite materials were obtained through tensile property analysis using a Universal
Testing Machine (UTM, Shimadzu, Kyoto Japan), and the physical property values derived
as output data and actual experimental values were also obtained by proceeding with
comparison, and we tried to confirm the reliability of the simulation values, which are
the output data. We tried to secure the reliability of simulation values by comparing the
similarity between experimental and simulated values, and reliable simulation data are
innovative because they can reduce the time and cost required for research. The software
used for 3D modeling was ABAQUS CAE (Simulia, version 6.6, New York, NY, USA).
The unit cell was defined using two-dimensional beam elements, and the effective elastic
modulus and Poisson’s ratio in each direction were derived. The simulation values of
self-reinforced composite materials have meaningful results. By predicting the physical
properties of self-reinforced composite materials through simulation, the cost and time
required for product development can be reduced. This is because physical properties
can be known without actually producing a sample. Composite materials used in the
mobility industry or aerospace industry take a lot of time and money to manufacture. The
technology of this study can be considered groundbreaking because the performance of
these composite materials can be known in advance through simulation.
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2. Materials and Methods
2.1. Materials and Manufacture of Composite Materials

The structure of the self-reinforced composite material to be manufactured is shown in
Figure 1, and the self-reinforced composite material is composed of an outer layer and an
inner layer. The outer layer of the self-reinforced composite material was prepared using
HDPE fabric (woven, knitted) and LDPE film. The structures of HDPE fabrics and knitted
fabrics are shown in Table 1. HDPE fabric (Kolon industry, Ulsan-si, Republic of Korea)
used a total of three types of fabrics including plain weave, twill weave, and satin weave.
Two types of HDPE knitted fabrics (Kolon industry, Ulsan-si, Republic of Korea) were used:
circular knitting and warp knitting. The types and basic information of HDPE fabrics are
shown in Table 1.
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Table 1. HDPE fabric information for manufacturing outer layer of self-reinforced composites.

Sample Denier (−) Weight (g/m2) Thickness (mm) Structure

#1 Plain 200 54.8 0.54
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The LDPE film (SK chemical, Seongnam-si, Republic of Korea) used a material with
a thickness of 0.03 mm and a melt index (M.I) of 3.1 g/10 min. The thickness of the
HDPE fabric and knitted fabric was the same at 0.3 mm. HDPE fabric was set to 5 ply
and LDPE film was set to 15 ply to produce an outer layer of self-reinforcing composite
material composed of HDPE fabric and LDPE film. An outer layer of material was prepared.
The film content of the outer layer of the self-reinforced composite material was derived
using Equation (1)

R/C =
R

F + R
× 100 (1)

In which,

R/C: LDPE film (resin) content, %;
R: Resin weight, kgf;
F: Fabric weight, kgf.

The melting point of the HDPE material is 143.6 ◦C and the melting point of LDPE ma-
terial is 117.4 ◦C. Accordingly, the temperature and pressure conditions for manufacturing
the outer layer of the self-reinforced composite material are shown in Figure 2.
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Figure 2. Temperature and pressure conditions for manufacturing outer layer of self-reinforced
composites.

In the case of the inner layer of the self-reinforced composite material, an inner layer
with a thickness of 20 mm was prepared using HDPE plastic (SK chemical, Seongnam-
si, Republic of Korea) for 3D printing, and the cross-sectional shape was set to triangle,
circle, and hexagon. The designed shape is shown in Table 2, and 2-ply LDPE films were
laminated on the upper and lower sides of the inner layer of the self-reinforced composite
material, respectively, to combine the inner and outer layers. Since the HDPE material
should not melt, the molding conditions for bonding the outer and inner layers of the
self-reinforced composite material were carried out in the same way as in Figure 2.
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Table 2. Type of self-reinforced composite inner layer.

Sample Mimetic Diagram

Inner layer

Hexagon
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2.2. Thermal Characterization

The thermal characteristics of the outer layer of the manufactured self-reinforced
composite material were analyzed according to the manufacturing conditions to analyze
the correlation between the constituent materials and structures constituting the outer
layer and the thermal characteristics. To analyze the thermal characteristics, the thermal
conductivity was derived according to the manufacturing conditions of the outer layer
of the self-reinforced composite material, and the thermal conductivity was calculated
according to Equation (2).

Thermal Condctivity =
W×D
A× ∆T

(2)

In which,

W: Heat flow, J/s;
D: Thickness of specimen, m;
A: Heating plate area, m2;
∆T: Temperature difference between the specimen stand and the hot plate, K.

