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Abstract: Electrospun fibrous membranes loaded with chemotherapy drugs have been broadly
studied, many of which have had promising data demonstrating therapeutic effects on cancer cell
inhibition, tumor size reduction, the life extension of tumor-bearing animals, and more. Nevertheless,
their drug release profiles are difficult to predict since their degradation pattern varies with crystalline
polymers. In addition, there is room for improving their release performances, optimizing the release
patterns, and achieving better therapeutic outcomes. In this review, the key factors affecting electro-
spun membrane drug release profiles have been systematically reviewed. Case studies of the release
profiles of typical chemotherapy drugs are carried out to determine the preferred polymer choices
and techniques to achieve the expected prolonged or enhanced release profiles. The therapeutic
effects of these electrospun, chemo-drug-loaded membranes are also discussed. This review aims to
assist in the design of future drug-loaded electrospun materials to achieve preferred release profiles
with enhanced therapeutic efficacies.

Keywords: local chemotherapy; electrospun membranes; controlled release; release profiles;
biodegradable polymers

1. Introduction

The International Agency for Research on Cancer (IARC) has estimated over 19 million
new cancer cases and almost 10 million deaths from cancer based on the 2020 global cancer
statistics (GLOBOCAN) database, which covers most of the countries in the world [1].
Cancers are well known for their ability to metastasize, which leads to irreversible and
fatal progressions. The general strategy against solid carcinoma is surgical removal with
subsequent chemotherapies or radiotherapies to clean up cancer residues. However, there
could be hardly any chances of operation for some carcinomas located in sensitive areas
like the spinal cord or brain. In addition, chemotherapies are toxic for the whole body and
cannot concentrate at specific sites; radiotherapies are effective at specific areas, however,
without the ability of continuous application for a prolonged period.

These situations brought out the demands for better local therapeutic measures to
ultimately limit the reoccurrence rate of cancers and inhibit tumor growth in sensitive
areas where operations were seldom applicable. A series of local cancer therapies, like
tumor sclerosis, tumor embolization, and intra-tumoral injection, were developed [2]. In
addition to these routine procedures, drug-loaded hydrogels, electrospun membranes, and
other in situ delivery systems have great potential against local carcinoma since they are
excellent in local tissue adhesion with high porosity that facilitates drug delivery and cell
attachments [3,4]. Hydrogels usually degrade in a relatively short period due to their high
water content, making them applicable for localized short-term release (usually less than
a month) of drugs [5–7]. Electrospun membranes are dry materials with more reliable
and tunable mechanical properties that are compatible with local tissue. They possess the
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ability of both short-term and prolonged release, making them more suitable for a variety
of situations in local chemotherapy.

Electrospun membranes could be fabricated using various techniques with numerous
combinations of parameters. These parameters include polymer choices, solution prepara-
tion methods, fabrication techniques, drug types/loading methods, etc. All of them could
affect the drug release profiles of electrospun membranes. Nevertheless, these parameters
have not yet been systematically determined, confusing many researchers.

This review provides insight into the key factors affecting the release profiles of the
implantable electrospun membranes tailored for local carcinoma. Their release patterns
and therapeutic effects are categorized and concluded to assist in the future design of
drug-loaded electrospun delivery systems.

2. Release Profiles of the Chemotherapy Drug-Loaded Electrospun Membranes
2.1. Key Factors Affecting the Release Profiles
2.1.1. Polymers

