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Abstract: Self-oscillation absorbs energy from a steady environment to maintain its own continuous
motion, eliminating the need to carry a power supply and controller, which will make the system
more lightweight and promising for applications in energy harvesting, soft robotics, and microdevices.
In this paper, we present a self-oscillating curling liquid crystal elastomer (LCE) beam-mass system,
which is placed on a table and can self-oscillate under steady light. Unlike other self-sustaining
systems, the contact surface of the LCE beam with the tabletop exhibits a continuous change in size
during self-sustaining curling, resulting in a dynamic boundary problem. Based on the dynamic LCE
model, we establish a nonlinear dynamic model of the self-oscillating curling LCE beam considering
the dynamic boundary conditions, and numerically calculate its dynamic behavior using the Runge-
Kutta method. The existence of two motion patterns in the LCE beam-mass system under steady light
are proven by numerical calculation, namely self-curling pattern and stationary pattern. When the
energy input to the system exceeds the energy dissipated by air damping, the LCE beam undergoes
self-oscillating curling. Furthermore, we investigate the effects of different dimensionless parameters
on the critical conditions, the amplitude and the period of the self-curling of LCE beam. Results
demonstrate that the light source height, curvature coefficient, light intensity, elastic modulus,
damping factor, and gravitational acceleration can modulate the self-curling amplitude and period.
The self-curling LCE beam system proposed in this study can be applied to autonomous robots,
energy harvesters, and micro-instruments.

Keywords: self-oscillation; liquid crystal elastomer; curling; optically-responsive; dynamic
boundary problem

1. Introduction

Self-sustained motion is defined as the periodic motion of an object with a fixed
frequency and amplitude, which is the product of the system in response to a steady external
stimulus [1–5]. Several appealing features are involved, for instance, the ability to harvest
energy directly from the environment [6,7] as a driving force for the working equipment
and the ability to achieve periodic motion without additional control devices [8,9]. They
can reduce the system complexity to achieve intelligence and automation, and can reduce
manpower consumption to save resources and improve efficiency. In addition, self-excited
oscillations usually have good robustness [10]. These unique properties exhibited by self-
oscillating systems have made them extensively applied in autonomous robots [11,12],
motion [13–15], and automated transportation equipment [16–18].

A vast amount of recent work on self-oscillating systems functionalized with various
active materials, have deepen the understanding of self-sustained mechanism and broaden
the application scope. Active materials are a class of materials that respond to external
stimuli by deformation and motion, which have been proven particularly useful in soft
robotics and energy harvesting, including hydrogels [19,20], ionic gels [21,22], liquid crystal
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elastomers (LCEs) [23–26], etc. Numerous active materials have provided researchers
the possibility to construct a variety of self-excited motion modes, e.g., bending [27–29],
torsion [30,31], jumping [32–34], oscillation [35], and vibration [36,37]. These self-sustained
motions usually arise from nonlinear feedback mechanisms that compensates for system
damping dissipation through energy input [38–40], for instance, the self-shading mecha-
nisms [41,42], the coupled chemical reaction and large deformation mechanisms [22], and
the coupled air expansion and liquid column motion mechanisms [43,44].

As a type of stimuli, light offers several unique advantages in terms of its environ-
mental friendliness and transient nature [45]. Photo-responsive materials, such as carbon
nanotubes, graphene, and LCEs, possess sound light-driven deformation effects [46,47].
LCE is a network structure formed by cross-linking of liquid crystal molecules, which can
undergo macroscopic deformation in response to various external stimuli such as electric
field, temperature variation, magnetic field, and optical field [48]. In particular, a LCE
containing azobenzenes, can deform under ultraviolet light irradiation. The variation in
molecular configuration of azobenzenes from straight trans configuration to bent cis configu-
ration can change the order degree of liquid crystal molecules, thus inducing strain in LCEs.
Large reversible deformation and quick deformation response make LCEs appealing, and
thereby open up the possibility of implementing various photo-responsive self-sustained os-
cillations, such as stretching [49], rolling [42], etc. These light-driven self-sustained systems
can directly convert light energy into mechanical motion and have potential applications in
energy harvesting [50,51], soft robotics [52], and micromachines [53].

