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Abstract: Self-sustained oscillations can directly absorb energy from the constant environment to
maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon,
the Euler compression rod can rapidly release elastic strain energy and undergo large displacement
during buckling. In addition, its boundary configuration is usually easy to be modulated. In this
paper, we develop a self-sustained Euler buckling system based on optically responsive liquid crystal
elastomer (LCE) rod with different boundary constraints. The buckling of LCE rod results from the
light-induced expansion and compressive force, and the self-buckling is maintained by the energy
competition between the damping dissipation and the net work done by the effective elastic force.
Based on the dynamic LCE model, the governing equations for dynamic Euler buckling of the LCE
rod is formulated, and the approximate admissible trigonometric functions and Runge-Kutta method
are used to solve the dynamic Euler buckling. Under different illumination parameters, there exists
two motion modes of the Euler rod: the static mode and the self-buckling mode, including alternating
and unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of the self-
sustained Euler buckling can be modulated by several system parameters and boundary constraints.
Results indicate that strengthening the boundary constraint can increase the frequency and reduce
the amplitude. It is anticipated that this system may open new avenues for energy harvesters, signal
sensors, mechano-logistic devices, and autonomous robots.

Keywords: self-sustained oscillation; Euler buckling; liquid crystal elastomers; optically responsive; rod

1. Introduction

Self-sustained oscillations are out-of-equilibrium phenomena arising from built-in
negative feedback loops [1], which can directly absorb the energy from the constant envi-
ronment to maintain its periodic motion by self-regulating, such as cell division, heartbeats,
neural impulses, and circadian clocks. The frequency and amplitude of self-oscillation only
depend on the inherent properties of the system, and the self-oscillation has no requirement
for additional complex controllers or heavy batteries [2,3]. In addition, self-sustained oscil-
lation generally has good robustness [4], and the stability and normal operation of various
systems can be ensured based on self-sustained oscillation. If human-made self-oscillations
could be generated through life-like mechanisms and powered by constant environmental
sources, it would be extremely advantageous for robotics, especially autonomous robots [5–7].
Moreover, due to its remarkable advantages, self-oscillating systems have potential applica-
tion in energy harvesters [8], self-propelling devices [9], mass transport devices [10], signal
sensors [11], mechano-logistic devices [12], and biomimetic designs [13].

In recent years, various self-oscillating systems based on different stimuli-responsive
materials have been constructed, such as thermally responsive polymer materials [14], hydro-
gels [15,16], ion gels [17], dielectric elastomer [18], liquid crystal elastomers (LCEs) [19,20],
etc. Meanwhile, a variety of self-sustained motion modes have been proposed, such as
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rolling [4,7,21], bending [22,23], vibration [24,25], torsion [25,26], stretching and shrink-
ing [27,28], spinning [29], swinging [30], buckling [31–34], jumping [35–37], rotation [38],
snap-through [39], eversion or inversion [40], expansion and contraction [26,41,42], swim-
ming [43,44], and even group behavior coupled by two asymmetric oscillators [45]. In order
to compensate for the energy loss of self-sustained oscillation caused by damping dissi-
pation, different self-feedback mechanisms have been proposed, such as self-shadowing
mechanism [41], coupling mechanism among chemical diffusion, large deformation and
chemical reaction [46], and multi process coupling mechanism among droplet evaporation,
motion, and plate buckling [47].

Light is an excitation with the unique advantages of contactless driving, programma-
bility, ecological efficiency, and high temporal and spatial resolution, and has broad ap-
plication prospects in various fields [48,49]. LCE is an important optically responsive
material, which is synthesized by anisotropic rod-like liquid crystal molecules and stretch-
able long-chain polymers [50]. The deformation of LCE is determined by the arrangement
of liquid crystal molecules in the elastic network. Under external stimuli including ultra-
violet (UV) light, irradiation, electricity, magnetic fields, and heat [51], the cross-linked
liquid crystalline polymer can be transformed between liquid crystalline and isotropic
phases. Especially stimulated by light, LCE has the advantages of fast response and large
and recoverable deformation, which is more convenient to induce customized feedback
in various ways to achieve the light-induced self-sustained oscillation. Thus, light-fueled
self-oscillating systems based on LCE have attracted wide attention, and many light-fueled
self-sustained oscillation systems based on LCE have been constructed, such as torsion [25],
jumping [35,36], and vibration [52].

To meet the multi-functional needs of autonomous robots, more modes of self-sustained
oscillation systems still need to be developed. The rod is an important component widely
used in aerospace aircrafts, robots, precision instruments, and other structures [53,54]. As
a classical mechanical instability phenomenon, the Euler buckling of a compression rod
can be used as a new way to produce reliable self-sustained oscillation [55], and several
experimental works on light-driven buckling of LCE have been reported in Refs. [31–33],
recently. In this paper, we propose a new self-sustained Euler buckling LCE rod under
steady illumination and investigate the effects of five typical boundary configurations on
the oscillation. The Euler compression rod can release elastic strain energy during buckling,
and has the advantages of rapid energy release and large displacement. In addition, its
boundary configuration is usually easy to be modulated; thus, the self-sustained Euler
buckling LCE rod has potential application prospects in the fields of jumping robot, rescue,
military industry, mechanical logic, and so on.

The layout of this paper is as follows. In Section 2, the governing equations for dynamic
Euler buckling of a LCE rod are first formulated based on dynamic LCE model, then the
approximate admissible trigonometric functions and Runge–Kutta method are used to
solve the dynamic Euler buckling of the LCE rod under steady illumination. In Section 3,
two motion modes of the LCE rod under steady illumination are numerically solved and the
mechanism of its self-sustained Euler buckling is revealed in detail. In Section 4, the effects
of two typical system parameters on the triggering conditions, frequency and amplitude
of the self-sustained Euler buckling, are studied. In Section 5, the effects of boundary
configurations on self-sustained Euler buckling are discussed extensively. Finally, the
conclusion is given in Section 6.