Self-reinforced composite materials can be applied to various industrial fields depend-
ing on the characteristics of the material used. Products with high thermal conductivity
can be used for the purpose of releasing heat, and products with low thermal conductivity
can be used for insulation purposes.

2.3. Mechanical Characterization

The evaluation of mechanical properties such as tensile strength, flexural strength, and
shear strength was conducted only for the outer layer of the manufactured self-reinforced
composite material, and simulation was conducted based on the established data. In the
case of the tensile strength of the outer layer of the self-reinforced composite material, the
test was conducted with a universal testing machine (UTM, Shimadzu, Kyoto, Japan) in
accordance with ASTM D3039 [31]. The size of the specimen was 175 × 25 mm2. Tensile
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strength and tensile modulus were measured at a tensile speed of 2 mm/min, five specimens
were measured, and the average value was obtained. In the case of flexural strength, it
was conducted in accordance with ASTM D790 [32], the thickness of the specimen and the
length of the support span were set at a ratio of 16:1, and the flexural test was conducted. In
the case of shear strength, after preparing a specimen in the form of a v-notch in accordance
with ASTM D5379 [33], the test was conducted with a universal tensile tester. The size
of the specimen was 80 × 10 mm2, and the shear strength was measured at the speed
of the experiment at 2 mm/min. Five specimens were measured and the average value
was obtained. Young’s modulus and Poisson’s ratio value for the HDPE material used to
manufacture the inner layer of the self-reinforced composite material were provided by the
material supplier (SK Chemicals, Seongnam-si, Republic of Korea).

The mechanical property evaluation data of the outer layer of the self-reinforced
composite material and the material property data of the inner layer were used as input
data for the simulation. The compression test was conducted with a universal testing
machine by setting the compression speed to 2 mm/min.

2.4. 3D Modeling and Boundary/Load Condition

Based on the tensile property evaluation data of the outer layer of the self-reinforced
composite material and the material data used to manufacture the inner layer of the self-
reinforced composite material, the composite material was 3D modeled in a virtual space,
and the external compressive load of the self-reinforced composite material in which the
inner and outer layers were combined. After setting the boundary conditions, we tried to
conduct a physical property prediction simulation according to the external load condition
and the inner layer structure (hexagon, circle, triangle) of the self-reinforced composite
material. For the input data of the outer layer of self-reinforced composite material, the
resultant value of specimen #3 was used, and a simulation was conducted according to the
structure of the inner layer of the self-reinforced composite material.

The software used for 3D modeling was ABAQUS CAE (Simulia, version 6.6, New
York, NY, USA). A unit cell was defined using a two-dimensional order element, and the
effective elastic modulus in each direction and the O′ distribution were obtained. The size or
shape of the element was not significantly affected and the unusable isometric site was used.
The element type was assumed to be C3D8R (An 8-node linear brick, reduce integration,
hourglass control). The external consumption condition was set at a compression speed of 2
mm/min in the vertical direction on top of the self-reinforced composite material combined
with the inner and outer layers. The boundary conditions were simulated by completely
fixing the side and bottom surfaces of the self-defense reinforced composite material.

3. Results and Discussion
3.1. Thermal Characterization Results

Table 3 shows the thermal conductivity analysis results, which are the thermal charac-
teristics of the outer layer of the manufactured self-reinforced composite material according
to the manufacturing conditions. HDPE thermal conductivity values vary depending on
factors such as the thickness and density of the fabric, and since the thermal conductivity
of the air layer is 0.024 W/m·k, the thermal conductivity value varies depending on the
content of the air layer [34–36]. The HDPE woven fabrics manufactured in this study have
different structures such as plain weave, twill weave, satin weave, warp weave, and circular
weave. In the case of the outer layer of the self-reinforced composite material made of
HDPE fabric, the value increased by about 25.2% or more compared to the average value
of the outer layer of the self-reinforced composite material to which the HDPE knitted
fabric was applied. This is considered to be because the outer layer of the self-reinforced
composite made of HDPE knitted fabric has a wider gap between materials and has a
relatively larger number of air layers compared to the outer layer of the self-reinforced
composite made of HDPE fabric.
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Table 3. Result of analyzing the thermal properties of the outer layer of self-reinforced composites.