Synthetic biodegradable polymers were applied broadly in clinical implantable prod-
ucts like bone/ligament fixing screws [8–11], pins [12,13], sutures [14–17], scaffolds [18,19],
degradable embedded thread [20–22] in plastic surgeries, and more, as illustrated in
Figure 1. They possess highly controllable parameters like monomer types, combina-
tions and arrangements, chain length, and a molecular weight readily tailored for various
clinical needs. These polymeric products’ degradation durations could range from weeks
to months [23] or even a few years [24]. It is essential to determine the degradation charac-
teristics of these polymers in their crystalline forms since they are closely related to their
corresponding drug release patterns. Furthermore, because of the high surface-volume
ratio and loss of crystallinity, biodegradable polymers in electrospun materials tend to
degrade more rapidly with changes in their mass loss pattern [25–27]. As a result, it is
necessary to investigate the representative research examples on the degradation of elec-
trospun implantable polymers to retrieve the real situations of their degradation patterns
rather than simply adopting the situations of crystalline biodegradable polymers.
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Figure 1. Biodegradable polymeric implants. (a) Bone fixation screws made of polylactic acid (PLA)
with phosphate enforcement (reprinted from [9] with copyright permission). (b) Biodegradable 2 mm
polylactide bone pins (reprinted from [28] with copyright permission). (c) Polylactide-co-glycolide
(PLGA) embedding thread (reprinted from [29] under the Creative Commons CC-BY-NC-ND license).
(d) PLA scaffold (reprinted from [30] under the Creative Commons CC-BY license). (e1) PLGA suture
SEM image, and (e2) degradation process (reprinted from [31] with copyright permission).
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PLA is the most thoroughly studied and broadly applied biodegradable polyester [32].
It represents a group of polymers, including PLLA (L-lactic acid as the only monomer),
PDLA (D-lactic acid only), and PDLLA (a copolymer of L- and D-lactic acid), because of
the chiral structure of lactic acid. The degradation pattern of PLA appeared as a long-
term tri-step process: (1) hydrolysis of ester “joints” accompanied by significant loss of
molecular weight (Mw) and increasing swelling; and (2) progressing water interaction with
crystalline “long bones” and reaching the peak stage of swelling; (3) Further degradation
into oligomers and molecules of lactic acid caused the system to gradually disintegrate
into the aqueous environment [33,34]. Degradation of non-electrospun PLA in human
physiological conditions could take up to a year or more [35–37]. In general physiological
conditions (PBS 1X pH 7.4 at 37 ◦C), it was reported that both low and high molecular
weight (Mw) PLA took around 10 weeks to reach a mass loss of over 5% [33]. However,
the weight loss of electrospun PLA membranes was reported to be around 5–12.5% in just
4–6 weeks [25–27]. Apparent weight loss, decrease in electrospun fiber diameters, and
shrinkage in volume would likely occur in about three months, which was faster than
the standard implantable products made with relatively crystalline and bulky forms of
PLA [38,39].

Polyglycolic acid (PGA) is another FDA-approved biodegradable polymer utilized
widely in the medical field. It is the most hydrophilic among the standard medical
polyesters [23]. Glycolic acid units lack a methyl group compared to lactic acid, resulting
in significantly higher hydrophilicity [35] and thus degrading relatively faster than PLA.
Unlike PLA, the degradation pattern of PGA appeared to be a two-step process overall.
Although polyesters generally degrade in three stages: breaking down of amorphous
ester linkages “joints” as the first step (unobvious mass loss), then gradual hydrolysis
of the crystalline tightly packed regions “long bones” (slight mass loss) followed by a
prolonged process of complete degradation to oligomers and monomers (obvious mass
loss). However, due to the hydrophilic nature of glycolic acid units, the hydrolysis of
“joints” and “long bones” occurred nearly at the same pace, so that the first two stages
blend together [40,41]. PGA has a glass transition temperature (Tg) of about 36 ◦C, just
close to human body temperature, which allows it to be applied in suture material or
other tissue engineering equipment that needs faster degradation. Degradation of medical
PGA implants like scaffolds and stents is relatively fast, taking just a few months [42].
Observations on the PGA sutures revealed that 70% degradation occurred in about 3
months, with half the crystallinity lost [41]. Compared to crystalline forms, electrospun
PGA tends to degrade even faster. Studies demonstrated that over half of the mass loss and
volume reduction had occurred in electrospun PGA in less than a month in an aqueous
physiological environment [43,44].