2. Theoretical Model and Formulation
2.1. Governing Equations for Dynamic Euler Buckling of a LCE Rod

Figure 1 sketches an optically responsive LCE rod with length L, cross-section area
A, and area moment of inertia J. A coordinate system is introduced, where the coordinate
origin O is at the lower endpoint of the rod, x and z are the axial coordinate and lateral
coordinate, respectively. A narrow zone ∆ near static equilibrium position of LCE rod
is illuminated by a steady light, and the other zone is non-illuminated. The optically
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responsive azobenzene liquid crystal molecules [55–58] in the LCE rod are perpendicular
to its axis, when exposed to the illumination, they transform from straight trans state
to bent cis state, leading the rod to shrink in the transverse direction and expand in the
axial direction. In this paper, the two rod ends are considered to be immovable in the
axial direction. Once the light-induced expansion exceeds a critical value, the thin rod
may buckle into the non-illuminated zone. Then, the light-induced expansion of the rod
decreases with time, and the rod tends to move back to the illumination zone. When the
rod enters the illumination zone again, its light-induced expansion increases with time,
which may enable the thin rod to buckle to another side of static equilibrium position
due to its own inertia. Therefore, the LCE rod under constant illumination eventually
buckles alternately and periodically in both sides of the static equilibrium position. To
focus on self-sustained Euler buckling, we assume that the rod width is much larger than
its thickness, and the rod buckles always in the same xOz plane in the same way for perfect
buckling. The non-linear strain displacement relations of the rod are given by [59]

εx(x, t) = u,x +
1
2
(w,x)

2, (1)

ψx(x, t) = w,xx, (2)

where u(x, t) and w(x, t) are the axial displacement and lateral displacement at point x on
the axis at time t, respectively.
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Figure 1. Schematics of an optically responsive LCE rod with length L, cross-section area A, and area
moment of inertia J, which is capable of self-sustained Euler buckling under steady illumination with
narrow zone ∆ near its static equilibrium position. Its two ends are considered to be immovable in
the axial direction. The azobenzene liquid crystal molecules in the rod are perpendicular to its axis
and transform from straight trans to bent cis under illumination, giving rise to the rod’s shrinkage in
the transverse direction and expansion in the axial direction.

For an elastic material obeying Hooke’s law, we have,

σ(x, t) = E(εx − εL), (3)

Where σ(x, t) is the normal stress, E is the Young’s modulus, and εL(t) is the light-
induced expansion.

Considering that the azobenzene liquid crystal molecules are perpendicular to the
length in the slender LCE rod, the rod under illumination expands in the length and
contracts in the transverse direction. For a narrow illumination zone, we assume that the
rod always enters or leaves the narrow illumination zone as a whole at the same time, and
thus the light-induced expansion εL(t) is uniform in the rod. Following Refs. [58,60], the
light-induced expansion εL(t) changes with time depending on the number fraction φ(t) of
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cis-isomers of LCE material. For simplicity, the light-induced expansion εL(t) is assumed
to be linearly related to φ(t) [50], i.e.,

εL(t) = C0φ(t), (4)

where C0 is the expansion coefficient. The number fraction φ(t) will be given in Section 2.2.
Through the above assumptions and omitting the effect of shear deformation, the

strain energy U and kinetic energy K of the LCE rod can be given as follows [61]

U =
EA
2

L∫
0

ε2
xdx +

EJ
2

L∫
0

ψ2
xdx, (5)

K =
ρA
2

L∫
0

w2
,tdx. (6)

It is worth noting that the effect of gravity on rod buckling can be neglected due to
its weak influence. Assuming that the damping force is proportional to the velocity w,t
and the light-induced load is denoted as PL = EAεL, the virtual work of load can be given
by [61]

δWF = PL

L∫
0

w,xδw,xdx−
L∫

0

βw,tδwdx, (7)

where ρ is the mass density, and β is the damping coefficient.
The governing equation for the dynamic buckling of the rod can be expressed by the

Hamilton’s theorem [62]
t∫

0

(δU − δK− δWF)dt = 0. (8)

Substituting Equations (1), (2) and (5)–(7) into Equation (8) for variational and integral
operations, the governing equation of LCE rod can be derived as

EAεx,x = 0, (9)

EJw,xxxx − EA(εxw,x),x + EAεLw,xx + ρAw,tt + βw,t = 0, (10)

where w,tt is the second-order differentiation with respect to t.

2.2. Evolution of the Number Fraction in the LCE Rod

To investigate the dynamic Euler buckling of the LCE rod, its number fraction of
cis-isomers in Equation (4) should be calculated. The experimental results show that
the trans-to-cis isomerization of LCE could be induced by UV or laser with wavelength
less than 400 nm [63] and by blue light with wavelength 465 nm [64]. It is noted that
the temperature increase caused by irradiation can also induce deformation because the
nematic order monotonically decreases with temperature. For simplicity, we neglect
the effect of the temperature increase, and only consider the pure molecular effect of
photoisomerization [54,58]. The number fraction φ(t) of the cis-isomer is determined by
the thermal excitation from trans to cis, the thermally driven relaxation from cis to trans,
and the light driven relaxation from trans to cis. The number fraction φ(t) can be described
by the well-established dynamic LCE model as [50].

