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Abstract: The recent expansion of the application environment of power electronics to high-radiation
environments will cause the deterioration of insulation materials used in power electronics due to
charging caused by cosmic ray irradiation. The charging phenomena should induce malfunctions in
power electronics. Therefore, it is important to understand the insulation characteristics of insulation
materials irradiated with protons, electrons, etc., to improve the reliability of power electronics. With
respect to the above, there are few reports on the RIC (radiation-induced conductivity) of insulation
materials irradiated with proton beams. In this paper, we experimentally evaluated the RIC of PI
(polyimide) films irradiated with proton beams under various irradiation conditions. We also studied
a calculation method to estimate the measured RIC of the PI. As a result, we clarified that the total
conductivity of the PI increased under non-penetrating irradiation conditions and saturated under
penetrating irradiation conditions. The reason for this is that the higher the irradiation energy, the
deeper the maximum proton penetration depth under non-penetrating irradiation conditions. On the
other hand, the conductivity characteristics did not change under penetrating conditions because the
penetration depth was the same as the sample thickness. We also developed a calculation method to
estimate the conductivity of the entire PI irradiated with proton beams. The estimated data calculated
by the above method were analytically fitted with the measured data for most irradiation energy
conditions. It is suggested that the above calculation method can estimate the conductivity of the
entire PI irradiated with proton beams, regardless of penetrating or non-penetrating irradiation,
based on the relationship between the RIC and dose rate of the PI irradiated under penetrating
conditions. In the future, we will incorporate the results of this study into a computational model of
space charge accumulation inside insulation materials to verify the influence of the RIC caused by
proton irradiation on space charge accumulation.

Keywords: insulation materials; polyimide; radiation; proton; RIC (radiation-induced conductivity)

1. Introduction

In recent years, the improvements in the reliability of power electronics have triggered
many studies related to electrical insulation design technologies [1–4]. In these studies, their
common concern is that the expansion of the application environment of power electronics
to high-altitude and/or high-radiation environments will cause the deterioration of insula-
tion materials used in power electronics due to discharge in low-pressure environments
and/or charging caused by cosmic ray irradiation [5–7]. With respect to high-radiation
environments, it has been reported that the exposure of high-energy charged particles, such
as protons, electrons, etc., to insulation materials gives rise to the charge accumulations in
the insulation materials due to changes in the insulation characteristics of the insulation ma-
terials [3,4,8]. The charging phenomena should induce malfunctions in power electronics.
In addition, dielectric breakdown due to the charging and/or deterioration of insulation
materials will make power electronics inoperable.
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From the above background, it is important to understand the accumulation charac-
teristics of the space charge in insulation materials irradiated with high-energy charged
particles to improve the reliability of power electronics. Therefore, it is desirable to clarify
the mechanism based on the calculation of the space charge accumulation in insulation
materials irradiated with high-energy charged particles in the future. As a first step in the
development of the calculation method of the space charge accumulation, it is necessary
to propose a calculation method for the RIC (radiation-induced conductivity) caused by
irradiation with high-energy charged particles. With respect to the above, there are many
reports on the RIC of insulation materials irradiated with electron beams [9–14], while
there are few reports on insulation materials irradiated with proton beams [15–18]. In this
paper, we report experimental and computational studies on the RIC of proton irradiated
insulation materials. In particular, we propose a calculation method to estimate the conduc-
tivity of the insulation materials irradiated with proton beams, regardless of penetrating or
non-penetrating irradiation, based on the relationship between the RIC and dose rate of
the insulation materials irradiated at penetrating conditions.

2. Materials and Measurement Methods

Test samples were commercially available PI (polyimide) films (50 µm thickness)
whose chemical structure is shown in Figure 1 [15–17]. To simulate the deterioration of
the PI in high-radiation environments, the samples were irradiated with proton beams
using a 3 MeV tandem accelerator facility at QST (Takasaki Advanced Radiation Research
Institute of National Institute for Quantum and Radiation Science and Technology, Gunma,
Japan) [19]. The following were the irradiation conditions: the irradiation energy was
1.0–2.5 MeV, the irradiation current density was 30 nA/cm2, the irradiation time was
30 min, and the vacuum pressure during proton irradiation was 10−4–10−5 Pa. Table 1
shows the maximum proton penetration depth in the samples under the above irradiation
conditions calculated using SRIM (Stopping and range of ions in matter) [20].
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Figure 1. Chemical structure of PI.

Table 1. The maximum proton penetration depths in the PI samples calculated using SRIM.

