
Citation: Akderya, T. Effects of

Post-UV-Curing on the Flexural and

Absorptive Behaviour of FDM-

3D-Printed Poly(lactic acid) Parts.

Polymers 2023, 15, 348. https://

doi.org/10.3390/polym15020348

Academic Editor: Chin-San Wu

Received: 1 December 2022

Revised: 21 December 2022

Accepted: 31 December 2022

Published: 9 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Effects of Post-UV-Curing on the Flexural and Absorptive
Behaviour of FDM-3D-Printed Poly(lactic acid) Parts
Tarkan Akderya

Department of Biomedical Engineering, Faculty of Engineering and Architecture, University of Bakırçay,
35665 Izmir, Turkey; tarkan.akderya@bakircay.edu.tr

Abstract: In this study, the effects of the post-ultraviolet-curing process on the flexural, absorptive,
and morphological properties of poly(lactic acid) specimens produced using a fused deposition
modelling technique 3D printer were experimentally investigated. In this direction, 15, 30, 45, and
60 min post-UV-curing processes were applied to poly(lactic acid) three-point bending and absorption
specimens produced at 190 and 200 ◦C. Three-point bending tests and morphological analyses were
applied after the post-ultraviolet-curing process, and absorption tests were applied by immersing the
post-ultraviolet-cured specimens in a distilled water bath for 1-, 3-day, and 1-, 2-, and 4-week exposure
times. The changes in flexural strain properties for each experimental parameter were also simulated
by the computer-aided finite element analysis and compared with the experimental results. It was
observed that the post-ultraviolet-curing process increased the flexural strength of the poly(lactic
acid) specimens produced at both 190 and 200 ◦C with the same increasing trend up to 30 min of
exposure, and the most significant increase was determined in the specimens that were subjected
to post-ultraviolet-curing for 30 min. Although the flexural strengths of the post-ultraviolet-cured
specimens were higher than the non-cured specimens in all conditions, it was detected that they
tended to decrease after 30 min.

Keywords: fused deposition modelling; post-UV-curing; poly(lactic acid); flexural properties; finite
element analysis

1. Introduction

Additive manufacturing (AM) technologies have become one of the competitive
manufacturing techniques for the precise production of parts with high geometric com-
plexity [1,2]. The most preferred AM method is fused deposition modelling (FDM), also
referred to as fused filament fabrication (FFF) [3]. In FDM technology, the type of polymer
used is liquefied and extruded in a semi-molten form using a nozzle with a particular
effort and deposited on the path obtained by slicing the computer-aided design (CAD)
geometry [4–6]. The part that reaches the final design with CAD software is converted
into a stereolithography (STL) file and loaded into the software to divide the part into
layers with cross-sections based on the specified layer thickness [3,7]. In this software, the
G-code is obtained by determining the geometric parameters such as layer thickness, wall
thickness, infill density and infill pattern, production parameters such as nozzle and build
plate temperature, and print speed [8,9]. In this technique, the used filament is pushed
towards the heated liquefier with the help of stepper motors and extruded using a nozzle
as a semi-melt material. In order to deposit the semi-molten material on the determined
path, the build plate or nozzle moves in the transverse and transitional directions. In this
context, all paths on a layer are followed by completing the layer and passing it to the next
layer [10]. A schematic representation of a typical FDM 3D printing technique is given in
Figure 1.
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Figure 1. Schematic representation of a typical FDM type 3D printer. 

FDM technology is a more accessible manufacturing technology than stereolithogra-
phy (SLA) and selective laser sintering (SLS) in terms of equipment, cost, and materials 
used [11]. The fact that desktop 3D printers have an integrated system with open-source 
software and hardware provides complete control over parameters such as production 
speed and temperature. This ensures that a part produced using optimal geometric pa-
rameters will have better properties than those produced with expensive techniques [12]. 
The FDM technique, which produces one-piece limited-size geometries, is used in the aer-
ospace, architectural, electronics, medical, and automotive industries for prototyping 
[13,14]. 