φ,t = η0 I0(1− φ)− T−1
0 φ, (11)

where T0 is the thermal relaxation time from cis state to trans state, I0 is the light intensity,
and η0 is the light absorption constant.
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In the illumination zone, φ(t) can be obtained by solving Equation (11) as

φ(t) =
η0T0 I0

η0T0 I0 + 1
+

(
φ0 −

η0T0 I0

η0T0 I0 + 1

)
exp

[
−(η0T0 I0 + 1)

t
T0

]
, (12)

where φ0 is the number fraction of cis-isomers at the initial moment under illumination.
In this paper, the LCE rod switches between illumination zone and dark zone. For

Case I in which the LCE rod in the illumination zone with initial φ0 = 0, Equation (12) can
be reduced to

φ(t) =
η0T0 I0

η0T0 I0 + 1

{
1− exp

[
−(η0T0 I0 + 1)

t1

T0

]}
. (13)

For Case II in which the LCE rod in the illumination zone switches from dark zone
with transient φ0 = φdark, Equation (12) can be reduced to

φ(t) =
η0T0 I0

η0T0 I0 + 1
+

(
φdark −

η0T0 I0

η0T0 I0 + 1

)
exp

[
−(η0T0 I0 + 1)

t2

T0

]
. (14)

For Case III in which the LCE rod in the dark zone (I0 = 0) switches from illumination
zone with transient φ0 = φillum, Equation (12) can be reduced to

φ(t) = φillum exp
(
− t3

T0

)
, (15)

where t1, t2, and t3 are the durations of current process, respectively, φdark and φillum
are the number fractions of cis-isomers at the moment of switching from dark zone into
illumination zone and from illumination zone into dark zone, respectively.

2.3. Nondimensionalization

To conveniently investigate the dynamic buckling of the LCE rod, the dimensionless
quantities are introduced as follows: x = x/L, w = w

√
A/J, u = uAL/J, τ0 =

√
ρL4 A/EJ,

t = t/τ0, β = β
√

L4/ρAEJ, I0 = η0T0 I0, T0 = T0/τ0, εL = εLL2 A/J, and
ε0 = C0 I0L2 A/

[(
I0 + 1

)
J
]
. Here, τ0 is the natural vibration characteristic time of the

LCE rod. Generally, the larger the dimensionless damping coefficient β is, the faster the
damping energy dissipation is. The dimensionless thermal relaxation time T0 represents
the ratio of the cis-to-trans thermal relaxation time relative to the characteristic time τ0. The
larger T0 is, the slower the cis-to-trans conversion is. The value of the dimensionless light-
induced expansion loading ε0 is determined by both the square of slenderness ratio L2 A/J
of the rod and maximum light-induced expansion C0 I0/

(
I0 + 1

)
in the illumination zone.

The governing Equations (9) and (10) can also be rewritten in the dimensionless
form as

u,xx + w,xw,xx = 0, (16)

w,xxxx =

[
u,x +

1
2
(w,x)

2
]

w,xx − εLw,xx − w,tt − βw,t. (17)

In the present study, five typical buckling configurations of the Euler rod are con-
sidered: hinged-hinged (H-H), clamped-clamped (C-C), clamped-hinged (C-H), clamped-
guided (C-G), and hinged-guided (H-G), and the schematic diagram is shown in Figure 2.
The guided boundary condition G represents that the lateral displacement is not con-
strained, but the rotation is constrained. The boundary conditions for the governing
Equations (16) and (17) are

Case H-H : w = w,xx = 0 both at x = 0 and x = 1, (18)

Case C-C : w = w,x = 0 both at x = 0 and x = 1, (19)

Case C-H : w = w,x = 0 at x = 0 and w = w,xx = 0 at x = 1, (20)



Polymers 2023, 15, 316 6 of 20

Case C-G : w = w,x = 0 at x = 0 and w,x = w,xxx = 0 at x = 1, (21)

Case H-G : w = w,xx = 0 at x = 0 and w,x = w,xxx = 0 at x = 1. (22)
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From Equations (4) and (13)–(15), the light-induced expansion can be rewritten as
follows, for Case I,

εL
(
t
)
=

C0 I0

I0 + 1

{
1− exp

[
−
(

I0 + 1
)
t1
]}

, (23)

for Case II,

εL
(
t
)
=

C0 I0

I0 + 1
+

(
εdark −

C0 I0

I0 + 1

)
exp

[
−
(

I0 + 1
)
t2
]
, (24)

and for Case III,
εL
(
t
)
= εillum exp

(
−t3

)
, (25)

where εdark and εillum are the light-induced expansions at the moment of switching from
dark zone into illumination zone and from illumination zone into dark zone, respectively.
Since t1, t2, and t3 are the durations of current process, light-induced expansion εL is
process-related and time-dependent.

The well-known Euler’s buckling theory indicates that there exists a critical light-
induced expansion εcr for triggering the buckling, which is

εcr = (π/µ)2, (26)

where µ is the length factor, which depends on the constraint of LCE Euler rod.

2.4. Solution to the Dynamic Euler Buckling of the LCE Rods

Equations (16)–(25) govern the dynamic Euler buckling of the LCE rods under steady
illumination. It is usually difficult to obtain the exact solutions for the structural configura-
tion of the rods, and the suitable approximate admissible displacement functions for the
field variables can be introduced [65]. The suitable approximate admissible trigonometric
functions are assumed for lateral displacement variation w of the rods in Figure 2, which
satisfies the essential boundary conditions w = 0 and/or w,x = 0 at the ends of rods in
Equations (18)–(22). Then, integrating Equation (16) with respect to x, we obtain

u =
∫

[
∫
(−w,xw,xx) + C1]dx + C2, (27)

where C1 and C2 are constants of integration. As mentioned above, the rods with axially
immovable ends are considered. Once the expression for w is substituted, C1 and C2 can be
obtained by using the boundary conditions u = 0 at two ends. To focus on the self-sustained
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Euler buckling of the LCE rod under steady illumination, we only consider the first-order
buckling mode in the axial direction. The admissible displacement functions [61] for the
lateral displacement w

(
x, t
)

and the axial displacement u
(

x, t
)

satisfying the geometric
boundary conditions are listed in Appendix A. W

(
t
)

in Equations (A1)–(A5) represents the
dimensionless lateral displacement at the midpoint of LCE rod as shown in Figure 2, i.e.,
W
(
t
)
= w(0.5L, t)/h.

