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Abstract: Poly (lactic acid) (PLA) is a promising green substitute for conventional petroleum-based
plastics in a variety of applications. However, the wide application of PLA is still limited by its
disadvantages, such as slow crystallization rate, inadequate gas barrier, thermal degradation, etc. In
this study, lignin (1, 3, 5 PHR) was incorporated into PLA to improve the thermal, mechanical, and
barrier properties of PLA. Two low-viscosity epoxy resins, ethylene glycol diglycidyl ether (EGDE)
and poly (ethylene glycol) diglycidyl ether (PEGDE), were used as compatibilizers to enhance the
performance of the composites. The addition of lignin improved the onset degradation temperature
of PLA by up to 15 ◦C, increased PLA crystallinity, improved PLA tensile strength by approximately
15%, and improved PLA oxygen barrier by up to 58.3%. The addition of EGDE and PEGDE both
decreased the glass transition, crystallization, and melting temperatures of the PLA/lignin com-
posites, suggesting their compatabilizing and plasticizing effects, which contributed to improved
oxygen barrier properties of the PLA/lignin composites. The developed PLA/lignin composites
with improved thermal, mechanical, and gas barrier properties can potentially be used for green
packaging applications.

Keywords: poly (lactic acid); lignin; ethylene glycol diglycidyl ether; barrier performance

1. Introduction

The evolution of plastic pollution is a global concern [1]. Plastic, with its durable
and versatile nature, has revolutionized various industries, offering convenience and
affordability. However, its inability to degrade naturally presents a significant challenge.
Awareness of the detrimental effects of plastic pollution has grown steadily, and efforts to
reduce plastic consumption, promote plastic recycling, and develop sustainable alternatives
have gained increasing attention [2].

Bioplastics are considered a green replacement for traditional plastics due to their
renewability, biodegradability, and acceptable mechanical and thermal properties [3,4].
The adoption of biopolymers in the packaging industry represents a crucial stride toward
a more sustainable and environmentally responsible future. The significance of using
biopolymers lies in their ability to mitigate the detrimental environmental impacts asso-
ciated with traditional petroleum-based plastics. Scientifically, biopolymers are derived
from renewable resources such as plants, starches, and microorganisms, offering a carbon-
neutral alternative to fossil fuels [5]. Their production typically requires fewer greenhouse
gas emissions, reducing the overall carbon footprint of packaging materials. Moreover,
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biopolymers exhibit impressive biodegradability and composability, ensuring that packag-
ing waste does not persist in the environment for extended periods. As our understanding
of these materials continues to advance, biopolymers stand as a testament to the packag-
ing industry’s commitment to sustainable practices, offering a scientific foundation for
eco-conscious packaging solutions that align with the pressing need for a cleaner, greener
planet [6]. Bio-polymers have found a multitude of applications in the food packaging
industry [7], offering a range of benefits that align with both sustainability and food safety
requirements. One key advantage is their biodegradability, which addresses the issue of
plastic pollution by ensuring that packaging materials break down naturally over time,
reducing environmental harm. Moreover, bio-polymers derived from renewable sources,
such as cornstarch and sugarcane, decrease reliance on finite fossil fuels, contributing to
a more sustainable supply chain. These materials can also serve as effective barrier coat-
ings, preserving food freshness by preventing moisture and oxygen ingress. Additionally,
bio-polymers often exhibit lower levels of chemical migration into food products, enhanc-
ing food safety and quality. In summary, the use of bio-polymers in food packaging not
only aligns with eco-friendly initiatives but also offers improved protection and safety for
packaged foods, making them a vital component of the industry’s sustainable future [8,9].