Although a variety of LCE-based self-oscillation modes have been developed [54,55],
the demand for constructing more novel self-oscillation systems still exists, which is ben-
eficial to realize more functions. In this paper, a self-oscillating curling motion of LCE
beam-mass system under steady light is creatively proposed. A LCE beam carrying two
masses at two ends is placed on a table under irradiation of light sources at fixed height.
Unlike other self-sustaining systems [56], the range of contact surface between the LCE
beam and the tabletop is constantly changing during the self-sustaining curling under
steady light, which is a complex dynamic boundary problem. In addition, the LCE beam
placed on the tabletop is not fixedly connected to the tabletop and can move freely, which
is expected to realize movements such as jumping.

The rest of current paper is organized as follows: In Section 2, based on the dynamic
LCE model, we formulate and solve the governing equations of dynamics of the self-
sustained curling LCE beam considering the dynamic boundary conditions. In Section 3,
following the numerical calculations, two motion patterns of the LCE beam under steady
light, i.e., stationary pattern and self-curling pattern, are introduced, and the mechanism
of self-curling is subsequently explained. In Section 4, the effects of several key system
parameters on the critical conditions, amplitude, and period of the self-curling of the LCE
beam are investigated in detail. Finally, a summary is provided.

2. Model and Formulation

In this section, we first construct the self-curling LCE beam-mass system under steady
light and then establish the theoretical model of the self-curling of the LCE beam considering
dynamic boundary conditions based on the dynamic LCE plate model. The content mainly
includes the dynamic equations of self-curling of LCE beam, the nondimensionalization of
system parameters and the solution method of differential equations.

2.1. Dynamics of a LCE Beam-Mass System

Figure 1 plots the schematic diagram of a photo-responsive LCE beam-mass system
that can sustain a self-curling motion under steady light. Initially, the LCE beam is placed
on a horizontal table with mass blocks of mass m being attached to each end, as shown
in Figure 1a. The LCE beam has length L and thickness h. The mass of the LCE beam is
assumed to be much smaller than that of the mass block, and thus the inertia of the LCE
beam is neglected. When a light source at fixed height H is introduced at each end of the
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LCE beam, only the upper surface of the LCE beam is exposed to light, and the LCE beam
will bend upward as a result of the light-driven non-uniform contraction along the thickness
direction, thereby in turn promoting the mass block to move upward. After the mass block
passes the light source, the upper surface of the LCE beam is no longer illuminated, instead
the lower surface is illuminated. Here, we assume that the lower surface is coated with a
light-shielding layer. Subsequently, the LCE beam will bend back due to the recovery of
light-driven contraction on the upper surface, leading to promote the mass block to move
downward quickly. When the mass block moves rapidly downward below the light source,
the upper surface of the LCE beam is exposed to light again, causing the mass block to be
driven upward again subsequently. Ultimately, the LCE beam-mass system can undergo
self-sustained curling motion under steady light. It is worth noting that the size of the
contact surface between the LCE beam and the horizontal table is constantly varing during
the curling process of the LCE beam, resulting in a dynamic boundary problem.
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Figure 1. (a) Schematic diagram of the dynamic model of the LCE beam-mass system for self-
sustained curling under steady light. (b) Equivalent schematic of the right half of the system in
Figure 1a, where the LCE beam is partially in contact with the table. (c) Magnified cross-sectional
view of the LCE beam, showing the optically-driven strain distribution on the beam section, with the
lower surface of the LCE beam covered with a light-shielding layer. (d) Force analysis of the mass
block at the end of the LCE beam, which is subjected to the mass gravity mg, the air damping force
Ff, and the elastic force FL provided by the LCE beam. (e) Force analysis of the untouched part of the
LCE beam, which is subjected to the elastic force FL, the crosssection shear force Fs, and crosssection
bending moment M(xc) provided by the touched part of LCE beam. Under steady light, the LCE
beam can self-curl periodically.