In the last decade, there has been an explosion in the number of desktop-type 3D 
printer users due to the diversification and ease of access of 1.75 and 2.85 mm diameter 
polymer filament consumables. The materials frequently used in the FDM method are 
poly(lactic acid) (PLA) [15–17], acrylonitrile butadiene styrene (ABS) [18–20], polyeth-
ylene terephthalate (PET) [21–23], polypropylene (PP) [24–26], polycarbonate (PC) [27], 
polyetheretherketone (PEEK) [28–30], thermoplastic polyurethane (TPU) [31–33], and pol-
yamide (PA). In today’s market, apart from thermoplastics, it has become possible to reach 
varieties of composite materials such as glass fibre-reinforced PP [34], carbon fibre-rein-
forced PET [35], and carbon fibre-reinforced PA [36] and metallic materials such as stain-
less steel 316L [37] and 17-4ph [38]. 

Figure 1. Schematic representation of a typical FDM type 3D printer.

FDM technology is a more accessible manufacturing technology than stereolithogra-
phy (SLA) and selective laser sintering (SLS) in terms of equipment, cost, and materials
used [11]. The fact that desktop 3D printers have an integrated system with open-source
software and hardware provides complete control over parameters such as production
speed and temperature. This ensures that a part produced using optimal geometric param-
eters will have better properties than those produced with expensive techniques [12]. The
FDM technique, which produces one-piece limited-size geometries, is used in the aerospace,
architectural, electronics, medical, and automotive industries for prototyping [13,14].

In the last decade, there has been an explosion in the number of desktop-type 3D
printer users due to the diversification and ease of access of 1.75 and 2.85 mm diameter
polymer filament consumables. The materials frequently used in the FDM method are
poly(lactic acid) (PLA) [15–17], acrylonitrile butadiene styrene (ABS) [18–20], polyethy-
lene terephthalate (PET) [21–23], polypropylene (PP) [24–26], polycarbonate (PC) [27],
polyetheretherketone (PEEK) [28–30], thermoplastic polyurethane (TPU) [31–33], and
polyamide (PA). In today’s market, apart from thermoplastics, it has become possible
to reach varieties of composite materials such as glass fibre-reinforced PP [34], carbon
fibre-reinforced PET [35], and carbon fibre-reinforced PA [36] and metallic materials such
as stainless steel 316L [37] and 17-4ph [38].

PLA is the most preferred polymer filament in the FDM technique, which is used
to obtain solid models with a 3D geometry by combining successive layers. Despite this
variety of products, the reason why PLA, derived from agricultural products, is preferred
first in most applications is its features such as biodegradability, not releasing toxic gases to
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the environment during processing, low melting temperature, low shrinkage level, and
environmental compatibility [39,40]. Although PLA exhibits high mechanical properties,
its application areas are limited due to some characteristic properties, such as low thermal
resistance.

In order to eliminate material disadvantages, the researchers investigated how FDM
technique production parameters and secondary post-production processes affect the
mechanical, thermal, and other characteristics of PLA-based parts. Hsueh et al. [41]
investigated the influence of FDM printing parameters on the characteristic behaviours of
PLA and PETG. Production was carried out using temperatures in the range of 180–220 ◦C,
and accordingly, it was observed that the tensile strength of PLA increased with increasing
printing temperature. In another study, Hikmat et al. [42] investigated the effect of FDM
production speed on the mechanical properties of PLA parts. Accordingly, PLA parts were
produced with speeds of 20, 40, and 60 mm/s, and it was revealed that the tensile strength
values of those produced with a speed of 20 mm/s were higher than the others. Rodríguez-
Panes et al. [43] studied the effect of layer height, infill density, and layer orientation on the
mechanical properties of PLA and ABS parts. Accordingly, as the infill density increased,
the adhesion between the layers increased, and the porosity decreased with the increase in
the contact area between the layers; therefore, an increase in the mechanical properties was
observed. Hsueh et al. [44] fabricated PLA parts with the FDM technique using different
printing temperatures (185 to 225 ◦C) and infill density ratios (10, 20, 33.3, and 50%) and
then exposed the parts to 425 nm and 60 min of UV irradiation. According to the results,
the tensile strength increased as the infill density and production temperature increased.
UV irradiation decreased the tensile strength but increased Young’s modulus values in all
samples.