Inserting w
(

x, t
)

and u
(

x, t
)

in Equations (A1)–(A5) into Equation (17) and integrating
Equation (17) over x lead to

w = η1(x)W3 + η2(x)W + βη3(x)W,t + η3(x)W,tt + C3x3 + C4x2 + C5x + C6, (28)

where the functions η1(x)~η3(x) are given as Equations (A6)–(A10) in Appendix A, and W,t
and W,tt are the first-order and second-order differentiations with respect to t respectively.
The unknown integral constants C3–C6 are determined by the boundary conditions in
Equations (18)–(22), which are presented as Equations (A11)–(A15) in Appendix A.

Substituting η1(x)~η3(x), C3–C6, and x = 0.5 into Equation (28) yields

W,tt
(
t
)
+ βW,t

(
t
)
+ f1W

(
t
)
+ f2W

(
t
)3

= f3εL
(
t
)
W
(
t
)
, (29)

The coefficients f1, f2, and f3 of the LCE rod can derived from different boundary
conditions and their detailed forms are listed in Appendix A.

The corresponding initial conditions of Equation (29) can be expressed as

W = W0 and W,t = W,t0 at t = 0. (30)

It is worth noting that Equation (29) governs the dynamic Euler bucking of the LCE
rod under steady illumination. Similar to Duffing oscillator [66], for f1 > 0 in governing
Equation (29), the LCE rod may be interpreted as a self-regulating oscillator with a spring
whose restoring force is written as Fk = − f1W

(
t
)
− f2W

(
t
)3. εL is determined by the

light-induced expansion at the moment of transforming between illumination and dark
zone, and the duration (t1, t2 or t3) of current process. Therefore, the term f3εL

(
t
)
W
(
t
)

in Equation (29) is process-related and can be regarded as equivalent excitation force,
defined as

Fin = f3εL
(
t
)
W
(
t
)
. (31)

Similarly, the equivalent damping force for the LCE rod can be defined as

Fout = −βW,t
(
t
)
. (32)

Self-sustained Euler buckling may arise from the competition between equivalent
excitation force and equivalent damping force.

For the differential Equation (29) with variable coefficients εL
(
t
)
, it can be numerically

solved by combing Equations (13)–(15) and (29) based on the Runge–Kutta method. In
the calculation, for the previous lateral displacement Wi−1, we can calculate the current
light-induced expansion εLi from Equations (23)–(25). Note that the LCE rod is in the
illumination zone while |Wi−1| < ∆, and in the dark zone while |Wi−1| > ∆. Next, based
on this light-induced expansion εLi, we can further calculate the current lateral displacement
Wi from Equation (29). Then, the current εL(i+1) can be calculated from Equations (23)–(25)
depending on the lateral displacement Wi. By iteration calculation, we can obtain the time
histories of light-induced expansion and lateral displacement.

Considering that for large I0, the light-induced expansion εL in Equations (23) and (24)
quickly approaches to the maximum ε0, we assume that the light-induced expansion in the
narrow illumination zone ∆ is constant and time-independent by treating εL ≈ εL(0) = ε0,
where ∆ is fixed to be 0.01 in the computation.
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3. Two Motion Modes and Their Mechanisms

Based on the governing Equations (23)–(25), (29) and (30), the dynamic Euler buckling
of the LCE rod can be numerically investigated. To focus on the motion mode of system
and its mechanism, we take the case H-H of five typical Euler rod as an example in this
section. We first present two typical motion modes of the Euler rod: the static mode and
self-buckling mode. Next, the key physical quantities in the self-sustained Euler buckling
are studied in detail. Then, the corresponding mechanism of self-sustained Euler buckling
is elucidated.

3.1. Two Motion Modes

To investigate the self-sustained Euler buckling LCE rod under steady illumination,
we should determine the typical values of dimensionless parameters in the model. From
the existing experiments [60–62], the typical material properties and geometric parameters
are listed in Table 1. The corresponding dimensionless parameters are also listed in Table 2.
In the following, these values of parameters are used to study the self-sustained Euler
buckling LCE rod under steady illumination.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

C0 Contraction coefficient 0–0.5 /

T0 trans-to-cis thermal relaxation time 0.1 s

I0 Light intensity 0–1 kW/m2

η0 Light-absorption constant 0.0003 m2/(s·W)

E Elastic modulus of LCE balloon 1–10 MPa

ρ Mass density 103 kg/m3

L Length of LCE rod 10–50 mm

A Cross-sectional area of LCE rod 0–0.1 mm2

J Area moment of inertia of LCE rod (0–1) × 10−6 mm4

β Damping coefficient 0–0.001 mg·mm2/s

Table 2. Dimensionless parameters.