To describe the present state of the self-sustained curling LCE beam, we introduce
the y-axis in the vertical direction. The position of the mass block at time t is denoted as
w(t). Given the symmetry of this problem, we select half of the LCE beam-mass system for
analysis, as shown in Figure 1b. We emphasize that the intermediate symmetry plane of
the LCE beam does not rotate, which is equivalent to a fixed end constraint (Figure 1b). The
LCE beam bends in the light and acts elastic force FL on the mass block at the end, which
is also subjected to gravity mg and damping force Ff, as shown in Figure 1d. Given that
the eigenperiod of the LCE beam can be easily adjusted by changing the mass of the mass
block and the bending stiffness of the LCE beam, for comparable eigenperiod and light
response characteristic time, the dynamic equation governing the motion of the mass block
are derived from mechanical equilibrium as follows [57],

m
..
w(t) = −mg + Ff(t) + FL(t) (1)
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where g is the gravitational acceleration and
..
w(t) represents the acceleration of the mass block.

For simplicity, the damping force is assumed to be proportional to the velocity, namely

Ff(t) = −β
.

w(t) (2)

where β is the damping factor and
.

w(t) represents the velocity of the mass block.
To calculate the elastic force of the LCE beam acting on the mass block, we need

to first find the light-driven curvature κL(t) of the LCE beam. Considering that the top
or bottom surface of the beam is always illuminated or backlighted at the same time,
the light illumination on either top or bottom surface of the LCE beam is assumed to
be inhomogeneous for simplifying the modelling. For the illuminated LCE beam, the
non-uniform light-driven strain varing along the thickness direction, is denoted as εL(y, t).
According to [57], the non-uniform light-driven strain will lead to the light-driven curvature
of the LCE beam, namely

κL(t) =

∫ h/2
−h/2 εL(y, t)ydy

IZ
(3)

where IZ is the principal moment of inertia of the LCE beam section.
In general, at arbitrary instant of motion, the light-driven curvature of the LCE beam

is κL(t), the position of the mass block is w(t), and the LCE beam is partially in contact with
the table. The length of LCE beam leaving the table is xc(t), which varies continuously with
the self-oscillating curling motion of the LCE beam and is to be quantified. The curvature
at the contact junction is zero, so the crosssection bending moment M(xc) can be derived as

M(xc) = EIZ(κL − 0) (4)

where E is the elastic modulus of LCE.
Likewise, we consider the equilibrium of the non-contact part of LCE beam with the

table (Figure 1e), that is
M(xc) = FLxc(t) (5)

Combining Equations (4) and (5), the non-contact length xc(t) of the LCE beam with
the table is expressed as

xc(t) =
EIZκL(t)

FL(t)
(6)

Given the geometric relationship and deflection equation in Figure 1e, we can write(
1

κL(t)
−
√

1
κ2

L(t)
− x2

c(t)

)
− w(t) =

FL(t)x3
c(t)

3EIZ
(7)

Combining Equations (6) and (7), the analytical formula of the elastic force FL is as follows

FL =

√
2EIZκ2

L(t)√
−3− 6κL(t)w(t) + 3

√
12κL(t)w(t)− 4κ2

L(t)w
2(t) + 1

(8)

Substituting Equations (2) and (8) into Equation (1), the dynamic equation of the mass
block is obtained

m
..
w(t) = −mg− β

.
w(t) +

√
2EIZκ2

L(t)√
−3− 6κL(t)w(t) + 3

√
12κL(t)w(t)− 4κ2

L(t)w
2(t) + 1

(9)

It is worth noting that Equation (9) is determined by Equation (3). The light-driven
contraction strain in Equation (3) is related to the cis number fraction of LCE material. For
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simplicity, the assumption is made that the light-driven contraction strain is proportional
to the cis number fraction φ(y, t), i.e.,

εL(y, t) = −C0φ(y, t) (10)

where C0 is the contraction coefficient.

2.2. Dynamic LCE Model

In the following, φ(y, t) is given by the dynamic LCE model. According to Corbett and
Warner [58], the light intensity in LCE decreases exponentially along the depth direction.
The LCE beam is uniformly illuminated and the light intensity at any position can be
written as [58,59].

I(y) = I0 exp
(
−|y− y0|

d0

)
(11)

where I0 is the light intensity, y0 is the vertical coordinate of exposed surface, and d0 denotes
the characteristic penetration depth.