Irradiation Energy Condition Maximum Proton Penetration Depth Type of Proton Irradiation

1.0 MeV 19 µm Non-penetrating
1.5 MeV 37 µm Non-penetrating
2.0 MeV 59 µm Penetrating
2.5 MeV 84 µm Penetrating

The conductivity of the samples was measured using the ASTM (American society for
testing and materials) method [15,16,21]. Figure 2 shows a principle of the ASTM method.
The samples were sandwiched between the high voltage electrode and the detection
electrode with the guard electrode. The following were the conductivity measurement
conditions: a DC electric field of 100 kV/mm was applied to the samples, and the maximum
measurement time was 180 min. Since applying the electric field to the bulks of the samples
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causes conduction currents to flow through them, the conductivity, σ, was calculated with
Equation (1).

σ = J/E (1)

In the equation, J is the measured current density and E is the electric field applied to the
samples. The nomenclature for the parameters is listed in Table A1.
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Figure 2. A principle of the ASTM method.

3. Measurement Results

Figures 3 and 4 show the measured results of the current density through the bulks of
the proton irradiated samples as time progressed. The lines show the measured data [15,16]
and the plots show the approximate data estimated by using the Maxwell–Wagner theory
of composite layers [22,23], which, based on the measured data, can be expressed as a
function of time with Equation (2).

J = J(t=1) · t−α (2)

In the equation, J(t = 1) is J at t = 1, t is the elapsed time after the start of measurements,
and α is a constant. The nomenclature for the parameters is listed in Table A1.

In Figure 3, α in Equation (2) was set to 0.90 or 0.50 for the non-penetrating or penetrating
irradiated samples, respectively. The figure shows that the RIC caused by proton irradiation
would make the samples highly conductive. The main factors that cause RIC are the
activation of the samples, the generation of vacancies and the ionization in the samples due
to the cleavage of molecular chains, and the application of irradiation energy to the samples.

In Figure 4, α in Equation (2) was changed from 0.50 to 0.90 with the elapsed time after
proton irradiation. The figure shows that the conductivity of the proton irradiated samples
reverted to that of the non-irradiated samples as time passed after irradiation. The phe-
nomenon is so-called DRIC (delayed RIC) [24,25]. DRIC is defined as the phenomenon of
the bulk of a sample remaining highly conductive even after irradiation. The recombination
of electron-hole pairs generated inside a sample over time should suppress the generation
of polarized charge and cause DRIC. Note that the approximate data for the irradiation
energy conditions of 1.5–2.0 MeV in Figure 3 and the elapsed time conditions after 1 day of
proton irradiation in Figure 4 will be used in the following discussions because the samples
broke down during the measurements.
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4. Calculation Methods

The RIC caused by electron irradiation can be expressed as a function of the dose rate
with Equation (3) [9,24,25].

σRIC = kRIC

(
dD
dt

)∆
(3)

In the equation, σRIC is the RIC, dD/dt is the dose rate, and kRIC and ∆ are constants.
Based on this relation, we will estimate the conductivity, including the RIC, of the entire
sample irradiated with proton beams.
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Figure 5 shows an equivalent circuit of the conductivity, including the RIC, of the
entire sample. The right side of the figure indicates the irradiated surface of the sample, and
the left side indicates the non-irradiated surface. The total conductivity, σtotal, of the entire
sample can be expressed as a function of the intrinsic conductivity of the non-irradiated
samples and the RIC with Equations (4) or (5). Incidentally, the total conductivity, σtotal,
is given as the harmonic mean of the sum of the intrinsic conductivity and the RIC of
micro-intervals dx with equal weights, as in Equation (4).

σtotal =

[∫
(σNIC + σRIC)

−1dx
]−1
· xtotal (4)
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Figure 5. An equivalent circuit of the conductivity of the entire sample irradiated with proton beams.

In the equation, σNIC is the NIC (non-irradiated conductivity) of the non-irradiation
samples and xtotal is the total thickness of the samples. In addition, discretizing the above
equation with the substitution of Equation (3) yields Equation (5).

σtotal =

∑
{

σNIC + kRIC

(
dD
dt

)∆
}−1

−1

· xtotal
∆x

(5)

In the equation, ∆x is a micro-interval with finite size. Furthermore, replacing kRIC
in the above equation with kDRIC, which can be expressed as a function of time with
Equation (6) [10,25,26], reflects the influence of the DRIC on the total conductivity.

kDRIC =
kRIC

1 +
(
t′ − t′0

)
/τ

(6)

In the equation, t′ is the elapsed time after proton irradiation, t′0 is t′ at which the
conductivity data were measured as the basis for DRIC evaluations, and τ is the time
constant of the DRIC. Figure 6 shows the dose rate distributions of the proton irradiated
samples calculated with Equation (7) [9,26].

dD
dt

= jirrad ·
Edeposit

ρ∆x
(7)
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In the equation, jirrad is the irradiation current density, Edeposit is the deposit energy
per unit length of proton beams to samples calculated using TRIM (Transport of ions
matter) [20], and ρ is the density of the samples. The nomenclature for the parameters
is listed in Table A1. In Figure 6, incidentally, the irradiation energy is absorbed in the
samples under non-penetrating irradiation conditions of 1.0–1.5 MeV. On the other hand, it
is relatively difficult for irradiation energy to be absorbed in the samples under penetrating
irradiation conditions of 2.0–2.5 MeV.