Polylactic acid (PLA), a bio-based and biodegradable (in defined conditions) polyester [1],
is usually formed by polycondensation of lactic acid (LA) or ring-opening polymerization
of lactide, a cyclic diester of LA [10,11]. There are two enantiomers of lactic acid: L-lactic
acid and D-lactic acid [12]. The incorporation ratio of D-lactic acid and L-lactic acid dur-
ing polymerization determines the physical properties such as crystallinity, hydrophobicity,
and degradation ability of PLA [13–16]. PLA can be synthesized from both renewable and
non-renewable resources [17]. Bio-based PLA is derived from renewable resources such as
cornstarch or sugarcane [18,19]. Besides its advantages, there are some inherent properties of
PLA that limit its industrial use. PLA has high brittleness, low ductility, slow crystallization
rate, poor heat resistance, and inadequate moisture and gas barrier for industrial applica-
tions such as packaging [20]. To enhance the properties of PLA for broader applications, a
variety of biodegradable and nonbiodegradable materials, such as PLA blend with 10 wt%
of chitosan, can improve the thermal and mechanical properties of PLA [21], PLA/PCL
blends with a component of 80/20 performs 16 times higher of impact energy compared with
pure PLA and exceeds the toughness of pure PCL impact modifier [22]. Arrieta et al. used
15 wt% acetyl tributyl citrate (ATBC) as a plasticizer to plasticize the PLA/PHB blend, which
shows an improvement in the thermal stability of the blend up to 9 min [23]. The addition of
montmorillonites into provides better dispersion of hybrids clay mineral–graphene (Gr) in
the PLA matrix and enhances melt viscosity and storage modulus of Gr–PLA mixtures [24].

Lignin is an abundant and cheap biopolymer comprised of cross-linked, branched aro-
matic monomers, including p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol [25].
Lignin has been introduced into PLA to reduce cost and add new functionalities, such as
barrier, heat resistance, and UV shielding properties, without sacrificing the biodegrad-
ability and renewability of the PLA matrix [26]. However, blending lignin with PLA is
challenging as lignin has high polarity and tends to aggregate in the PLA matrix. As a
result, the addition of lignin usually harmed the mechanical performance of PLA due to
the inadequate interfacial adhesion and the lignin aggregation [26]. Therefore, lignin is
often chemically modified, plasticized, or compatibilized to improve its dispersion and
interaction with PLA [27–29]. For example, the tensile elongation at break of PLA/lignin
composite was improved by 35% with the addition of 2 wt% poly(ethylene glycol) as a
plasticizer [30]. Surface modification of lignin via acetylation improved the mechanical
properties of PLA/lignin composites at low lignin loading (<5%), while higher lignin load-
ing reduced the mechanical properties [31]. Grafting of PLA onto lignin improved lignin in
the PLA matrix at low lignin loading. In addition to the fact that chemical modification
of lignin usually works at low lignin loading, it generally involves complex and time-
consuming procedures, which is not preferred for industrial applications. Therefore, it is



Polymers 2023, 15, 4049 3 of 11

necessary to develop economical and facile techniques to improve the interfacial interaction
and mechanical properties of PLA/lignin composites.

Comparing PLA/Lignin bio-composite packaging films with traditional plastic pack-
aging films reveals significant advantages in terms of environmental sustainability and per-
formance characteristics. Firstly, from an ecological standpoint, PLA/Lignin bio-composite
films are derived from renewable resources, primarily plant-based materials like cornstarch
and lignin, making them biodegradable and reducing reliance on fossil fuels, in contrast to
traditional plastic films derived from petrochemicals. This attribute makes PLA/Lignin
films a more environmentally responsible choice, contributing to reduced carbon foot-
print and plastic waste. Additionally, PLA/Lignin films are compostable under specific
conditions, further minimizing their environmental impact [32].

Scientifically, PLA/Lignin bio-composite films exhibit notable mechanical and barrier
properties. They possess comparable tensile strength and flexibility to traditional plastic
films, making them suitable for various packaging applications. Furthermore, PLA/Lignin
films demonstrate impressive gas barrier properties, effectively preserving the freshness
and shelf life of packaged products. Their gas barrier performance is attributed to the
incorporation of lignin, which acts as a natural barrier to oxygen and moisture, surpassing
the permeability of many conventional plastic films. In short, the superiority of PLA/Lignin
bio-composite packaging films over traditional plastic packaging films is evident via their
sustainable sourcing, biodegradability, and enhanced barrier properties. This advancement
aligns with the global shift towards eco-friendly materials and the reduction in plastic
waste. PLA/Lignin films offer a scientifically supported, environmentally responsible
alternative that holds great promise for a more sustainable and greener future in the
packaging industry [33,34].