The cis-number fraction is generally relevant to the thermal excitation from trans to cis,
the thermally driven relaxation from cis to trans, as well as the light-driven isomerization.
The thermal excitation from trans to cis is often negligible and φ(y, t) can be described
by [60–62]

∂φ

∂t
= η0 I(1− φ)− T−1

0 φ (12)

where T0 denotes the thermal relaxation time from the cis to trans state and η0 repre-
sents the light-absorption constant. By considering an initial condition and assuming
T0η0 I << 1 [61], the solution to Equation (12) can be approximately expressed as

φ(y, t) = η0T0 I + (φ0 − η0T0 I) exp
(
− t

T0

)
(13)

in which, φ0 is the initial cis number fraction.
In this paper, the LCE beam switches between light irradiation and darkness. For Case

I that the LCE beam is in the illumination zone with initial φ0 = 0, the cis number fractions
can be reduced to

φ0(t) = η0T0 I0

[
1− exp

(
− t1

τ0

)]
(14)

For Case II that the LCE beam is in the illumination zone switched from the dark zone
with transient φ0 = φdark, the cis number fractions can be reduced to

φ0(t) = η0T0 I0 + (φdark − η0T0 I0) exp
(
− t2

τ0

)
(15)

For Case III that the LCE beam is in the dark zone (I0 = 0), switched from the
illumination zone with transient φ0 = φillum, the cis number fractions can be reduced to

φ0(t) = φillum exp
(
− t3

τ0

)
(16)

In Equations (14)–(16), t1, t2 and t3 are the durations of current process, respectively,
φdark and φillum are the transient number fractions of cis-isomers at the instant of switching
from the dark zone into the illumination zone, and from the illumination zone into the dark
zone, respectively.

We remark that φ(y, t) is always linearly proportional to I(y) for φ0 = 0. Therefore,
we can rewrite Equation (13) as

φ(y, t) = φ0(t) exp
(
−h/2− y

d0

)
, for− h

2
≤ y ≤ h

2
(17)
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in which, φ0(t) is the cis number fraction on the illuminated surface.
Combining Equations (3), (10) and (17), we can obtain the curvature κL(t) formed at

the end mass of the LCE beam during self-oscillation, being proportional to the cis number
fraction φ0(t), as

κL(t) = Aφ0(t) (18)

where A is the curvature coefficient, namely

A =
−C0d0(h/2− d0)

(
1 + e−h/d0

)
IZ

(19)

2.3. Nondimensionalization and Solution

For convenience, the dimensionless quantities are introduced as follows: I0 = η0 I0T0, t = t
T0

,

β = βT0
m , H = H

L , g =
gT2

0
L , w = w

L , E =
EIZT2

0
mL3 , κL = κLL, and A =

−C0d0L2(h/2−d0)(1+e−h/d0)
IZ

.
From Equation (8), the dimensionless elastic force can be expressed as

FL =

√
2Eκ2

L√
−3− 6(κLw) + 3

√
12(κLw)− 4(κLw)2 + 1

(20)

The governing Equation (9) can be nondimensionalized with the following

− g +

√
2Eκ2

L√
−3− 6(κLw) + 3

√
12(κLw)− 4(κLw)2 + 1

− β
.

w =
..
w (21)

From Equations (15) and (17)–(19), the light-driven curvature can be rewritten as
follows, for Case I,

κL

(
t
)
= AI0

[
1− exp

(
−t1

)]
(22)

for Case II,
κL

(
t
)
= AI0 −

(
κdark − AI0

)
exp

(
−t2

)
(23)

and for Case III,
κL

(
t
)
= κillum exp

(
−t3

)
(24)

where κdark and κillum are the light-driven curvature at the instant of switching from the
dark zone into the illumination zone, and from the illumination zone into the dark zone,
respectively. Since t1, t2 and t3 are the durations of current process, light-driven curvature
κL is process-related and time-dependent.

The initial condition of the LCE beam is as follows: when t = 0,

w = w0,
.

w =
.

w0 (25)

Taking into account the dimensionless parameters H, I0, A, E, β, g, and
.

w, Equations (20)–(25)
govern the motion of the LCE beam-mass system under steady light. To solve the complex
differential Equation (21) with variable coefficients, we perform numerical calculations in
the software Matlab based on the fourth-order Runge-Kutta method. In the calculation, we
give the LCE beam an initial displacement. For the previous position wi−1 and the previous
curvature κL(i−1), we can calculate the corresponding elastic force FL(i−1)according to
Equation (20). The current position wi can be further calculated from Equation (21), and
the current curvature κLi can be calculated from Equations (22)–(24). When the current
position wi < H, the upper surface of the LCE beam is in the light irradiation; when the
current position wi > H, the upper surface of the LCE beam is in the darkness. Based on the
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current curvature κLi, we can obtain the current elastic force FL(i) by Equation (20). Then
we continue to obtain the position w(i+1) and curvature κL(i+1) of the LCE beam in turn
from Equations (22)–(25). Through iterative calculations, the time history of the position of
the self-curling LCE beam can be obtained and the effects of different parameters on its
self-curling can be further investigated.