Parameter W0 W,t0 ε0 β T0

Value 0–0.5 0–1 0–100 0–0.1 0–2

Figure 3 show two typical motion modes: static mode and self-sustained Euler buck-
ling mode. For ε0 = 0, β = 0.8, T0 = 0.5, W0 = 0.3, and W,t0 = 0, the time history curve
and phase trajectory curve of the LCE rod are plotted in Figure 3a,b, respectively. The
numerical results show that the amplitude of lateral displacement W gradually decreases
with time from the initial position W0 = 0.3 due to the damping dissipation, and the LCE
rod eventually stays static, which is named as the static mode. For ε0 = 20, β = 0.8,
T0 = 0.5, W0 = 0, and W,t0 = 0, the time history curve and phase trajectory curve of the
vibration are plotted in Figure 3c,d, respectively. It is worth noting that the light-induced
expansion loading ε0 is larger than the critical strain εcr, which is calculated to be 9.87 from
Equation (26) due to µ = 1 for case H-H. The LCE rod initially buckles from the static
equilibrium position and moves into the non-illuminated zone. Due to the decrease of
light-induced expansion in the non-illuminated zone with time, the rod tends to move back
to the illumination zone again. Then, it may buckle to another side of the static equilibrium
position due to its own inertia. Eventually, the LCE rod under steady illumination may
evolve into a continuous alternating buckling in both sides of the static equilibrium position,
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which is named as self-buckling mode. It is worth mentioning that similar experiment
works about light-driven buckling of LCE have been reported in Refs. [31–33].
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self-sustained Euler buckling mode for ε0 = 40, β = 13, T0 = 0.5, W0 = 0 and W,t0 = 0.

It should be noted that the LCE rod under steady illumination may unilaterally self-
buckle on one side of the static equilibrium position, as shown in Figure 3e,f. For ε0 = 40,
β = 13, T0 = 0.5, W0 = 0, and W,t0 = 0, the time history curve and phase trajectory curve
of the vibration are plotted in Figure 3e,f, respectively. It can be clearly seen that the rod
self-buckles continuously and unilaterally from the initial static state. This is because that
the velocity of the rod drops to zero before it moves back to static equilibrium position, and
when it is illuminated in the narrow illumination zone again, it buckles in the same side as
the previous buckling. Considering that the mechanisms of alternating self-sustained Euler
buckling and unilateral self-sustained Euler buckling are similar, we mainly focus on the
alternating self-sustained Euler buckling in the following discussion.

3.2. Evolution of Key Physical Quantities

Several key physical quantities in the LCE rod under steady illumination vary with
time during the dynamic buckling, and they are calculated in the following part for the
typical case in Figure 3c,d. Figure 4a shows the time history of the light-induced expansion
εL, presenting the characteristics of periodic changes over time. Figure 4b plots its phase
trajectory between the light-induced expansion εL and lateral displacement W of the LCE
rod in one cycle of the self-sustained Euler buckling. The red solid and purple dotted curves
in Figure 4b correspond to the vibration process of the rod buckling along the positive
and negative directions of z-axis respectively. Initially, the LCE rod is in the illumination
zone, and the light-induced expansion εL greatly increases with time. Then, the LCE rod
moves away from the static equilibrium position to the non-illumination zone, and the
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light-induced expansion εL undergoes a gradual decrease with time in the dark. When the
LCE rod moves back and passes through the static equilibrium position being irradiated
again, the light-induced expansion εL greatly increases. Subsequently, the rod buckles to
another side of the static equilibrium position. Eventually, the LCE rod vibrates periodically
and alternately in both sides of the static equilibrium position. In one vibration cycle, the
light-induced expansion εL forms a symmetrical closed loop in Figure 4b.
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Figure 5 shows the snapshots in one cycle of self-sustained Euler buckling of the LCE
rod shown in Figure 3c,d, where T is the vibration period. Clearly observing that with the
increase or decrease of the lateral displacement W at the midpoint of the rod, the lateral dis-
placement w(x) at each position of the rod also increases or decreases gradually. This result
can be easily interpreted by Equation (A1) in Appendix A that w(x) is jointly determined
by the lateral displacement W at the midpoint of the rod and the axial position x.
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Figure 3c,d. The LCE rod under steady illumination self-sustained Euler buckles periodically and
alternating due to the periodically varying light-induced expansion.

Figure 6a presents the time history of normal stress σ of the LCE rod shown in
Figure 3c,d, where the normal stress σ is nondimensionalized as σ = σAL2/EJ. The
diagram reveals that the normal stress varies periodically with time. Figure 6b plots its
phase trajectory between the normal stress σ and the lateral displacement W in one cycle
of the self-sustained Euler buckling. The red curve corresponds to the dynamic buckling
along the positive direction of z-axis. In this paper, the rod is tensile for positive normal
stress σ, while it is compressive for negative σ. It is shown that the absolute value of
negative normal stress σ, i.e., compressive normal stress sharply increases to maximum,
due to the great increase of light-induced expansion εL in illumination zone. This means
that the compressive stress reaches its maximum at the static equilibrium position, which
leads to the buckling of the rod. Next, the rod moves away from the static equilibrium
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position, the normal stress gradually increases and then becomes positive. The exact reason
for such result is that the light-induced expansion εL decreases with time in the dark, and
the nonlinear deformation strain εx = εx AL2/J increases with the increased W.
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Figure 6. (a) The time history of normal stress of the rod shown in Figure 3c,d. (b) The dependence
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Then, the LCE rod gradually moves back to the static equilibrium position, and
the tension is gradually relaxed, resulting from the continual decrease of light-induced
expansion εL and nonlinear deformation strain εx. While the rod returns to the static
equilibrium position and passes through the narrow illumination zone again, the normal
stress behaves a sharp decay because of the rapidly increasing light-induced expansion in
illumination. Thereafter, the rod continues to move along the negative direction of z-axis
due to its inertia. Its normal stress also firstly increases and then decays with time in the
dark. Then, the rod moves back the static equilibrium position again and finally vibrates
periodically. In a vibration cycle, the normal stress σ of the rod also varies periodically and
forms a symmetrical closed loop in Figure 6b.