Therefore, the present work investigates the compatibilizing and plasticizing effects of
two low-viscosity epoxy resins, ethylene glycol diglycidyl ether (EGDE) and poly (ethylene
glycol) diglycidyl ether (PEGDE), on PLA/lignin composites. Epoxy resins are used as
compatabilizing agents in food packaging to improve the adhesion and compatibility
between different polymer layers. In multi-layer packaging materials, various polymers are
often combined to achieve specific properties like barrier protection and strength. Epoxy
resins also serve as plasticizing agents in food packaging by enhancing the flexibility
and processability of polymer materials. Epoxy resins contain epoxide functional groups
(oxirane rings) that have high reactivity with a variety of functional groups found in
different polymers. The epoxy groups can chemically bond with the functional groups on
the surface of other polymers, creating covalent bonds or hydrogen bonds. This chemical
linkage effectively bridges the interface between the different polymer layers, improving
their adhesion and compatibility. In the case of EVOH (Ethylene Vinyl Alcohol) and
polyethylene, for example, the epoxy resins can form hydrogen bonds with the hydroxyl
groups in EVOH, ensuring a strong interfacial bond. The plasticizing effect of epoxy resins
arises from their ability to increase the free volume and reduce intermolecular forces within
the polymer matrix. This, in turn, lowers the glass transition temperature (Tg) of the
polymer, making it more flexible at ambient temperatures. The scientific basis for this
mechanism involves the epoxy resin molecules inserting themselves between polymer
chains, effectively acting as a lubricant. This reduces the intermolecular forces (Van der
Waals forces) between polymer chains, allowing them to move more freely. As a result, the
polymer becomes less brittle and more pliable. The epoxy resin’s molecular structure, with
its long flexible chains, aids in this process [35,36]. The thermal, barrier, and mechanical
properties of the developed PLA/lignin bio-composites were characterized to provide
information about their industrial applications.

2. Materials and Methods
2.1. Materials

Poly (lactic acid) (PLA, 4032D) with a specific gravity of 1.24 g/cm3 and melting
point of 155–170 ◦C was purchased from NatureWorks LLC, Blair, NE, USA. Lignin
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(Mn = 2265 Da, chloroform as eluent) was purchased from Shanghai Dongsheng New
Material Co., Ltd., Shanghai, China. Both PLA resin and lignin were dried under vacuum
at 80 ◦C for 12 h before use. ethylene glycol diglycidyl ether (EGDE, the epoxy equivalent
is 112~135 g/eq) and poly (ethylene glycol) diglycidyl ether (PEGDE, Mn = 485 g/mol)
was purchased from Beijing Innochem Technology Co., Ltd., Beijing, China (Figure 1).
Both EGDE and PEGDE were of analytical grade and were used as received without
further treatment.
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2.2. Preparation of PLA/Lignin Bio-Composite Compatibilized with EGDE and PEGDE

PLA/lignin bio-composite compatibilized with EGDE and PEGDE were manufactured
using an internal mixer at 180 ◦C and a rotation speed of 50 r/min for 6 min. The sample
formula is shown in Table 1.

Table 1. Composition of PLA/lignin composites.

Sample Codes PLA (wt%) Lignin
(PHR)

EGDE
(PHR)

PEGDE
(PHR)

Neat PLA 100 0 0 0
PLA/1LG 100 1 0 0
PLA/3LG 100 2 0 0
PLA/5LG 100 3 0 0

PLA/EGDE/1LG 100 1 5 0
PLA/EGDE/3LG 100 3 5 0
PLA/EGDE/5LG 100 5 5 0
PLA/PEGDE/1LG 100 1 0 5
PLA/PEGDE/3LG 100 3 0 5
PLA/PEGDE/5LG 100 5 0 5

2.3. Preparation of PLA/Lignin Bio-Composite Film

PLA/lignin bio-composite was hot-pressed into a film using a hydraulic press machine
(LP-S-50, Lab-Tech Inc., Beijing, China) at 180 ◦C and 6.5 MPa. The thickness of the film
was 100–160 µm.