3. Two Motion Patterns and Mechanism of the Self-Curling

Considering the above governing equations, we investigate the dynamic behavior
of the self-oscillating curling of the LCE beam under steady light through numerical
calculations. We first introduce two motion patterns, namely stationary pattern and
self-curling pattern; then the corresponding mechanism of self-curling is elaborated by
parametric analysis.

3.1. Two Motion Patterns

To study the self-oscillating curling motion of the LCE beam, we first need to determine
the dimensionless parameters in the theoretical model. Taking data from the existing
experiments [12,63,64], the material properties and geometric parameters of the system,
and the corresponding dimensionless parameters are respectively listed in Tables 1 and 2.
The following parameter values are used in current paper to study the self-curling of the
LCE beam under steady light.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

C0 contraction coefficient 0~0.5 /
T0 trans-to-cis thermal relaxation time 0.001~0.1 s
I0 light intensity 0~10 kW/m2

η0 light-absorption constant 0.0001 m2/(s·W)
m mass of the mass block 0.001 kg
E elastic modulus of LCE material 1~10 MPa
β damping factor 0~1 kg/s
g gravitational acceleration 10 m/s2

d0 characteristic penetration depth 10−5 m
h thickness of LCE beam 10−4 m
IZ principal moment of inertia 10−7 m4

L length of LCE beam 0.01~0.02 m
H light source height 0~0.002 m

Table 2. Dimensionless parameters.

Parameter ¯
H

¯
A

¯
I 0

¯
E

¯
β

¯
g

Value 0~0.1 0~0.5 0~0.1 0~10 0~0.5 10−3~10

Two typical motion patterns as well as the corresponding phase trajectories of the
LCE beam under steady light are given in Figure 2. The numerical calculation results
show the existence of two motion patterns of the LCE beam: the stationary pattern and the

self-curling pattern. When A = 0.36, E = 2.4, g = 0.015, β = 0.30,
.

w = 0, H = 0.04, and
I0 = 0.058, the LCE beam under steady light initially bends upward due to the light-driven
contraction in the upper surface of LCE beam exposed to light. And after the mass block
passes cross the light source, the LCE beam is promoted to bend downward due to the
recovery of the light-driven contraction in the upper surface of LCE beam in darkness.
Due to the air damping, the oscillation amplitude of the LCE beam decreases continuously
and finally remains stable, which is called the stationary pattern, as shown in Figure 2a,b.

When A = 0.36, E = 2.4, g = 0.015, β = 0.30,
.

w = 0, H = 0.04, and I0 = 0.06, the
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oscillation amplitude of the LCE beam exhibits a slight increasing trend and the beam
eventually presents a continuous oscillation at a constant amplitude, which is named as
the self-curling pattern, as shown in Figure 2c,d. Similar to other self-oscillating systems,
the LCE beam can undergo a self-oscillation pattern with a steady light source, which is
generally because of the energy compensation between the light energy and the energy
dissipated by air damping, so as to maintain the self-oscillation. The following part will
focus on the mechanism of the self-oscillating curling in detail.
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w = 0.
(c) Time history and (d) phase trajectory diagram of the self-curling pattern of the LCE beam-mass

system for H = 0.04, A = 0.36, I0 = 0.06, E = 2.4, g = 0.015, β = 0.30 and
.

w = 0. Two motion
patterns exist for the LCE beam-mass system under steady light: the stationary pattern and the
self-curling pattern.