When the literature was reviewed, it was noticed that many studies focused on the
effect of FDM technique production parameters such as printing temperature, printing
speed, layer thickness, and infill density on the characteristic properties of the produced
material. On the other hand, very few studies investigate the changes in the properties
of a material such as PLA, whose industrial importance and use have spread over a wide
area, by applying secondary processes after production. In this study, 405 nm post-UV
curing at different durations (15, 30, 45, and 60 min) was applied to PLA parts produced
at different temperatures (190 and 200 ◦C) using the FDM technique, and changes in their
flexural, absorptive, and morphological properties were observed by performing three-
point bending tests, absorption tests, and scanning electron microscopy (SEM) analysis.

2. Materials, Manufacturing, and Specimen Preparation

CAD data of the test specimens were obtained using SolidWorks software. Files
designed in SolidWorks were converted to STL file format and exported into Ultimaker Cura
slicing software to obtain G-code. Industrial PLA filaments with a diameter of 1.75 mm,
white colour and supplied by Ultrafuse (BASF 3D, Emmen, The Netherlands) were used.
The properties of the PLA filament used in this study provided by the manufacturer are
given in Table 1. Creality CR-05 Pro H (Creality 3D Technology Co., Ltd., Shenzhen, China)
was used as the FDM-type 3D printer. Esun eBox (Esun Industrial Co., Ltd., Shenzhen,
China) filament dryer was used at 40 ◦C to remove moisture from the filaments and improve
the printing quality. The post-UV curing process was applied to the specimens using the
Anycubic wash and cure 2.0 device (Anycubic Technology Co., Ltd., Hong Kong, China).

This study was mainly carried out to investigate the effects of production tempera-
ture and post-UV curing process on the flexural and absorptive properties of PLA parts
produced by the FDM technique. In order to reduce the complexity of the study, only the
production temperature and post-UV curing durations were chosen as parameters. Accord-
ing to the literature, as the production temperature of PLA with FDM, Andó et al. [45] used
production temperatures varying between 190–220 ◦C, Hsueh et al. [44] chose production
temperatures varying between 185–225 ◦C, Hsueh et al. [41] preferred production tempera-
tures varying between 180–220 ◦C, Soares et al. [46] used production temperature as 200 ◦C,
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Alsoufi et al. [47] preferred temperatures ranging from 195–250 ◦C, and Valerga et al. [48]
used temperatures ranging from 180–240 ◦C. Moreover, 190 and 200 ◦C were selected as
the production temperature parameters, considering the fact that PLA production was
carried out at the intervals mentioned in the research and the manufacturer’s production
temperature range recommendation. Accordingly, considering the production parameters
recommended by the manufacturer, 0.4 mm nozzle diameter, 60 ◦C bed temperature, and
50 mm/s production speed were chosen as fixed production factors. Rajpurohit et al. [49,50]
and Tao et al. [51] preferred layer heights ranging from 0.1 to 0.3 mm, and Kamaal et al. [52]
preferred 0.2 to 0.3 mm. Considering the layer height production parameter preferred
by the researchers in their studies, 0.2 mm was preferred as the layer height. Samples
produced using different raster angles are available in the literature [1,50,53]. Mostly raster
angles of ±45◦ and 0–90◦ were used, so a raster angle of 45◦ was chosen as the fixed factor.
In addition, Nida [53] also found that the PLA samples produced with a 45◦ raster angle
were stronger than those with a 0–90◦ raster angle.

Table 1. Material properties and suggested printing parameters by the manufacturer.

Material Properties Unit Value

Density (kg/m3) 1248

Nozzle temperature (◦C) 190–230

Bed temperature (◦C) 50–70

Melting temperature (◦C) 151

Nozzle diameter (mm) ≥0.4

Printing speed (mm/s) 40–80

Specimens produced at 190 and 200 ◦C were subjected to post-UV curing at varying
exposure times of 15, 30, 45 and 60 min. As the post-UV curing application, durations
between 0 and 60 min at 15 min intervals were selected. Application durations of 0, 15, 30,
45, and 60 min were chosen since the curing device (Anycubic wash and cure 2.0 device)
has a maximum continuous UV-curing application duration of 60 min, and the effect of
different application durations on the characteristics of PLA has not been studied before.
In addition to that, in the Hsueh study [44], only 60 min of UV-curing was applied to
the samples produced with different parameters with the FDM technique. The printing
parameters used in this study and the tags of the specimens are tabulated in Tables 2 and 3,
respectively. Schematic representation of the production process of the three-point bending
specimen and X, Y, and Z labels for the build orientation are given in Figure 2.