Polylactide-co-glycolide (PLGA) is a polymer that combines the many advantages
of both PLA and PGA. As a copolymer, PLGA allowed flexible tuning of the ratio and
arrangement of lactide and glycolide units, resulting in a more tunable degradation time,
mechanical properties, and hydrophilicity. Medical implants made of PLGA, like bone
scaffolds [45], cartilage repair scaffolds [46], cell seeding foams [47], nerve recovery guide
material [48], and many more, were able to last up to one year or even longer [49–51]. In
comparison, the degradation duration of electrospun PLGA 50/50 membranes appeared to
be between PLA and PGA. The overall mass loss tipping point appeared after around one
month. The mass drop turning point for PLGA with a higher LA ratio of 75:25 appeared
after approximately two months. During this period, the fibers kept swelling and gradually
became more intercrossing and “melted”, finally into clusters of agglomerates [52]. PLGA
tends to have a tri-stage degradation process. At the first stage, both “joint” hydrolysis and
loosening of the crystalline area (due to hydrophilic glycolide units attracting more water)
resulted in a shorter first stage than PLA but not as dramatic as PGA. The second phase
of PLGA degradation was dramatic since the “long bone” area of PLGA was amorphous,
which helped water molecules invade and hydrolyze. The third phase is a prolonged
process of destruction of oligomers and monomers similar to that of other polyesters [44,53].
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Polycaprolactone (PCL) is another extensively utilized biodegradable polyester. It
is semi-crystalline [54,55] with an apparently longer degradative duration than the three
polyesters mentioned above; therefore, it was applied less than them. However, the
long-term degradation property of PCL is desirable for local chemotherapies, which re-
quire prolonged delivery of chemotherapy drugs to inhibit and eradicate carcinoma cells.
Complete degradation of PCL capsules in vivo could take up to two years [55]. The electro-
spinning technique interrupts the crystallinity of PCL, thus resulting in a faster degradation
rate. The detailed degradation profile could also be affected by electrospun parameters. It
was reported that less than 3% weight loss of electrospun PCL (80 kD) had occurred after
42 days [25] or about 15% loss at 30 days of electrospun PCL (70 kD). In general, physiolog-
ical conditions, about a 30% decline in fiber diameter occurred after 107 days [56].

Chitosan is a polymer generated by the deacetylation of an abundantly seen natural
chitin. It has a number of advantages, including affinity for organ tissue surfaces [57],
well-recognized swelling ability [56] and antibacterial activities [57], which are excellent
properties for the design of drug releasing biodegradable implants. The range of Mw of
currently produced chitosan could be from 3800 to 2 million Da with deacetylation rate from
66 to 95%, and the degradation rate is usually proportional to its degree of acetylation [58]. It
is also sensitive to biological (bacterial), chemical (hydrolytic), biochemical (lysozymes), and
physical (temperature) degradations. A study reported that, under general physiological
conditions (sterile), hydrolytic degradation had a noticeable impact on chitosan’s molecular
weight within 3 days of the experiment. At 28 days after the end of the experiment, the Mw
of chitosan had dropped by 65.6%, while the Mw declined by 81.9% compared to the state
right after sterilization [58]. It could be inferred that the hydrolytic degradation process of
chitosan in electrospun fibers would be even faster due to the enhanced surface contact area
with water molecules. The hydrophilic nature of chitosan makes it an excellent candidate
to be blended with hydrophobic synthetic polymers to reduce their overall degradation
duration while helping to avoid burst release of hydrophilic drugs and to tune their drug
release profiles towards logistic or even linear patterns [59,60]. A summary of degradation
features and intended usage of PLA, PGA, PLGA, PCL and chitosan was demonstrated in
Table 1.

Table 1. Summary of typical implantable polymers for electrospinning.

Polymer Degradation Duration in
Crystalline Forms

Degradation Duration in
Electrospun Forms Hydrophobicity Intended Use

PLA
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Polymer 
Degradation Duration in 

Crystalline Forms 
Degradation Duration in 

Electrospun Forms 
Hydrophobicity Intended Use 

PLA  

More than one year [35–
37]. 

Approximately three months, 
less than half a year [38,39]. 

Hydrophobic. 
Long-term structural materials 

[9,28] and delivery systems 
[61–64]. 

PGA  
A few months [41,42]. 

Approximately or less than 
one month [43,44]. 

Hydrophilic. 

Tissue engineering material 
[35,43]. and tuning down the 
degradation period of long-

term delivery systems [65,66]. 

PLGA  

More than one year [49–
51]. 

Approximately two months 
[52]. 

Hydrophilicity 
proportional to the 

GA ratio. 

Mid-term flexible structural 
materials [29,31] and delivery 

system [67,68]. 

PCL  
Up to two years [55]. 

A 30% decline in fiber 
diameter after around three 

months [69]. 
Hydrophobic. 

Long-term structural materials 
[25,69] and delivery system 

[70,71]. 
Up to two years [55].

A 30% decline in fiber
diameter after around

three months [69].
Hydrophobic.

Long-term structural
materials [25,69] and

delivery system [70,71].