3.2. Mechanism of Self-Curling

To investigate the self-oscillating curling mechanism of the LCE beam, Figure 3 dis-
plays the evolutions of several key parameters for the self-curling pattern of the LCE beam
in Figure 2c,d. Figure 3a plots the time dependence of the cis number fraction of the LCE
material, showing a periodic variation with time. Figure 3b plots the time dependence of
the curvature of the LCE beam, which also varies with time periodically. Figure 3c plots
the time dependence of the elastic force acting on the mass block from the LCE beam, and
it is evident that the elastic force also varies with time in a periodic manner. As shown
in Figure 3d, the dependence of the elastic force on the displacement of the mass block is
plotted. There forms a closed curve in one cycle. The area enclosed by this closed curve
represents the net work done by the elastic force, calculated as 2.68× 10−4. Meanwhile, the
time dependence of the damping force acting on the mass block is plotted in Figure 3e, and
the results show that the damping force varies periodically with time. The dependence of
the damping force on the displacement of the mass is plotted as shown in Figure 3f. There
also forms a closed curve in one cycle. The area enclosed by this closed curve represents
the damping dissipation energy, which is calculated as 2.68× 10−4. It is equal to the net
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work done by the elastic force so that a continuous and stable self-oscillating curling state
can be maintained.
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Figure 3. (a) Time dependence of the cis-number fraction of the LCE beam; (b) Time dependence of the
curvature of the LCE beam; (c) Time dependence of the elastic force of the LCE beam; (d) Dependence
of the elastic force on the displacement of the mass block. (e) Time dependence of the damping force;
(f) Dependence of the damping force on the displacement of the mass block. The area enclosed in
Figure 3d indicates the net work done by the elastic force, which is equal to the energy dissipated by
the damping, i.e., the self-curling pattern is maintained.

4. Parametric Study

The following dimensionless parameters exist in the above theoretical model: H, A, E,
I0, g and β. In current section, we will investigate the effects of these key system parameters
on the critical conditions, the amplitude and period of the self-oscillating curling of the LCE
beam-mass system, expecting to guide its applications in soft robotics, energy harvesters,
micro-instrumentation, and other fields.
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4.1. Effect of Dimensionless Light Source Height

Figure 4 illustrates the effect of dimensionless light source height on the self-curling of
the LCE beam. In the calculation, we set other parameters as A = 0.36, E = 2.4, I0 = 0.06,

g = 0.015, β = 0.30 and
.

w = 0. Figure 4a plots the limit cycles for self-curling of the
LCE beam at different dimensionless light source heights. The critical light source height
H for the existence of self-curling is 0.05. When the dimensionless light source height
exceeds the critical value, the LCE beam finally stays in the static equilibrium position
and maintains the steady state, which is the stationary pattern. For H = 0.03, H = 0.035
and H = 0.04, the LCE beam is capable of self-oscillating curling. Figure 4b presents the
effect of different dimensionless light source heights on the amplitude and period of the
self-curling. Both amplitude and period increase with the increase of the dimensionless
light source height. This is attributed to the fact that the higher the height H of the light
source, the longer duration of the LCE beam being irradiated during the self-curling, the
more the light energy input, and the greater the amplitude and period of the self-curling
of LCE beam. In practical application, the light source can be placed further away from
the LCE beam to meet the requirements of working conditions, which will complicate the
problem more. However, we believe that the position of the light source has no qualitative
impact on the results, only quantitative impact.
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Figure 4. Effect of dimensionless light source height on the self-curling of the LCE beam-mass system

for the other parameters A = 0.36, E = 2.4, I0 = 0.06, g = 0.015, β = 0.30 and
.

w = 0. (a) Limit cycles;
(b) Time histories for different light source heights H. Both amplitude and period of the self-curling
increase as the light source height H increases.

4.2. Effect of Dimensionless Curvature Coefficient

Figure 5 shows the effect of different curvature coefficients A on the self-curling of the
LCE beam. In the calculation, we set the other parameters H = 0.04, E = 2.4, I0 = 0.06,

g = 0.015, β = 0.30 and
.