Table 2. Production parameters.

Production Parameters Unit Value

Moulding technology - FDM

Layer height (mm) 0.2

Top and bottom thickness (mm) 0.8

Infill density (%) 100

Print material - PLA

Filament diameter (mm) 1.75

Bed temperature (◦C) 60

Nozzle temperature (◦C) 190, 200

Printing speed (mm/s) 50

Raster angle (◦) 45
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Table 3. Specimen details.

Post-UV-Curing Duration (min) 0 15 30 45 60

Printing Temperature (◦C)
190 A1 A2 A3 A4 A5

200 B1 B2 B3 B4 B5
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2.1. Characterisation
2.1.1. Flexural Test

Flexural characterisation of PLA parts exposed to 405 nm UV irradiation at different
durations was performed by three-point bending tests. In order to minimise experimental
errors, five tests were performed for each parameter, and the average values were recorded
as test results. Three-point bending tests were performed according to ASTM D790 stan-
dard [54] to determine the behaviour of PLA parts against bending load. Three-point
bending tests were carried out at 1 mm/min at room temperature using a Shimadzu 100 kN
device. As a result of these tests, bending properties such as flexural strength and flexural
modulus were determined. Dimensions of a three-point bending test specimen, produced
specimens, and during testing with Shimadzu 100 kN instrument are given in Figure 3.

Calculation of flexural strength (σf ), the maximum flexural strain (ε f ), and flexural
modulus (E f ) are obtained using the following equations in accordance with ASTM D790
standard [54] based on classical beam theory. From the data, flexural strength (σf ) is
calculated assuming that the shear stress effects are in the negligible direction since the
sample has a sufficient span-thickness ratio. The flexural strength (σf ) in the three-point
bending test is defined as

σf =
3PL
2bd2 (1)

where P is the load at a given point on the load-deflection curve, L is the support span
distance, b is the width of the specimen, and d is the thickness of the specimen.

The flexural strain (ε f ) value is calculated as follows

ε f =
6Dd
L2 (2)
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where the deflection in the mid-span is defined by D.
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Figure 3. (a) CAD-model of the three-point bending test specimen according to ASTM D790 (Dimen-
sions are given in millimetres), (b) produced test specimens, and (c) testing with Shimadzu 100 kN
testing device.

Flexural modulus (E f ) represents the ratio of stress to corresponding strain value at
any point in the linear portion of the flexural strength–strain curve and is expressed by the
following Equation

E f =
L3m
4bd3 (3)

where m defines the tangent to the initial line portion of the load–displacement curve. A
schematic illustration of a simply supported beam being loaded with a concentrated load
from the centre of the support span is given in Figure 4.
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2.1.2. Absorptive Test

Absorption samples produced according to ASTM D570 [55] standard were dried at
60 ◦C for 5 h after production and allowed to cool at room temperature. Before undergoing
any treatment, the initial weights of the samples were measured using a 1/10,000 precision
balance (Radwag AS 220/C/2). They were immersed in a distilled water bath at room
temperature for 1 day to 4 weeks at different water absorption times. After the exposure,
the samples were dried with a dry cloth and kept at room temperature for 1 day. Water
gain percentages were calculated according to Equation (4).

Percent Water Absorption (%) =
Wet weight − Dry weight

Dry weight
× 100 (4)

2.1.3. Morphological Properties

The morphology of the PLA parts was analysed using SEM analysis. In order to obtain
surface micrographs, field emission scanning electron microscope Carl Zeiss 300VP device
with 15 kV acceleration voltage was used in accordance with the ASTM E986 standard [56].
Before examining the surface morphology, the specimens were coated with 5 nm gold
vanadium. The plating process was carried out in 120 s under a vacuum with the ION
COATER COX EM brand gold plating device.

2.1.4. Finite Element Analysis and Modelling

The computational modelling procedure of the simply supported beams with a con-
centrated load from the centre of the support span was explained in this section. In the
finite element analysis (FEA), the three-point bending specimen CAD model (Figure 3a)
designed for experimental production was transferred to the ANSYS Workbench 2022 R1
simulation program. For computational modelling, the object geometry was designed using
SolidWorks software and then imported into the Ansys Workbench SpaceClaim geometry
module. In the mesh module, the object is divided into 624 elements and 3901 nodes using
the 3D higher-order SOLID186 element type with 20 nodes and 3 degrees of freedom (3-
DOF), which is used to model the behaviour of materials and structures such as deflection,
plasticity, and hyperelasticity. FEA’s constraints and boundary conditions were identified
similarly to the experimental test setup.