2.4. Characterization of Bio-Composite Films

Differential scanning calorimetry (DSC) was performed on a DSC machine (Hitachi
Instruments 7020, Tokyo, Japan) at a heating rate of 10 ◦C/min from 40 to 200 ◦C under
nitrogen. The samples were tested with two consecutive scans. The glass transition (Tg)
and melting temperature (Tm) of each sample were determined based on the mid-point
transition temperature of the second heating curve. The formula for the crystallinity (χc)
calculation is shown as follows:

χc =
∆Hm− ∆Hcc

w f ∆H0m
× 100% (1)

where χc is weight fraction crystallinity, ∆Hcc, ∆Hm, and ∆H0m is the cold crystallization
enthalpy, melting enthalpy, and theoretical melting enthalpy of 100% crystalline PLA
(∆H0m = 93.7 J/g), and w f presents the weight fraction of component PLA in composites.

Wide-angle X-ray diffraction (WAXD) was carried out on WXRD equipment (Rigaku
SmartLab, Neu Isenburg, Germany) using Ni-filtered CuK α radiation from 5◦ to 40◦ with
a scanning rate of 3◦/min at room temperature.
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The morphology of the film was characterized using scanning electron microscopy
(Quanta 250 FEG, FEI, Hillsboro, OR, USA). The cross-section morphology of the sample
films was observed after they were brittlely fractured in liquid nitrogen.

Oxygen (O2: purity of 99.99%) transmission rate of the film was tested using an
Oxygen Transmission (Rate Tester 31M, Labthink, Jinan, China) at 23 ◦C and a relative
humidity was 30% according to ASTM D1413 [37].

The water vapor barrier of the film was tested using a Moisture Tester (PERMATRAN-
W3/33, MOCON, Shanghai, China) according to ISO 15106-3 [38].

The tensile properties of the film were tested using a Zwick/Roell universal testing
machine (Zwick/Roell, Guangzhou, China) at room temperature at a crosshead speed of
3 mm/min. At least five specimens were tested for each batch to obtain the mean value.

3. Results
3.1. TGA

The thermal degradation behavior of PLA/lignin composites plays a critical role in
determining their suitability for various applications within the packaging industry. In
the study, it was observed that all samples exhibited a single thermal degradation stage,
indicating a degree of miscibility between PLA and lignin fillers, as indicated in Table 2.
The onset (To) and peak (Tp) degradation temperatures of pure PLA were found to be
340.2 ◦C and 370.4 ◦C, respectively (Table 2), serving as reference values for comparison.
Interestingly, without the presence of a compatibilizer, the addition of lignin at lower
loadings (1 and 3 PHR) led to a noteworthy increase in the onset degradation temperature
of PLA, with a rise of approximately 11.4–14.9 ◦C. However, when lignin was added at a
higher loading (5 PHR), a slight decrease in the onset temperature (To) of PLA by approxi-
mately 10 ◦C was observed. The peak degradation temperature of the non-compatibilized
PLA/lignin composite remained close to that of neat PLA but exhibited a slight decrease
with increasing lignin loading. In contrast, the introduction of EGDE compatibilizer had a
favorable effect on the thermal degradation behavior of the PLA/lignin composite. With
EGDE, the addition of lignin increased the onset degradation temperature (To) of PLA
by 8.6–11.5 ◦C, while it had no significant effect on the peak degradation temperature
(Tp) of PLA. Moreover, the incorporation of PEGDE compatibilizer, especially at lower
concentrations (1 and 3 PHR), yielded similar improvements in PLA thermal stability as
observed with EGDE. However, at higher PEGDE loading (5 PHR), both the onset and peak
degradation temperatures of the PLA/lignin composite were significantly reduced. Overall,
the findings indicate that the addition of lignin at 1 and 3 PHR concentrations enhances
the thermal stability of PLA, which is particularly advantageous for its thermal processing
and practical applications in the packaging industry. The role of compatibilizers like EGDE
and PEGDE in optimizing the thermal behavior of PLA/lignin composites underscores
their potential to fine-tune material properties, making them more suitable for specific
packaging requirements and promoting sustainability in the industry.

Table 2. Thermal degradation temperatures of PLA and PLA/lignin composites.