Sample Thermal Conductivity (W/m·k) Specimen

#1 Plain 0.331
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On the other hand, the error rate between HDPE fabrics (plain, twill, satin) showed an
approximate value within ±5%, and the thermal conductivity value of the outer layer of
the self-reinforced composite made of HDPE satin weave was 7.1% higher than that of the
self-reinforced composite made of HDPE plain weave, which showed a higher value. In
the case of the outer layer of the self-reinforced composite material made of satin weave, it
is judged that the thermal conductivity is high because the gap between materials is tighter
than that of plain weave, and the air layer content is relatively small due to the high density
of the woven fabric [37–39]. Heat transfer by convection can be calculated according to
Formula (3), and the surface area where convection heat transfer occurs is relatively larger
in the HDPE fabric, and among the fabrics, the satin weave has the largest surface area, so
it is judged that the thermal conductivity is high.

Qconv = hAs(Ts − Too)[W] (3)

In which,

h: Convective heat transfer coefficient, W/m2·K;
As: Surface area where convective heat transfer occurs, m2;
Ts: Solid surface temperature, K;
Too: The temperature of a fluid that is not affected by the temperature of a solid, K.

3.2. Mechanical Characterization Result

The film content calculated according to Equation (1) is shown in Table 4. Figure 3
shows the measurement results of tensile strength, tensile modulus, and Poisson’s ratio of
the HDPE/LDPE self-reinforced composites. As a result of analyzing the film content for
each manufacturing condition of the outer layer of the self-reinforced composite material,
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the average value of the HDPE knitted fabric was improved by more than 11.5% compared
to the average value of the fabric. This is because, when preparing a specimen for mechani-
cal property analysis, the specimen must be manufactured with a constant thickness, so the
fabric having a relatively high reinforcing material content per unit area was measured to
have a low reinforcing material content.

Table 4. Result of analysis of reinforcing material content for each manufacturing condition of the
outer layer of the self-reinforced composite material.

Sample #1 #2 #3 #4 #5

Result 39.67 (±0.03) 39.22 (±0.04) 38.73 (±0.02) 42.61 (±0.08) 42.82 (±0.09)
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Figure 3. Tensile characteristic analysis results for each manufacturing condition of the outer layer of
self-reinforced composites.

In the case of the result of analyzing the tensile properties of the outer layer of the self-
reinforced composite material, the #3 specimen showed 196 MPa, a value improved by more
than 28.9% in tensile strength compared to the #5 specimen. In the case of polyethylene-
based self-reinforcing composites, since they are manufactured by applying the same
polyethylene material, the thermal expansion coefficient between the base material and the
reinforcing material is basically the same, so the interfacial bonding strength is excellent,
but the tensile properties are also different because the structure of the reinforcing material
is different. It is believed that the tensile strength and tensile modulus of elasticity are
improved because the HDPE fabric has a denser structure compared to the HDPE knitted
fabric and has a higher ratio of reinforcing materials oriented in the tensile direction. On
the other hand, the poisson’s ratio value of the #3 specimen showed a value that improved
by more than 3.7% compared to the #1 specimen, which is because the #3 specimen has
relatively more intersections of warp and weft yarns in terms of fabric structure, so the
frictional force is improved compared to the #1 specimen, and the tensile strength and
tensile elasticity are judged to be such that that the coefficient increased slightly.

Figure 4 is the result of analyzing the flexural strength of the outer layer of the self-
reinforced composite material. Similar to the tensile strength analysis result, the #3 sample
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woven with satin weave showed the highest value at 182.2 MPa, but the difference between
the maximum and minimum values of the measured values was 8.2%, which was different
from the tensile strength analysis results. When a bending load is applied in the vertical
direction, the internal resistance of the #3 specimen, which has a relatively dense structure,
is high, but the content of the reinforcing material is relatively low compared to the knitted
fabric. Judging from these results, it is judged that the flexural strength of the outer
layer of the self-reinforced composite material is influenced by the content of the base
material as well as the structure of the reinforcing material. Flexural strength of the outer
layer of the self-reinforced composite material shows significant results. Specimen #3
showed the highest measured flexural strength. This means that specimen #3 has a dense
structure. Materials with high flexural strength are likely to be used in industrial products
or structures that must withstand external pressure or load. However, because the absolute
value is not high, there is a need to continuously conduct research and development to
improve flexural strength.
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composite materials according to manufacturing conditions.

Figure 5 is the shear strength analysis result of the outer layer of the self-reinforced
composite material. The shear strength tends to be higher as the interfacial bonding force
of the specimen is better, and the shear strength results showed an approximate value
within±5% for all specimens #1 to #5. Self-reinforced composites were manufactured using
composite materials of the same series. Because the self-reinforced composite material
was manufactured using the same series of composite materials, the thermal expansion
coefficient is almost the same. Therefore, it is judged that the shear strength values were
almost similar.