3.3. Mechanism of the Self-Sustained Euler Buckling

To further explore the self-sustained Euler buckling mechanism of the LCE rod, we
investigate the competition between energy input and energy dissipation, which can
be described by the work done by equivalent excitation force Fin in Equation (31) and
equivalent damping force Fout in Equation (32), respectively. There is no analytic solution
for the governing differential Equation (29) with variable coefficients εL

(
t
)
, so we conduct

the numerical calculations to compare the energy input and energy dissipation.
Figure 7a shows the dependence of the equivalent excitation force on different lateral

displacement W in one cycle of the self-sustained Euler buckling of the rod shown in
Figure 3c,d. In the process of dynamic Euler buckling, we observe a gradual increase in
the equivalent excitation force Fin as the LCE rod moves away from the static equilibrium
position. Similarly, it decreases gradually as the rod moves back to the static equilibrium
position. Therefore, the dependence between the equivalent excitation force Fin and the
lateral displacement W presents a closed clockwise curve, and the red shadow area in
Figure 7a implies the positive net work done by the equivalent excitation force Fin. In fact,
the net work originates from the elastic energy during the dynamic Euler buckling of the
LCE rod. As shown in Figure 7b, the dependence between the equivalent damping force
Fout and the lateral displacement W presents a closed counterclockwise curve, implying
that Fout does negative net work which is exactly equal to the net work done by the
excitation force Fin. Hence, during the self-sustained Euler buckling of the LCE rod,
the damping dissipation from the system is compensated by the net work done by the
equivalent excitation force, and thus the LCE rod under steady illumination can self-buckle
continuously and alternately in both sides of the static equilibrium position.
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4. Influence of System Parameters

In this section, we explore the effects of physical quantities on the triggering conditions,
the frequency and amplitude of the self-sustained Euler buckling of the rod. In this work, we
take case H-H as an example and focus on the influence of two typical physical parameters
of the system: light-induced expansion loading ε0 and initial condition W0. In the following
discussion, f denotes the dimensionless frequency, and A denotes the dimensionless
amplitude which is the maximum value of W at midpoint of rod.

4.1. Effect of the Initial Condition

Figure 8 shows the effect of W0 on the self-sustained Euler buckling of the LCE rod for
the case of H-H. In the calculation, we set ε0 = 20, c = 0.8, T0 = 0.5, and W,t0 = 0. Figure 8a
plots the limit circles of the self-sustained Euler buckling rod for three different initial
positions W0 = 0, W0 = 0.1, and W0 = 0.2. The detailed numerical results demonstrate that
the limit cycles of the self-sustained Euler buckling are identical for different W0. Figure 8b
plots the frequency and amplitude of the self-sustained Euler buckling as a function of
the initial position W0. It can be easily observed that the frequency and amplitude of the
self-sustained Euler buckling do not vary with the increase of W0. Considering that the
initial velocity W,t0 = 0 is related to the initial position W0 by energy conversion, it can
be concluded that the initial condition does not affect the self-sustained Euler buckling of
the LCE rod. This is because the self-sustained Euler buckling of the rod results from the
energy competition between the damping dissipation and net work done by the excitation
force, and the frequency and amplitude are determined by the intrinsic characteristics of
the system, which is consistent with the general characteristics of other self-oscillating
systems [1].
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ε0 = 20, β = 0.8, T0 = 0.5, and W,t0 = 0. (a) Limit cycles. (b) Frequency and amplitude. The initial
condition has no effect on the self-sustained Euler buckling of the LCE rod.

4.2. Effect of the Light-Induced Expansion Loading

Figure 9 presents the effect of light-induced expansion loading on the self-sustained
Euler buckling of the rod with the boundary configuration H-H, for β = 0.8, T0 = 0.5,
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W0 = 0.1, and W,t0 = 0. Figure 9a,b plot the phase trajectories of static mode for ε0 = 1
and ε0 = 5, respectively. For the vibration velocity at the midpoint of the rod, we witness
an initial increase, and then a gradual decrease until the vibration stops. This is because
for small ε0, the net work done by the equivalent excitation force transformed from the
constant illumination is small, and not enough to compensate for the damping dissipation.
Figure 9c,d plot the phase trajectories of the self-sustained Euler buckling for ε0 = 12 and
ε0 = 16, respectively. It can be easily observed that the self-sustained Euler buckling can
be triggered for the two light-induced expansion loadings. From the limit cycles plotted
in Figure 9e, there is a critical ε0 for the phase transition between the static mode and
the self-sustained Euler buckling mode, which is numerically calculated to be about 10.
For ε0 ≤ 10, the LCE rod keeps in the static mode and is unable to self-buckle. Figure 9f
describes the dependences of frequency and amplitude on ε0 for the self-sustained Euler
buckling. It is clearly seen that both frequency and amplitude of the self-sustained Euler
buckling present upward trends with the increasing ε0. This is due to the mechanical energy
converted from the light energy increasing along with the increase of ε0. With consideration
of ε0 = C0 I0L2 A/

[(
I0 + 1

)
J
]
, the result means that the increase of slenderness ratio or light-

induced expansion coefficient is capable of promoting the self-sustained Euler buckling of
the LCE rod.
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Figure 9. The effect of light-induced expansion loading ε0 on the self-sustained Euler buckling of the
LCE rod, for β = 0.8, T0 = 0.5, W0 = 0.1, and W,t0 = 0. Phase trajectories of the self-sustained Euler
buckling mode for (a) ε0 = 1, (b) ε0 = 5, (c) ε0 = 12, and (d) ε0 = 16 , (e) Limit cycles. (f) Frequency
and amplitude. A critical ε0 ≈ 10 for phase transition between static mode and self-sustained Euler
buckling mode is found.

5. Self-Buckling Mode: Different Boundary Conditions

Different from the general self-oscillating systems, the boundary configuration of the
Euler rod is easily modulated to satisfy the requirements in various fields of applications.
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Therefore, it is of great significance to study the influence of boundary configuration on
the self-sustained Euler buckling of the LCE rod. In this section, the effects of boundary
configuration including H-H, C-C, C-H, C-G, and H-G on several important physical
quantities are extensively investigated.