w = 0. Figure 5a depicts the limit cycles of self-curling for LCE
beams with different dimensionless curvature coefficients. The critical curvature coefficient
A for the LCE beam to undergo self-curling pattern is about 0.34. When the dimensionless
curvature coefficient is below the critical value, the light energy input is less than the energy
consumed by the damping, so that the LCE beam finally stays in the static equilibrium
position. For A = 0.36, A = 0.4 and A = 0.44, LCE beam can occur with self-oscillating
curling. Further, Figure 5b displays the effect of different curvature coefficients A on
the self-curling amplitude and period of the LCE beam. As the dimensionless curvature
coefficient increases, the self-curling amplitude increases significantly. This is attributable
to the fact that the larger the curvature coefficient is, the more the work done by the LCE
beam to the mass block, and in turn the greater the amplitude. Meanwhile, the self-curling
period remains almost constant as the dimensionless curvature coefficient increases. This is
because that the dimensionless curvature coefficient only reflects the deformation without
changing the natural frequency of the system.
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Figure 5. Effect of dimensionless curvature coefficient on the self-curling of the LCE beam-mass

system for the other parameters H = 0.04, E = 2.4, I0 = 0.06, g = 0.015, β = 0.30 and
.

w = 0. (a) Limit
cycles; (b) Time histories for different curvature coefficients A. As the dimensionless curvature
coefficient increases, the self-curling amplitude increases significantly, while the self-curling period
remains almost constant.

4.3. Effect of Dimensionless Light Intensity

Figure 6a plots the limit cycles of self-curling for LCE beam at different light intensities
I0. The critical light intensity I0 for the occurrence of self-curling pattern of the LCE beam
is 0.058. When the dimensionless light intensity is less than the critical value, the LCE beam
finally stays in the static equilibrium position and maintains a steady state. This is because
the mechanical energy of the system converted from the light energy is not sufficient enough
to compensate for the energy dissipation caused by damping. For I0 = 0.06, I0 = 0.07
and I0 = 0.08, the self-curling pattern of the LCE beam will emerge. Figure 6b illustrates
the effect of dimensionless light intensity on the self-curling amplitude and period of
the LCE beam. The amplitude displays a significant increase with the increasing light
intensity I0. This is because the greater the light intensity I0, the more the light energy is
converted into the mechanical energy of the system, consequently the greater the amplitude.
Similarly, the period remains almost unchanged with the increase of dimensionless light
intensity. This is because that the dimensionless light intensity does not affect the natural
frequency of the system.
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Figure 6. Effect of dimensionless light intensity on the self-curling of the LCE beam-mass system for

the other parameters H = 0.04, A = 0.36, E = 2.4, g = 0.015, β = 0.30 and
.

w = 0. (a) Limit cycles;
(b) Time histories for different light intensities I0. As the light intensity I0 increases, the self-curling
amplitude displays a significant increase, while the self-curling period remains almost unchanged.
Figure 6 presents the effect of different light intensities I0 on the self-curling of the LCE beam. In the

calculation, we set the other parameters H = 0.04, A = 0.36, E = 2.4, g = 0.015, β = 0.30 and
.

w = 0.

4.4. Effect of Dimensionless Elasticity Modulus

Figure 7 shows the effect of the dimensionless elastic modulus on the self-curling of the
LCE beam. In the calculation, we set the other parameters to H = 0.04, A = 0.36, I0 = 0.06,
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g = 0.015, β = 0.30 and
.

w = 0. Figure 7a depicts the limit cycles of the self-curling of the
LCE beam for different elastic moduli E. There exists a critical elastic modulus E for the
self-curling of the LCE beam, being about 2.3. When the dimensionless elastic modulus
is below the critical value, the LCE beam finally stays in the static equilibrium position
and maintains a stable stationary pattern. This is because the smaller the elastic modulus
E, the softer the LCE beam is, thus the mechanical energy of the system arising from
the conversion of light energy is unable to compensate for the energy lost in damping to
maintain the self-curling. For E = 2.40, E = 2.50 and E = 2.60, the self-curling pattern of
the LCE beam will occur, with their limit cycles being plotted in Figure 7a. Meanwhile,
Figure 7b shows the effect of dimensionless elastic modulus on the amplitude and period
of the self-curling. As the dimensionless elastic modulus increases, the amplitude increases
significantly while the period decreases. This is due to the fact that a larger dimensionless
elastic modulus will provide a larger elastic force and a smaller eigenperiod, which is
consistent with physical intuition.
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Figure 7. Effect of dimensionless elastic modulus on the self-curling of the LCE beam-mass system for

the other parameters H = 0.04, A = 0.36, I0 = 0.06, g = 0.015, β = 0.30 and
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w = 0. (a) Limit cycles;
(b) Time histories for different elastic moduli E. As the elastic modulus E increases, the self-curling
amplitude increases significantly, while the self-curling period is suppressed.