Sample To (◦C) Tp (◦C)

Neat PLA 340.2 370.4
PLA/1LG 355.1 371.5
PLA/3LG 351.6 369.1
PLA/5LG 330.5 367.5

PLA/EGDE/1LG 348.8 368.4
PLA/EGDE/3LG 350.0 369.9
PLA/EGDE/5LG 351.7 370.1

PLA/PEGDE/1LG 348.9 369.1
PLA/PEGDE/3LG 351.8 371
PLA/PEGDE/5LG 342.2 364.5
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3.2. DSC

Neat PLA had a glass transition at 59 ◦C, a crystallization peak at 112.8 ◦C, and a
melting peak at 165.6 ◦C (Figure 2, Table 3). The non-compatibilized PLA/lignin composite
had similar glass transition and crystallization temperature as the neat PLA but two melting
peaks at approximately 163 and 169 ◦C, respectively. The formation of the two melting
peaks could be caused by melt recrystallization [39]. The crystals formed during the
recrystallization process were perfecter than the initial crystals and, therefore, melted at
higher temperatures (169 ◦C). The addition of the lignin increased the crystallinity of PLA.
The formation of the two melting peaks could be caused by melt recrystallization [40].
Due to the nucleating effect of the lignin fillers, as we previously reported [41], the lignin
loading of 3 PHR has the most significant effect.
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The addition of EGDE and PEGDE both decreased the glass transition, crystallization,
and melting temperatures of the PLA/lignin composites, suggesting interactions between
the PLA matrix and lignin filler and the compatabilizing effect of EGDE and PEGDE.
In addition, EGDE and PEGDE can act as a plasticizing agents and cause a decrease
in the glass transition temperature of the composites. It is worth mentioning that the
melting peaks of the PLA/lignin composites compatibilized by PEGDE were narrower
than those of the composites compatibilized by EGDE, suggesting the former had better
compatibilizing efficiency.
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Table 3. Thermal properties of PLA and PLA/lignin composites from DSC heat scan.

Sample Tg (◦C) Tcc (◦C) Tm1 (◦C) Tm2 (◦C) χc

Neat PLA 59 112.8 — 165.6 3.1%
PLA/1LG 60.1 111.4 163.7 170 5.7%
PLA/3LG 59.5 110.9 163.4 169.9 8.6%
PLA/5LG 59.6 113.4 163.8 169.8 7.9%

PLA/EGDE/1LG 50.6 104.7 158.1 167.3 5.1%
PLA/EGDE/3LG 51.4 104.8 158.3 167.4 7.3%
PLA/EGDE/5LG 51.5 110 159.5 167.6 5.9%
PLA/PEGDE/1LG 50.1 100.4 — 167.4 4.6%
PLA/PEGDE/3LG 51.1 103.3 158.3 167.6 4.0%
PLA/PEGDE/5LG 52.2 104.1 158.6 167.9 6.8%

3.3. WAXD

The crystallization behavior of PLA, alone and in the composites, was investigated
using WAXD (Figure 3). Generally, PLA has four crystal forms, which are α, α′, β, and
γ [42]. The α crystalline form is the most common one and is obtained from slow cooling
of the melt, which allows the molecular chain to rotate into a conformation with lower
potential energy; the β crystalline form arises from the deformation of the α crystals and is
formed by drawing PLA at elevated temperatures; the γ form is obtained using epitaxial
crystallization on a substrate such as hexamethylbenzene [42]. The main characteristic
peaks of the α crystal appear at 15◦, 17◦, 19◦, 29◦, 31◦, and 32◦, while the diffraction peaks
of β crystals mainly appear at 25◦, 26.5◦, 27.9◦, 29.8◦, and 31◦ [43,44].
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Figure 3. WAXD patterns of neat PLA and the composites (a) EGDE-compatibilized PLA/lignin
composites; (b) and PEGDE-compatibilized PLA/lignin composites.