In the case of carbon composite materials manufactured using carbon fiber and ther-
mosetting epoxy resin, the shear strength value decreases because the thermal expansion
coefficients of carbon fiber and thermosetting epoxy resin are different [40,41]. On the other
hand, because self-reinforced composites have excellent shear strength values, they can be
used in various industrial fields by replacing carbon composite materials. If we continue to
research self-reinforced composite materials, we can produce better results than the current
self-reinforced composite materials.
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Figure 5. Results of analysis of shear characteristics for outer layer of self-reinforced composite
material by manufacturing conditions.

3.3. Simulation Results

Table 5 shows the input data generation results of the outer and inner layers of the
self-reinforced composite material for the prediction simulation of physical properties. As
the input data, the result value of the #3 specimen derived from the analysis of tensile
properties and the data value of the material used for manufacturing the inner layer of the
self-reinforced composite material were used.

Table 5. Result of deriving input data for prediction simulation of self-reinforced composite material
properties.

Materials
Input Data

Young’s Modulus (GPa) Poisson’s Ratio

Self-Reinforced Composite Outer Layer 5.21 (±0.07) 0.25 (±0.02)

Self-Reinforced Composite inner Layer 5.14 (±0.05) 0.26 (±0.01)

Simulation results for the compressive load values according to the inner layer struc-
ture (triangle, circle, hexagon) of the self-reinforced composite material were derived, and
the results of generating the 3D model of the inner layer structure of the self-reinforced
composite material are shown in Table 6.

The structural analysis results according to the inner layer structure of the self-
reinforced composite material in which the outer and inner layers are combined are shown
in Figure 6, and the comparison results between the actual compressive load test value and
the simulation result value according to the inner layer structure are shown in Table 7.
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Table 6. 3D modeling result of inner layer of self-reinforced composite material.

Specimen Triangle Circle Hexagon

3D modeling of Outer
Layer
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Table 7. Comparison of actual experimental values and simulation results according to self-reinforced
composite materials.

-
Experment Simulation

Error Rate (%)
Max. Compressive Load (N) (at 2 mm) Max. Compressive Load (N) (at 2 mm)

Hexagon 4027.5 4244.9 5.4

Circle 10,857.7 11,248.5 3.6

Triangle 8765.2 9448.8 7.8

graph
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The error rate between the simulation data and simulation data was 5.4% when the
shape of the inner layer of the self-reinforced composite material was a hexagon, 3.6% when
it was a circle, and 7.8% when it was a triangle, showing the highest value. The reason for
the error between the actual compression test value and the simulation data due to the
damage caused by thermal deformation during the molding process for manufacturing
the outer layer of self-reinforced composite material and the occurrence of unlaminated
parts during the 3D printing process for manufacturing the inner layer of self-reinforced
composite material are judged [42–46].

4. Conclusions

In this study, after manufacturing a polyethylene material-based self-reinforced com-
posite material, a physical property database was established according to manufacturing
process conditions, and through a physical property database-based property prediction
simulation, the reliability of the simulation value was secured by comparing the experi-
mental value with the simulated value. The conclusion was as follows.

The self-reinforced composite material consists of an outer layer and an inner layer,
and the outer layer of the self-reinforced composite material is composed of a woven fabric
and a film layer. As a result of analyzing the thermal characteristics, the value increased
by about 25.2% or more than the average value of the outer layer of the self-reinforced
composite material to which the HDPE fabric was applied.

As a result of analyzing the mechanical properties of the outer layer of the self-
reinforced composite material, the tensile value and the flexural strength value of the
specimen made of HDPE fabric showed a maximum improvement of 28.9%. In the case
of shear strength, an approximate value within ±5% was shown. Because they are manu-
factured by applying the same polyethylene material, the thermal expansion coefficients
between the base material and the reinforcing material are basically the same, so the in-
terfacial bonding strength is excellent, but it is judged that the tensile properties are also
different because the structure of the reinforcing material is different.

As a result of analyzing the compressive strength of the specimen in which the outer
and inner layers of the self-reinforced composite material were combined, the error rate
between simulation data and simulation data was 5.4% when the shape of the inner layer
of the self-reinforced composite material was a hexagon and 3.6% when the shape was a
circle. The triangle showed the highest value at 7.8%. The reason for the error between the
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compression test value and the simulation data seems to be due to the damage mechanism
due to thermal deformation generated during the molding process.

In this research, the thermal and mechanical properties of the self-reinforced composite
material based on polyethylene were analyzed, and a correlation analysis between the
experimental and simulated values was conducted through the simulation based on the
physical property database. In the future, it is expected that various guidelines will be
presented by changing the material and manufacturing process conditions according to the
application field.
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