5.1. Normal Stress for Different Constraint Configurations

Figure 10 shows the normal stress of the LCE rod for different constraint configurations.
In the computation, ε0 = 40, β = 0.8, T0 = 0.5, W0 = 0.1, and W,t0 = 0 are set. The time
histories of the normal stress in one cycle of self-buckling for five typical Euler rods are
given in Figure 10a. Results indicate that their normal stresses σ vary periodically with
time. Their maximum normal stresses σ are listed in Table 1, and can be arranged from
small to large as follows: case C-C, case C-H, case C-G, case H-G, case H-H. This result
demonstrates that the maximum normal stress of LCE rod generally increases with the
relaxation of constraint. Figure 10b plots their dependences of the normal stress σ on
the lateral displacement W in one cycle of the self-buckling. By comparing the three
cases H-H, C-H, and C-C, it is found that their maximum normal stresses σ and lateral
displacements W both increase with the released rotation constraint at one rod end, which
can also be revealed from the comparison between case C-G and case H-G. The increase
of the maximum normal stress and lateral displacement can also be achieved by releasing
the movement constraint. Comparing case C-H and case C-G with C-C respectively, the
maximum normal stress of loosening the movement constraint is found to be slightly larger
than that of loosening the rotation constraint.
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5.2. Equivalent Force for Different Constraint Configurations

Figure 11 gives the equivalent force of the LCE rod in Equations (31) and (32) for
different constraint configurations. In the computation, ε0 = 40, β = 0.8, T0 = 0.5,
W0 = 0.1, and W,t0 = 0 are set. Figure 11a diagrams the dependence of the equivalent
excitation force Fin on the lateral displacement W in one cycle of the self-buckling, which
is affected by constraint configurations. For the five typical Euler rods shown in Figure 2,
their positive net work done by the equivalent excitation force can be presented by the
areas enclosed by the five closed curves as shown in Figure 11a, respectively. By careful
calculation, their maximum equivalent excitation forces Fin, equivalent damping forces Fout,
and net works done by Fin (Fout) are listed in Table 3. For the three cases of H-H, C-H, and
C-C, the net work done by equivalent excitation force of the case H-H is maximum. It can
be understood that the net work done by excitation force can be increased by releasing the
constraint at the rod end. Comparing with case C-C, the movement constraint of case C-G
and the rotation constraint of case C-H are released, respectively. Meanwhile, the net work
of case C-G done by equivalent excitation force is larger than that of case C-H as shown in
Table 3, for relaxing the movement constraint can increase much more net work done by
the equivalent excitation force than relaxing the rotation constraint.
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Figure 11. The equivalent force of the LCE rod for different constraint configurations. In the
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Table 3. Several key physical quantities for different boundary conditions.

Maximum
W(w(0.5L,t)/h)

Maximum
σ(σAL2/EJ)

Maximum
Fin (Equation (31))

Maximum
Fout (Equation (32)) Work Done by Fin (Fout)

Case H-H 6.16 59.41 2084.97 78.72 1761
Case C-C 4.67 18.91 2139.81 75.72 1254
Case C-H 5.18 45.59 2099.59 73.75 1393
Case C-G 5.66 49.64 506.85 37.40 754
Case H-G 8.36 57.98 590.86 48.60 1435

Figure 11b shows the dependence of the equivalent damping force Fout on the lateral
displacement W in one cycle for five typical Euler rods shown in Figure 2. In each case,
the net work done by the equivalent damping force, denoted by the area surrounded by
the equivalent damping force and lateral displacement curve, is equal to the net work
done by the corresponding excitation force through careful calculation as shown in Table 1.
For the three cases of H-H, C-H, and C-C, the net work done by the equivalent damping
force of case H-H is the maximum one, as shown in Figure 11b. The exact reason for such
result is that the maximums of its equivalent damping force and lateral displacement W
are always the largest. Comparing case C-H with case C-G, the net work done by the
equivalent damping force of case C-G is more than that of case C-H, resulting from the
larger maximum of its equivalent damping force. Referring to case C-C, it is also found
that compared to relaxing the rotation constraint, relaxing the movement constraint can
increase the net work done by the equivalent damping force more.

5.3. Frequency and Amplitude for Different Constraint Configurations

Figure 11 plots the frequency and amplitude of the self-buckling for different constraint
configuration and light-induced expansion loading. In the computation, β = 0.8, T0 = 0.5,
W0 = 0.1, and W,t0 = 0 are set. For all the five typical constraint configurations of the
Euler rods shown in Figure 2, both their frequencies and amplitudes of the self-sustained
Euler buckling increase along with the increase of ε0. As discussed in detail above, this
is because increasing ε0 can always increase the mechanical energy converted from light
energy. For the given ε0, the frequency and amplitude of LCE rods with different constraint
configurations are different as shown in Figure 12. Comparing case H-H, case C-H, and
case C-C in Figure 12a, it is easy to find that the frequency of case C-C is the largest one and
that of case H-H is the smallest one. This implies that strengthening the constraint of LCE
rod can increase the frequency of self-sustained Euler buckling. In addition, comparing
case C-H and case C-G with case C-C, the frequency of case C-H is higher than that of case
C-G as shown in Figure 12a. Results demonstrate that relaxing the rotation constraint can
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increase the frequency of self-sustained Euler buckling more, compared to relaxing the
movement constraint more.
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Figure 12. (a) Frequency and (b) amplitude of the self-buckling for different constraint configuration
and light-induced expansion loading. In the computation, β = 0.8, T0 = 0.5, W0 = 0.1, and W,t0 = 0
are set. Generally, strengthening the boundary constraint can increase the frequency and reduce
the amplitude.