A wide diffraction peak from 10◦ to 25◦ caused using the scattering of the PLA polymer
matrix was observed in the WAXD pattern (Figure 3). The main characteristic diffraction
peak of pristine PLA was at 16.6◦, corresponding to the (110) and (200) crystal planes of the
α crystal form of PLA. The composites of PLA and lignin showed a higher peak intensity
at 16.6◦, suggesting its higher degree of crystallinity compared with pristine PLA due to
the nucleating effect of the lignin particles. A sharp diffraction peak at 26.6◦ related to an
interlayer spacing of 0.34 nm was observed in the composites [45], which was absent in
pristine PLA. There are no obvious diffraction peaks at 16.6◦ on the WAXD patterns of the
PLA/lignin composites, indicating a restricted crystallization of PLA in the composites
with the presence of the compatibilizers [46,47], which is consistent with the observations
from the DSC results.
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3.4. Tensile Properties

In our examination of mechanical properties, we discovered that pure PLA films
boasted a tensile strength of approximately 56 MPa, as illustrated in Figure 4. Interestingly,
when lignin was introduced into the mix, even at varying loadings, it resulted in only a
modest uptick in PLA’s tensile strength, hovering around a 15% increase. Importantly, this
increase did not seem to correlate significantly with the amount of lignin added. Further-
more, the incorporation of EGDE or PEGDE compatibilizers into the PLA/lignin composite
did not lead to substantial enhancements in the material’s tensile strength. This outcome
surprised us, given that compatibilizers are generally expected to improve material compat-
ibility and, consequently, mechanical properties. This finding stands in contrast to our prior
research involving PLA/lignin composites compatibilized with polylactide-graft-glycidyl
methacrylate (PLA-g-GMA), where we observed a notable 18.7% [41] increase in tensile
strength, particularly when using 3 PHR lignin loading. To unravel this discrepancy and
provide a more comprehensive explanation, further investigations into the compatibiliza-
tion mechanisms of EGDE and PEGDE are needed. These results underscore the intricate
nature of polymer interactions and underscore the importance of a detailed analysis to
fine-tune material properties for specific applications within the packaging industry.
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3.5. Oxygen Barrier Performance

The addition of lignin to PLA had a remarkable impact on enhancing the oxygen
barrier properties of the composite materials, and what’s particularly interesting is that this
improvement was not contingent on the amount of lignin added. In fact, among the compat-
ibilized composites, PLA/1LG exhibited the most exceptional oxygen barrier performance
(as detailed in Table 4). It’s worth noting that the effect of lignin loading on oxygen perme-
ability followed a somewhat non-intuitive pattern. Compatibilized PLA/lignin composites
with low lignin loadings (e.g., 1 PHR) displayed an increase in oxygen permeability, which
essentially means a reduction in the material’s oxygen barrier performance when compared
to the compatibilized counterparts. On the other hand, compatibilized composites with
higher lignin loadings (specifically, 3 and 5 PHR) demonstrated significant improvements
in their oxygen barrier characteristics. Of notable mention, the PLA/EGDE/5LG and
PLA/PEGDE/5LG compositions stood out with the most impressive enhancements, ex-
hibiting an astonishing 58.3% and 57.3% improvement in their oxygen barrier properties,
respectively. This demonstrates that both EGDE and PEGDE compatibilizers had similar
and highly beneficial effects on elevating the oxygen barrier of the PLA/lignin composites.
These findings underscore the significant potential of incorporating lignin and compatibiliz-
ers like EGDE and PEGDE to tailor the oxygen barrier properties of PLA-based packaging
materials. Such advancements hold great promise for extending the shelf life and freshness
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of packaged food products while also aligning with the industry’s growing emphasis on
sustainable packaging solutions.

Table 4. O2 permeability of neat PLA and PLA/lignin composite films.

Sample OTR
(Barrer)

Reduction
(%)