3. Results and Discussion
3.1. Experimental Results

The flexural strength and modulus values with trend lines of post-UV-cured PLA
specimens for different durations are given in Figures 5 and 6, respectively. In addition,
flexural strength and modulus values are given in Table 4 with standard deviations. In
Table 4, the up-down trends of the samples compared with the non-cured specimen data
are indicated with arrows and the ratio of the percentage change. When evaluated in terms
of flexural strength values, it is observed that A3 and B3 samples have the highest value,
and A1 and B1 have the lowest value regardless of the production temperature. When
Table 4a is examined, it is seen that the A3 increased by 18.19% compared to the A1, and
the B3 increased by 12.91% compared to the B1. When A1 and B1 are taken as references, it
is determined that the lowest increase is in A2 (4.25%) and B2 (3.22%), respectively. When
evaluated in terms of flexural strength, non-cured samples produced at 190 ◦C show lower
values than those produced at 200 ◦C, and this relative situation maintains the trend after
each UV irradiation, thus; B1 shows lower values than A1, B2 than A2, B3 than A3, B4 than
A4, and B5 than A5.

PLA shows lower mechanical strength at high temperatures than the polymer fre-
quently used in FDM technology, such as ABS, but this is preferable at ambient temper-
atures [11,57–59]. A part made of ABS polymer may fail due to delamination under a
minimum load, owing to residual stresses arising from the hindered shrinkage of the
polymer during the cooling process. The parts produced using PLA, which has a lower
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shrinkage rate, turn into a product with less internal stress and exhibit better mechanical
properties. The high performance of the 3D printed parts depends on the strength and
stability of the bonds formed between the layers of the sample, which are usually deter-
mined by the printing parameters, except for the characteristic properties of the filament
material [11]. Printing temperature, one of FDM techniques’ primary and most effective
production parameters, affects the rheological properties, crystallinity, deformation, and
thermal and mechanical properties of polymeric filament sections. It affects the bond
strength between the layers and the lines, causing a change in the mechanical properties; in
addition, the printing temperature parameter influences FDM printability and the macro
mechanical properties of the printed part [59–61]. Production with low printing tempera-
tures causes the polymer to melt with low fluidity and high viscosity. This results in the
formation of a large amount of porosity between the layers and lines of the molten PLA.
The porous structure leads to a reduced contact area and poor bond formation between
layers and lines; thus, the production of materials with low values in terms of mechanical
properties occurs [41,48,62]. Especially when the flexural strength values of A1 and B1
samples are compared with each other, the higher flexural strength of B1 samples produced
by preferring higher production temperature is due to the higher bonding success between
rasters. Since the production temperature is directly related to the degree of crystallinity, the
decrease in the mechanical properties of the samples produced with very high production
temperatures can be explained by the deterioration of the molecular chain and the gradual
collapse of the structural layers [63–66].

Table 4. (a) Flexural strength and (b) flexural modulus of PLA parts exposed to post-UV curing.

(a) Flexural Strength (MPa)

190 ◦C 200 ◦C

Non-Cured Duration
(min) Code Cured Non-Cured Duration

(min) Code Cured

A1 99.12
(±3.61)

15 A2 103.33 (±0.81)
4.25%

B1 111.74
(±0.52)

15 B2 115.34 (±0.65)
3.22%

30 A3 117.15 (±1.85)
18.19% 30 B3 126.16 (±1.68)

12.91%

45 A4 106.93 (±2.52)
7.88% 45 B4 117.15 (±2.52)

4.84%

60 A5 104.53 (±3.52)
5.46% 60 B5 116.55 (±2.05)

4.30%

(b) Flexural Modulus (MPa)

190 ◦C 200 ◦C

Non-Cured Duration
(min) Code Cured Non-Cured Duration

(min) Code Cured

A1 2812.35
(±3.61)

15 A2
2385.90
(±25.61)
−15.16%

B1 2808.77
(±0.52)