For a given ε0, Figure 12b provides the amplitude of five typical Euler rods with
different constraint configurations shown in Figure 2. Among the case H-H, case C-H,
and case C-C, the amplitude of case H-H is the highest as presented in Figure 12b, which
implies that the amplitude of self-sustained Euler buckling can be increased by relaxing
the constraint of LCE rod. Contrasting case C-H and case C-G with case C-C in Figure 12b,
the amplitude of case C-G is greater than that of case C-H, which means that relaxing the
movement constraint can increase the amplitude of self-sustained Euler buckling more
dramatically than relaxing the rotation constraint. Therefore, both frequency and amplitude
of the self-buckling of LCE rods can be influenced by their constraint configurations, and
a variety of applications can be satisfied by adjusting the boundary configuration of the
Euler rod.

6. Conclusions

Euler buckling of a rod can rapidly release elastic strain energy during buckling and
has potential applications for high energy release rate and remote mechanical control.
Especially, the boundary configuration of Euler rod is usually easy to be modulated. In this
study, we develop a self-sustained Euler buckling system based on an optically responsive
LCE rod with different boundary constraints. The buckling of LCE rod results from the
light-induced expansion and compressive force, and the self-buckling is maintained by
the energy competition between the damping dissipation and the net work done by the
effective elastic force. Based on dynamic LCE model, the governing equations for dynamic
Euler buckling of the LCE rod is formulated, and approximate admissible trigonometric
functions and Runge–Kutta method are used to numerically solve the dynamic Euler
buckling. The analysis of results shows that there are two types of motion modes of
the Euler rod: the static mode and the self-buckling mode, including alternating and
unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of
the self-sustained Euler buckling can be modulated by several system parameters and
boundary constraints. In general, strengthening the boundary constraint can increase the
frequency and reduce the amplitude. It is noted that fatigue of continuous oscillating LCEs
is relevant for actuators and deserves further exploration in the future. It is also worthwhile
further illustrating the self-buckling rod in practice and exploring its application, and we
hope that the current work may open new avenues for energy harvesters, signal sensors,
mechano-logistic devices, and autonomous robots.
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Appendix A

The admissible displacement functions for the lateral displacement w
(

x, t
)

and the
axial displacement u

(
x, t
)

are

Case H-H : w = W sin(πx) and u = −W2π

8
sin(2πx), (A1)

Case C-C : w =
W
2
[1− cos(2πx)] and u =

W2

16
π sin(4πx), (A2)

Case C-H : w = 0.1709382933 W[sin(kx)− k cos(kx) + k(1− x)] and

u = W2

 0.3159893170 sin(2kx) + 0.1478029823 cos(2kx) + 0.1314349783 sin(kx)

−0.5912119294 cos(kx)− 0.4375437143x + 0.4434089319

,
(A3)

Case C-G : w = W[1 + cos(πx)] and u =
W2

8
π sin(2πx), (A4)

Case H-G : w =
√

2W sin
(
πx
2

)
and u = −W2

8
π sin(πx), (A5)

where W
(
t
)

is the dimensionless lateral displacement at the midpoint of LCE rod.
The functions η1(x)~η3(x) are

Case H-H : η1 = − sin(πx)
4

, η2 =
εL sin(πx)

π2 and η3 = − sin(πx)
π4 , (A6)

Case C-C : η1 =
cos(2πx)

32
, η2 = − εL cos(2πx)

8π2 and η3 =
cos(2πx)

32π4 − x4

48
, (A7)

Case C-H : η1 = 0.116649 sin(kx + 1.78955), η2 = −0.0389298 sin(kx + 1.78955) and

η3 = 0.0001924058 sin(kx + 1.78955)− 0.032037627x4 + 0.006407525x5,
(A8)

Case C-G : η1 = −cos(πx)
4

, η2 =
εL cos(πx)

π2 and η3 =
cos(πx)

π4 − x4

24
, (A9)

Case H-G : η1 = −
√

2 sin(πx/2)
2

, η2 =
4
√

2εL sin(πx/2)
π2 and η3 = −16

√
2 sin(πx/2)

π4 . (A10)

The integral constants C3~C6 are

Case H-H : C3 = 0, C4 = 0, C5 = 0, and C6 = 0, (A11)
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Case C-C : C3 =
(W,tt+βW,t)

24 , C4 = −C3
2 , C5 = 0,

and C6 =
−(W,tt+βW,t+π4W3−4π2WεL)

32π4 ,
(A12)

Case C-H : C3 = 0.00291777W3 + 0.05130833W,tt + 0.05130833βW,t − 0.00097376WεL,

C4 = −0.00344271W3 − 0.02568689W,tt − 0.02568689βW,
.
t + 0.00114895WεL,

C5 = 0.11386905W3 + 0.00187820W,tt + 0.00187820βW,t − 0.03800206WεL,

and C6 = −0.11386905W3 − 0.00187820W,tt − 0.00187820βW,t + 0.03800206WεL.

(A13)

Case C-G : C3 = C5 = 0, C4 =
(W,tt+βW,t)

12 ,

and C6 = − (24+π2)(W,tt+βW,t)
24π4 − π2W3−4εLW

4π2 ,
(A14)

Case H-G : C3 = 0, C4 = 0, C5 = 0, and C6 = 0. (A15)

The coefficients f1, f2, and f3 are

Case H-H : f1 = π4, f2 =
π4

4
, and f3 = π2, (A16)

Case C-C : f1 =
768π4

48 + π4 , f2 =
48π4

48 + π4 , and f3 =
192π2

48 + π4 , (A17)

Case C-H : f1 = 235.128010, f2 = 34.937392, and f3 = 11.659822, (A18)

Case C-G : f1 =
128π4

128 + 3π4 , f2 =
32π4

128 + 3π4 , and f3 =
128π2

128 + 3π4 , (A19)

Case H-G : f1 =
π4

16
, f2 =

π4

32
, and f3 =

π2

4
. (A20)
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