Neat PLA 0.218 0
PLA/1LG 0.106 51.4
PLA/3LG 0.125 42.7
PLA/5LG 0.110 49.5

PLA/EGDE/1LG 0.119 45.4
PLA/EGDE/3LG 0.114 47.7
PLA/EGDE/5LG 0.091 58.3

PLA/PEGDE/1LG 0.125 42.7
PLA/PEGDE/3LG 0.119 45.4
PLA/PEGDE/5LG 0.093 57.3

The improved gas barrier of the PLA/lignin composites is probably due to the hetero-
geneous crystal nucleating effects of the lignin particles, which promoted PLA crystalliza-
tion and caused the rapid formation of small PLA crystals, as supported by the DSC and
WAXD results, which functioned as an obstacle to gas diffusion and resulted in improved
oxygen barrier [41]. For the compatibilized composites, the bonding and non-bonding of
compatibilizer molecules with macromolecular substances in the composites will also affect
the dissolution and dispersion of oxygen [48]. The polar groups, such as hydrogen bonds
in lignin, increase in number. In addition, due to the high tension of the three-membered
ring, the epoxide groups in EGDE or PEGDE are likely to make alcoholic and phenolic com-
pounds in polylactic acid and lignin. The group undergoes a ring-opening reaction to form
a certain cross-linked structure. The cross-linked structure has no effect on the solubility of
the gas in the polymer, but it will interfere with the formation of the instantaneous fracture
gap and decompose the permeability coefficient of the gas. Therefore, the oxygen barrier
performance was improved.

4. Conclusions

PLA/lignin composites with the addition of epoxy resins showed that EGDE and
PEGDE both decreased the glass transition, crystallization, and melting temperatures of
the PLA/lignin composites and improved the oxygen barrier properties of the PLA/lignin
composites due to the compatabilizing effect. The addition of lignin improved the onset
degradation temperature of PLA by up to 15 ◦C; the addition of lignin at 1 and 5 PHR
showed better results. Addition of lignin 3PHR increased PLA crystallinity, improved PLA
tensile strength by approximately 15%, and improved PLA oxygen barrier by up to 58.3%.
The PLA/lignin composites with improved properties can potentially be used as green
substitutes for conventional petroleum-based plastics in a variety of applications, such as
food packaging.
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9. Wypij, M.; Trzcińska-Wencel, J.; Golińska, P.; Avila-Quezada, G.D.; Ingle, A.P.; Rai, M. The strategic applications of natural
polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers’ perception. Front. Chem. 2023,
10, 1106230. [CrossRef]

10. Hartmann, M. High molecular weight polylactic acid polymers. In Biopolymers from Renewable Resources; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 367–411.

11. Hu, Y.; Daoud, W.A.; Cheuk, K.K.L.; Lin, C.S.K. Newly developed techniques on polycondensation, ring-opening polymerization
and polymer modification: Focus on poly(lactic acid). Materials 2016, 9, 133. [CrossRef]

12. Pohanka, M. D-lactic acid as a metabolite: Toxicology, diagnosis, and detection. BioMed Res. Int. 2020, 2020, 3419034. [CrossRef]
13. Jamshidian, M.; Tehrany, E.A.; Imran, M.; Akhtar, M.J.; Cleymand, F.; Desobry, S. Structural, mechanical and barrier properties of

active PLA–antioxidant films. J. Food Eng. 2012, 110, 380–389. [CrossRef]
14. Bhatia, A.; Gupta, R.K.; Bhattacharya, S.N.; Choi, H. Compatibility of biodegradable poly (lactic acid)(PLA) and poly (butylene

succinate)(PBS) blends for packaging application. Korea-Aust. Rheol. J. 2007, 19, 125–131.
15. Xu, T.; Tang, Z.; Zhu, J. Synthesis of polylactide-graft-glycidyl methacrylate graft copolymer and its application as a coupling

agent in polylactide/bamboo flour biocomposites. J. Appl. Polym. Sci. 2012, 125, E622–E627. [CrossRef]
16. Abdillahi, H.; Chabrat, E.; Rouilly, A.; Rigal, L. Influence of citric acid on thermoplastic wheat flour/poly (lactic acid) blends. II.

Barrier properties and water vapor sorption isotherms. Ind. Crops Prod. 2013, 50, 104–111. [CrossRef]
17. de França, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers based on PLA from synthesis using

D,L-lactic acid (or racemic lactide) and some biomedical applications: A short review. Polymers 2022, 14, 2317. [CrossRef]
18. Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [CrossRef]
19. McKeown, P.; Jones, M.D. The chemical recycling of PLA: A review. Sustain. Chem. 2020, 1, 1–22. [CrossRef]
20. Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA based biocomposites for sustainable products: A review. Adv. Ind. Eng. Polym. Res.