15 B2
3073.14
(±65.46)

9.41%

30 A3
3177.42

(±126.91)
12.98%

30 B3
3052.52
(±96.38)

8.68%

45 A4
2770.03
(±32.68)
−1.50%

45 B4
3026.73
(±25.13)

7.76%

60 A5
3037.64
(±38.41)

8.01%
60 B5

3162.03
(±38.43)
12.58%
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Weight change—duration water absorption behaviour graphs of PLA samples are
given in Figure 7. After 1 week of exposure, all samples show the highest absorptive ability.
It is observed that the absorption amount is at the highest level among all A and B series
samples, which were kept in distilled water for a week. It is determined that the 60 min
post-UV-cured samples generally have the highest absorption capacity for all periods.
The absorptive ability of non-cured samples is at the lowest level for all samples and all
durations. Thanks to the porous structure arising from the nature of production with the
FDM technique, water uptake can be achieved towards the inner layers of the samples.
Although the samples with the post-UV curing process show different water uptake values
compared to the non-cured samples, the trend shows the same direction and approximately
similar behaviour. Its water intake capability causes reduced pores when production is
made with high production temperature, and therefore less water intake can occur [14,67].
The sample water intake capabilities have the highest value among themselves due to the
irregularities and deteriorations on the A5 and B5 sample surfaces (Figure 8e,f).



Polymers 2023, 15, 348 10 of 17Polymers 2023, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
(a) 

 
(b) 

Figure 7. Weight change—duration graphs of post-UV-cured and produced at (a) 190 °C (b) 200 °C 
PLA parts. 

SEM micrographs of non-cured (a, b), 30 min post-UV-cured (c, d), and 60 min post-
UV-cured (e, f) samples produced at 190 °C are given in Figure 8. Printing lines are indi-
cated with yellow frames, and surface deformations are indicated with black frames on 
the SEM micrographs. Accordingly, the printing lines, which are distinctly prominent and 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 day 3 days 1 week 2 weeks 4 weeks

W
ei

gh
t C

ha
ng

e 
(%

)

Duration
A1 A2 A3 A4 A5

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 day 3 days 1 week 2 weeks 4 weeks

W
ei

gh
t C

ha
ng

e 
(%

)

Duration

B1 B2 B3 B4 B5

Figure 7. Weight change—duration graphs of post-UV-cured and produced at (a) 190 ◦C (b) 200 ◦C
PLA parts.



Polymers 2023, 15, 348 11 of 17
Polymers 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. SEM micrographs of (a,b) non-cured, (c,d) 30 min post-UV-cured and (e,f) 60 min post-
UV-cured PLA specimens produced at 190 °C. Figure 8. SEM micrographs of (a,b) non-cured, (c,d) 30 min post-UV-cured and (e,f) 60 min post-UV-

cured PLA specimens produced at 190 ◦C.

SEM micrographs of non-cured (a, b), 30 min post-UV-cured (c, d), and 60 min post-UV-
cured (e, f) samples produced at 190 ◦C are given in Figure 8. Printing lines are indicated
with yellow frames, and surface deformations are indicated with black frames on the SEM
micrographs. Accordingly, the printing lines, which are distinctly prominent and regular
in the non-cured samples (Figure 8a,b) and samples exposed to UV irradiation for 30 min
(Figure 8c,d), turn into discontinuous, irregular, non-uniform, and less obvious printing
lines on the PLA micrograph exposed to UV light for 60 min (Figure 8e,f). In addition,
the measured diameters of printing fibres of (a) non-cured and (b) 30 min post-UV-cured
samples in the SEM micrographs are given in Figure 9. Accordingly, the diameter of the
printing fibres on the non-cured specimen’s outer surface is larger than that of the specimens
that were post-UV cured for 30 min. The post-UV curing process reduces the prominence
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of the fibres on the sample surface and causes their diameter to decrease. This may be
due to the fact that the post-UV curing process causes the rearrangement of molecular
chains on the material surface to be tighter and the distance between molecular chains
shortened [44,68]. Correspondingly, the reason why A3 and B3 samples have the highest
flexural strength values in the A and B series samples may be that the UV-irradiation
process forms a stronger adhesion combination between the printing fibres and reduces the
number of air gaps on the surface and in the internal structure of the PLA specimens [69].
Surface degradations that are not encountered in the non-cured samples but that occur
in the samples exposed to UV irradiation for 30 and 60 min are also clearly visible, and
it has been noticed that the surface area of these craters increases with the increase in
the UV-irradiation time. The decrease in flexural strength values after 30 min with the
increase in the UV-irradiation exposure time may have resulted from the increase in the
area of the deformation zones and surface irregularities on the material surface, as can
be seen in Figure 8. The surface degradation and irregularities seen in the PLA samples,
especially after more than 30 min of post-UV curing, may be due to the ageing phenomenon
of the post-UV curing process. As a result, the relatively unequal bond strength between
the surface fibres of PLA has occurred, and the bonding success between printing fibres
has decreased. The fact that PLA has a biodegradable structure, the ageing phenomenon
triggers this process, causing the material to begin degrading. The degradation of the
material by such an accelerated effect may be due to the active material degradation
mechanism and the occurrence of chain breaks [70–72].
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3.2. Finite Element Analysis Results