Chitosan
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2.1.2. Techniques of Electrospinning

Blend electrospinning is the most straightforward fabrication technique for drug-
loaded fibrous membranes (Figure 2a). All the membrane components are blended in
proper solvent systems and electrospun in one step. Additionally, it has the least require-
ment for fabrication set-up by using regular needle tips, making it the most cost-effective
technique for scale-up processing. Since all the membrane components are dissolved in one
step, compatibility among the drugs, polymers, and solvent systems is the key to desirable
controlled release profiles. If they are not compatible and usually appear as a turbid or even
phase-separated polymer blend, the drugs are highly likely to accumulate on the surfaces
of electrospun fibers, leading to the burst release of drugs [73–76]. A properly arranged
blending of electrospun components would yield homogeneous drug-load membranes that
provide desirable controlled release profiles. Under this circumstance, their drug release
profiles usually followed the degradation pattern of their polymer matrix. However, drug
molecules located deep inside the polymer fibers could be tightly trapped and maintain
a stationary phase of drug release for a prolonged period of time (second stage) until the
polymer structure began to disintegrate [71,77]. A study reported the release profile and
mechanisms of electrospun PLGA loaded with ciprofloxacin hydrochloride. The release
profile was demonstrated to be a logistic tri-stage pattern for over 40 days [53], in accor-
dance with the PLGA degradation process explained above. Another study incorporated
doxorubicin (DOX) within PLA/PEG blended membranes; their general release profile of
DOX followed the characteristic two-stage logistic degradation pattern of PLA. In contrast,
the incorporation of 20% PEG within their PLA membranes adjusted the polymer system
polarity significantly and thus became relatively compatible with DOX and achieved an
excellent 30 day prolonged release of ~85% of loaded DOX [61].
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Figure 2. Typical electrospinning techniques to fabricate drug-loaded membranes including (a) blend
electrospun (direct electrospun of polymer-drug blend). (b) coaxial electrospun (drug-core formu-
lation and polymer-shell formulation being electrospun independently). (c) emulsion electrospun
(electrospun of a thermodynamically stable drug-polymer formulation) (d) electrospun + surface
modification (drug was absorbed or grafted to an electrospun film as a secondary process).

Coaxial electrospinning (Figure 2b) is a technique for fabricating core-shell fibers
whose structure is featured in the inner and outer layers like electric wires. This type of
fiber can achieve special functions that regular blending of electrospun fibers could hardly
accomplish. Typical applications of the core-shell fibrous membrane include protecting
active chemicals vulnerable to light or oxidative impacts, providing a special control-release
effect for hydrophilic drugs, etc. This technique utilized coaxial needle tips connected to
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two supplies of polymer solutions. The electric field would be applied to both solutions
simultaneously, yielding electrospun fibers with core and shell structures. Coaxial electro-
spun fibers allow for the delicate utilization of the incompatibility between hydrophobic
polymers and hydrophilic drugs. They entrap the hydrophilic drugs inside the core to
avoid direct contact with water, which causes burst release. The shell structure forced the
hydrophilic drugs to release, following the degradation patterns of the shell polymers.
Studies utilized a core/shell combination of chitosan/PLA to achieve prolonged release
of DOX to 30 days [59] and PVA/PCL to extend the release of 5-fluorouracil (5-FU) to
25 days [78]. A core-shell structure also overcame the tight entrapment of the hydrophilic
drug in the blending technique mentioned above and boosted the final drug release to a
high ratio of 80% [59,78].

Another path to achieving core-shell structure is to prepare a polymer blend as an
emulsion, called “emulsion electrospinning” (Figure 2c). This measure possesses the same
advantage of one-step formation as blend electrospinning. At the same time, it avoids using
coaxial needles that are difficult to produce and easily get stuck by polymer solutions during
electrospinning processing, which are fatal issues for upscaling productions. Emulsion
electrospinning is attained by preparing an emulsion of polymer, drug, and surfactant.
The hydrophobic polymers were dissolved in non-polar organic solvents to form the oil
phase, while the hydrophilic drugs and the surfactants were mixed to form micelles in
the aqueous phase. When the stable emulsion system is being electrospun, the oil-phase
solvent evaporates quickly, increasing the viscosity and surface energy and separating
the two phases, which creates a core-shell structure [77,79]. From the release profile point
of view, emulsion electrospinning combines the advantages of blending electrospinning
(straightforward and cost-effective for upscaling) and coaxial electrospinning (overcomes
the difficulties of incorporating hydrophilic drugs in hydrophobic polymers). It seems
the most desirable for prolonged controlled release of hydrophilic chemotheraphy drugs.
Nevertheless, due to the incorporation of surfactants, allergy issues should be highly
concerning during in vivo applications.