2023. [CrossRef]
21. Claro, P.; Neto, A.; Bibbo, A.; Mattoso, L.; Bastos, M.; Marconcini, J. Biodegradable blends with potential use in packaging: A

comparison of PLA/chitosan and PLA/cellulose acetate films. J. Polym. Environ. 2016, 24, 363–371. [CrossRef]
22. Ostafinska, A.; Fortelny, I.; Nevoralova, M.; Hodan, J.; Kredatusova, J.; Slouf, M. Synergistic effects in mechanical properties of

PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015, 5, 98971–98982. [CrossRef]
23. Arrieta, M.P.; Samper, M.D.; López, J.; Jiménez, A. Combined effect of poly (hydroxybutyrate) and plasticizers on polylactic acid

properties for film intended for food packaging. J. Polym. Environ. 2014, 22, 460–470. [CrossRef]
24. Bouakaz, B.S.; Pillin, I.; Habi, A.; Grohens, Y. Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites.

Appl. Clay Sci. 2015, 116, 69–77. [CrossRef]
25. Banu, J.R.; Kavitha, S.; Kannah, R.Y.; Devi, T.P.; Gunasekaran, M.; Kim, S.-H.; Kumar, G. A review on biopolymer production via

lignin valorization. Bioresour. Technol. 2019, 290, 121790.

https://doi.org/10.1016/j.biortech.2021.124739
https://www.ncbi.nlm.nih.gov/pubmed/33509643
https://doi.org/10.3390/su12052088
https://doi.org/10.1177/0734242X19854127
https://www.ncbi.nlm.nih.gov/pubmed/31218932
https://doi.org/10.1016/j.ijbiomac.2023.123715
https://www.ncbi.nlm.nih.gov/pubmed/36801278
https://doi.org/10.1016/j.fpsl.2023.101033
https://doi.org/10.3390/ma14206092
https://doi.org/10.3390/foods12122422
https://doi.org/10.3389/fchem.2022.1106230
https://doi.org/10.3390/ma9030133
https://doi.org/10.1155/2020/3419034
https://doi.org/10.1016/j.jfoodeng.2011.12.034
https://doi.org/10.1002/app.36808
https://doi.org/10.1016/j.indcrop.2013.06.028
https://doi.org/10.3390/polym14122317
https://doi.org/10.1016/j.addr.2016.04.003
https://doi.org/10.3390/suschem1010001
https://doi.org/10.1016/j.aiepr.2023.02.002
https://doi.org/10.1007/s10924-016-0785-4
https://doi.org/10.1039/C5RA21178F
https://doi.org/10.1007/s10924-014-0654-y
https://doi.org/10.1016/j.clay.2015.08.017


Polymers 2023, 15, 4049 11 of 11

26. Kumar, A.; Tumu, V.R.; Chowdhury, S.R.; SVS, R.R. A green physical approach to compatibilize a bio-based poly (lactic
acid)/lignin blend for better mechanical, thermal and degradation properties. Int. J. Biol. Macromol. 2019, 121, 588–600. [CrossRef]
[PubMed]

27. Ou, W.-X.; Weng, Y.; Zeng, J.-B.; Li, Y.-D. Fully biobased poly (lactic acid)/lignin composites compatibilized by epoxidized natural
rubber. Int. J. Biol. Macromol. 2023, 236, 123960. [CrossRef]

28. Hong, S.-H.; Park, J.H.; Kim, O.Y.; Hwang, S.-H. Preparation of chemically modified lignin-reinforced PLA biocomposites and
their 3D printing performance. Polymers 2021, 13, 667. [CrossRef]

29. Park, C.-W.; Youe, W.-J.; Kim, S.-J.; Han, S.-Y.; Park, J.-S.; Lee, E.-A.; Kwon, G.-J.; Kim, Y.-S.; Kim, N.-H.; Lee, S.-H. Effect of lignin
plasticization on physico-mechanical properties of lignin/poly(lactic acid) composites. Polymers 2019, 11, 2089. [CrossRef]

30. Wasti, S.; Triggs, E.; Farag, R.; Auad, M.; Adhikari, S.; Bajwa, D.; Li, M.; Ragauskas, A.J. Influence of plasticizers on thermal and
mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. Compos. Part B Eng. 2021,
205, 108483. [CrossRef]
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