The deflection results of the specimens subjected to a three-point bending test were
obtained with the FEA. Figure 10 shows contour graphs of displacement results obtained
with ANSYS Workbench. The experimental results were compared with the FEA results
attained using ANSYS Workbench. The average error in deflection (δ) was calculated as
follows:

error (%) δ =

∣∣δFEA − δexp eriment
∣∣

δexp eriment
×100% (5)
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In order to get the deflection values from the FE calculations, the elements located
in the middle sections of the support span of the beams were used. Table 5 shows the
average deflection error percentages obtained using Equation (5). Comparisons were made
by finding the deflections corresponding to a specified constant force value in the linear
part of the load–displacement curve of each sample. In the study of Abouelmajd et al. [73],
they stated that the average error between the flexural strength values found between the
experimental and FEA analysis was at the level of 5%. Gebrehiwot et al. [74], on the other
hand, stated that the average error between the numerical and experimental results of the
deflection and strength values of PLA flexural samples produced by the FDM technique
was below 10%. Accordingly, it is seen that the results of the FEA are in good agreement
with the experimental results.

Table 5. The deviation between experimental and FE analysis results.

Specimen Average Deflection Error (%)

A1 %1.26

A2 %2.38

A3 %2.21

A4 %3.01

A5 %1.15

B1 %1.48

B2 %1.35

B3 %3.28

B4 %2.21

B5 %1.15

4. Conclusions

This study examines how the post-UV curing process at different exposure times
affects the flexural, absorptive, and morphological properties of PLA specimens. The
findings obtained as a result of experimental studies are itemised below.

• Increasing the printing temperature causes the material to have better flexural strength.
The high printing temperature causes the flexural strength values of B1 samples to
be 12.73% higher than A1 specimens, B2 to be 11.62% higher than A2, B3 to be 7.69%
higher than A3, B4 to be 9.56% higher than A4, and B5 to be 11.50% higher than A5.

• When the UV-irradiation application is examined for the flexural strength values of the
samples, cured samples show higher values than non-cured samples, regardless of the
temperature at which they are produced. The application of the post-UV curing process
causes the flexural strength values of the samples to behave characteristically the same
regardless of the A and B series. Up to 30 min of post-UV curing application causes the
flexural strength values to increase gradually, reaching the highest value after 30 min
and hovering around a certain value after 30 min of application. Among both A and
B series specimens, 30 min post-UV-cured ones have the highest flexural strength
and non-cured ones have the lowest flexural strength. When A series specimens are
compared with each other in terms of flexural strength, A2 is 4.25% higher than A1,
A3 is 13.37% higher than A2; however, A4 is 8.72% lower than A3, and A5 is 2.24%
lower than A4. When this comparison is made for the B series specimens, B2 is 3.22%
higher than B1, B3 9.38% higher than B2, although B4 is 7.14% lower than B3, and A5
0.51% lower than A4.

• When the deflection values formed in the samples with three-point bending tests
are examined experimentally and numerically, the highest deviation between the
experimental and FEA results is seen in the B3 sample with 3.28% and the lowest value



Polymers 2023, 15, 348 15 of 17

in the A5 and B5 samples with 1.15%. When all deviation values are examined, it can
be said that there is a good agreement between experimental and numerical analysis.
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