Surface modification is an extension of electrospinning techniques with multiple ad-
vantages (Figure 2d). It overcomes the incompatibility issue between polymer solvent
systems and the drugs by separating the drug-loading and electrospun membrane fabri-
cation processes while preventing unwanted reactions or degradation of drugs in some
solvent conditions. Surface modification to electrospun membranes was usually carried out
in two ways: absorption and cross-linking. The absorption method utilizes the porous/high
surface area/swelling nature of many electrospun fibers to absorb drugs with the help
of an electrostatic force and concentration gradient. Nevertheless, the absorption type of
drug membranes often demonstrated a small burst release at the beginning, followed by a
prolonged release, since the electrostatic force was not strong enough to create a tight bond
between drugs and polymer fibers [80]. Cross-linking was usually a better option for more
controllable release profiles with suppressed burst release, a higher drug release ratio, and a
longer duration [81]. However, the safety of cross-linker chemicals remains a concern when
applied to the surface of human organ tissue. In addition, surface modification processes
are often sensitive to pH, ionic strength, temperature fluctuations, etc. The drug loading
process often took longer than other techniques, and the loading amount was not entirely
controllable and frequently required extra procedures to evaluate actual drug content.

2.2. Investigating the Release Profiles of Drug-Loaded Electrospun Membranes

Although the key factors affecting the drug release from electrospun membranes are
clear, situations become complicated when multiple variables are combined. In order to
make a practical analysis from the sea of related research, we selected the release data
targeting four types of representative cancer drugs (5-FU and DOX as the representative
hydrophilic chemotherapy drugs, and PTX and CIS as the hydrophobic ones), and re-
fined those results to match two major aims: prolonged control-release for hydrophilic
chemotherapy drugs and enhanced release for hydrophobic chemotherapy drugs. The
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release profiles of electrospun membranes loaded with typical hydrophilic/hydrophobic
chemotherapy drugs that successfully achieved these aims are collected and sorted in
Table 2 with discussions, respectively.

Table 2. Polymer information, electrospun techniques, and release profiles of electrospun chemother-
apy drug membranes with controlled release properties.

Chemo Drug Polymer Information Techniques Release Profile and
Maximum Released %

DOX

PCL 80 kD Blending ~9 days logistic to ~30% [70]
Shell PCL 80 kD + Core PEO 300 kD Coaxial ~10 days logistic to ~60% [82]
PLA 380 kD + Gelatin (Type A from

porcine skin, 210–250 g Bloom) Immersion Coating ~6 days logistic to ~30% [80]

PLA 186 kD + PEG 4 kD Blending (High Shear) with
an enhancer 30 days exponential to ~85% [61]

PLGA 50:50 81 kD + branched PEI
25 kD + PVA 85–124 kD Surface Mod Coating 50 days logistic to ~50% [83]

Core Chitosan (75–85% deacetylated
200 kD) + Shell PLA 150 kD

Coaxial
Tri-Layer + Complex

Encapsulation
~30 days logistic to ~80% [59]

5-FU

PLA pellets 200 kD Complex Encapsulation ~4 days logistic to ~90% [62]
PLGA 50:50 10 kD + gelatin (type A

from porcine skin, 300 bloom) Blending ~10 days logistic to ~90% [84]

Shell PCL 80 kD + Core PVA 89–98 kD Coaxial ~25 days logistic to ~80% [78]
Core PVP + Shell PCL 70% + PVP 30%

PCL 80 kD, PVP 360 kD Coaxial ~7 days logistic to ~80% [85]

Core Chitosan (75–85% deacetylated
200 kD) + Shell PLA 150 kD Coaxial Tri-Layer ~30 days linear to ~80% [59]

PTX

PCL 200 kD + PLGA 75:25 80 kD Bi-layer ~9 days logistic to ~35% [86]
Core Chitosan (75–85% deacetylated

200 kD) + Shell PLA 150 kD
Coaxial Tri-Layer + Complex

Encapsulation ~21 days logistic to ~80% [59]