4.5. Effect of Dimensionless Gravitational Acceleration

Figure 8a displays the limit cycles of the self-curling of the LCE beam for different grav-
itational accelerations g. There exists a critical gravitational acceleration g value of about
0.016 to trigger the LCE beam to exhibit self-oscillating curling. When the dimensionless
gravitational acceleration exceeds the critical value, the LCE beam will maintain the static
stationary pattern because the energy input is not enough to compensate for the energy
loss when the dimensionless gravitational acceleration is large. For g = 0.004, g = 0.009
and g = 0.014, the self-curling can emerge in the LCE beam. Meanwhile, Figure 8b shows
the effect of gravitational acceleration g on the self-curling amplitude and period of the
LCE beam. The self-curling amplitude exhibits a considerable decrease with the increas-
ing dimensionless gravitational acceleration, which is attributed to the fact that a larger
gravitational acceleration g will lead to less work done by the LCE beam on the mass block.
Meanwhile, the self-curling period is also suppressed by the dimensionless gravitational
acceleration, which is consistent with physical intuition. Considering g = gT2

0 /L, the
dimensionless g can be easily tuned by changing the length of LCE beam to satisfy the
requirement of applications.
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w = 0. (a) Limit
cycles; (b) Time histories for different gravitational accelerations g. As the gravitational acceleration
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4.6. Effect of Dimensionless Damping Factor

Figure 9 shows the effect of the damping factor β on the self-curling of the LCE beam.
In the calculation, we set the other parameters H = 0.04, A = 0.36, E = 2.4, I0 = 0.06,

g = 0.015 and
.

w = 0. Figure 9a plots the limit cycles of self-curling for LCE beams with
different damping factors β. A critical damping factor β valued about 0.38 exists for the
occurrence of the self-curling for LCE beams. When the dimensionless damping factor
is greater than the critical value, the damping energy dissipation exceeds the mechanical
energy of the system converted from light energy, so that the LCE beam will eventually
maintain stationary. For β = 0.28, β = 0.30 and β = 0.32, the LCE beam undergoes
self-curling pattern. Meanwhile, Figure 9b displays the effect of the damping factor β on
the self-curling amplitude and period of the LCE beam. As the dimensionless damping
factor increases, the amplitude decreases significantly. This is due to the fact that the
larger the dimensionless damping factor, the more energy the damping consumes, and as
a result, the smaller the amplitude. Meanwhile, the period remains almost constant with
increasing dimensionless damping factor, for the dimensionless damping factor hardly
changes the natural frequency of the system. This result is similar to other self-oscillating
systems [27–35].
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5. Conclusions

Self-oscillation can actively draw energy from the environment to maintain its own
motion and has important application prospects in energy harvesting, soft robotics, and
micromachines. In current paper, we propose a LCE beam-mass system that can exhibit
self-curling pattern under steady light, among which the LCE beam carrying two masses at
two ends is placed on a tabletop under irradiation of light sources at fixed height. Unlike
other self-sustained systems, the varing contact surface between the LCE beam and the
tabletop indicates the dynamic boundary problem. Based on the existing dynamic LCE
model, we developed a nonlinear dynamic model for the self-oscillating curling of the LCE
beam-mass system under steady light. Numerically solved by the fourth-order Runge-
Kutta method, the computational results demonstrate that two types of motion patterns
exist, namely the stationary pattern and the self-curling pattern. The self-curling of the
LCE beam originates from its periodic light-driven contraction and relaxation. Further,
we investigate the effects of different dimensionless parameters on the critical conditions,
the amplitude, and the period of self-curling of the LCE beam. The results show that the
increases in light source height, curvature coefficient, light intensity, and elastic modulus,
will promote the self-curling amplitude to be increased, while the gravitational acceleration
and damping factor do the opposite. The light source height promotes the self-curling
period while the elastic modulus suppresses the period, while the other parameters do
not affect the self-curling period. In general, the above results are expected to deepen the
understanding of the self-oscillation phenomenon and provide design ideas for applications
such as autonomous robotics, sensors, energy harvesting, and microinstrumentation.
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