5. Calculation Results and Comparison with Measurement Results

Figures 7 and 8 show the estimated results of the total conductivity of the proton irradiated
samples. The black circle plots are the measured data based on Equation (1) and Figure 3. The
red diamond-shaped plots are the estimated data based on Equations (5) and (6) and Figure 6.
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In Figure 7, kRIC and ∆ in Equation (5) were set to 2.0 × 10−16 and 0.80 [10,12],
respectively. The measured data in the figure show that the total conductivity of the
samples increased in the irradiation energy range of 1.0–2.0 MeV and saturated in the
irradiation energy range of 2.0–2.5 MeV. The reason for this is that the irradiation energy
range of 1.0–2.0 MeV corresponded to non-penetrating conditions, as shown in Table 1, and
the higher the irradiation energy, the deeper the maximum proton penetration depth. On
the other hand, the irradiation energy range of 2.0–2.5 MeV corresponded to penetrating
conditions, as shown in Table 1, and the conductivity characteristics did not change because
the penetration depth was the same as the sample thickness. Figure 7 shows that the
estimated data were analytically fitted with the measured data for most irradiation energy
conditions. Based on Equation (3), this result suggests that setting kRIC and ∆ appropriately
can estimate the conductivity of the entire PI irradiated with proton beams regardless of
penetrating or non-penetrating irradiation.

In Figure 8, kRIC and ∆ in Equation (5) were set to 2.0 × 10−16 and 0.80, respectively, as
in Figure 7, and τ in Equation (6) was set to 0.05 [9]. The measured data in the figure show
that the conductivity of the proton irradiated samples reverted to that of the non-irradiated
samples as time passed after irradiation. The reason for this is that the recombination of
electron-hole pairs generated inside the samples over time should suppress the genera-
tion of polarized charge, as shown in Section 3. Figure 8 shows that the estimated data
were analytically fitted with the measured data for most of the elapsed time after proton
irradiation. This result supports the suggestion in Figure 7.

6. Conclusions

We experimentally evaluated the RIC of PI films irradiated with proton beams under
various irradiation conditions. We also studied a calculation method to estimate the mea-
sured RIC of the PI. As a result, we clarified that the total conductivity of the PI increased
under non-penetrating irradiation conditions and saturated under penetrating irradiation
conditions. The reason for this is that the higher the irradiation energy, the deeper the
maximum proton penetration depth under non-penetrating irradiation conditions. On the
other hand, the conductivity characteristics did not change under penetrating conditions
because the penetration depth was the same as the sample thickness. We also developed
a calculation method to estimate the conductivity of the entire PI irradiated with proton
beams. The estimated data calculated by the above method were analytically fitted with
the measured data for most irradiation energy conditions. Therefore, it is suggested that
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the above calculation method can estimate the conductivity of the entire PI irradiated with
proton beams, regardless of penetrating or non-penetrating irradiation, based on the rela-
tionship between the RIC and dose rate of the PI irradiated under penetrating conditions.
In the future, we will incorporate the results of this study into a computational model of
space charge accumulation inside insulation materials [27,28] to verify the influence of
RIC caused by proton irradiation on space charge accumulation. We will also assess the
influence of RIC on electron-hole pair generation [10,29,30], the change in injection barriers
on the irradiated surface of insulation materials [17,18], etc.
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Appendix A

Table A1 shows the nomenclature for the parameters used in the equations in this
paper. We hope that Table A1 will assist you in reading this paper.

Table A1. The nomenclature for the parameters used in the equations in this paper.

Symbol Content 1st Appearance

σ Conductivity Equation (1)
J Current density same as above
E Electric field same as above

J(t = 1) J at t = 1 Equation (2)
t Elapsed time after the start of the ASTM measurements same as above
α Constant for Maxwell-Wagner’s theory of composite layers same as above

σRIC RIC (radiation-induced conductivity) Equation (3)
dD/dt Dose rate same as above

kRIC, ∆ Constants for the relationship between the RIC and dose rate same as above
σtotal Total conductivity of the entire sample Equation (4)
σNIC NIC (non-irradiated conductivity) same as above

dx Micro-intervals along the thickness of the samples same as above
xtotal Total thickness of the samples same as above
∆x Micro-interval with finite size along the thickness of the samples Equation (5)

kDRIC Constant for the DRIC (delayed RIC) Equation (6)
t’ Elapsed time after proton irradiation same as above

t’0
t at which the conductivity data were measured as the basis for DRIC
evaluations same as above

τ Time constant of the DRIC same as above
jirrad Irradiation current density Equation (7)

Edeposit
Deposit energy per unit length of proton beams to samples calculated
using TRIM (transport of ions matter) same as above

ρ Density of the samples same as above
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