Dextran 450–650 kD + PLA 260 kD Blending ~35 days linear to ~90% [87]
PLA + Chitosan Blending 14 days logistic to ~30% [88]

PLA Blending ~40 days logistic to ~80% [63]
PLGA 50:50 33 kD Blending ~42 days logistic to ~80% [67]

CIS

PCL 45 kD + Chitosan 310 kD Blending 30 days linear to ~65% [60]

PCL 70–90 kD Blending +
Release Enhancer ~70 days linear to ~60% [71]

PLA 85–160 kD + PLGA 50:50 50–70 kD Blending ~33 days logistic to ~70% [89]
PLGA 50:50 33 kD Blending ~30 days exponential to ~100% [68]

PLA 100 kD Blending ~11 days logistic to ~45% [64]

2.2.1. Challenges in the Drug Release of Chemotherapy Drug-Loaded Electrospun Membranes

Researchers have fabricated delicate electrospun materials with anti-tumor or even
multiple functions. Unfortunately, some did not achieve satisfying release profiles that
might decrease their therapeutic efficacies and shorten their anti-cancer time range. The
issue mainly focused on incompatible drug-polymer systems. Implantable hydrophobic
polymers like PLA, PLGA, and PCL possess excellent mechanical properties and stability
that are attractive to many researchers. However, when blended with hydrophilic drugs,
the polar incompatibility will cause an uneven distribution of drugs in the polymers. A
part of the drug would accumulate on the surface of the electrospun materials (Figure 3,
DOX-loaded membrane) and cause burst release; the remaining drug would frequently
be trapped tight inside the polymers, which would be unable to release for a very long
time before significant degradation of the polymers [73,74,90,91] (as demonstrated in
Figure 4). Burst chemotherapy drug release could cause acute toxicity in the test animals
and reduce the effective period. It is worthy of optimization. Another issue was sometimes
seen in hydrophobic drug-loaded membranes: the overall drug release amount in the
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aqueous system tends to be low [92]. This issue would lead to a wasteful use of a portion
of chemotherapy drugs, which would increase the cost of manufacturing and raise the
product’s price.
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Figure 3. Examples of electrospun membranes fabricated with varied implantable polymeric materials
(PLA [93], PGA, PLGA [94], PCL [95], chitosan [94]), loaded drugs (DOX, 5-FU [96], paclitaxel
(PTX), and cisplatin (CIS) [71]), techniques (blend electrospinning, emulsion electrospinning [97],
coaxial electrospinning [98], and surface modification [99]), and therapeutic applications (electrospun
piperine loaded PCL against breast tumor [100], electrospun oxaliplatin loaded PLLA preventing
local cervical carcinoma recurrence [101], and electrospun temozolomide loaded PLGA-PLA-PCL for
localized treatment of recurrent glioma [102]). Images are reprinted with copyright permissions or
under the Creative Commons CC-BY license.
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Figure 4. Key factors (polymers, drug hydrophilicity, and electrospinning techniques) affecting
the release profiles of chemotherapy drug-loaded electrospun membranes. Combining or using
surface-absorbing drugs with hydrophilicity-mismatched polymers would result in a burst release
followed by a long stationary phase. Proper matching of drug-polymer hydrophilicity or adapting
proper techniques would result in a gradual release with profiles close to logistic or linear increase.
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2.2.2. Strategies to Enhance the Release Profiles of Hydrophilic Chemotherapy
Drug-Loaded Electrospun Membranes

Hydrophilic chemotherapy drugs share properties like fast effects through rapid
concentration elevation and short retention times in the human body. In order to maintain
a specific local drug concentration, these chemotherapy drugs had to be applied repeatedly
in a short period, which increased the suffering of patients; furthermore, a rapid elevation
of drug concentration is closely related to acute toxicity events. As a result, electrospun
membranes for local chemotherapies should be tuned to possess prolonged logistic and
even linear release profiles for hydrophilic chemotherapy drugs, reducing their burst
release to achieve reliable drug effectiveness.

It is critical to match the polarity between drugs and polymers to achieve proper
controlled release of hydrophilic chemotherapy drugs from the electrospun membrane.
Nevertheless, most long-term degradative polymers are relatively hydrophobic and thus
natively incompatible with hydrophilic chemotherapy drugs. This contradiction has pre-
sented challenges for researchers. To address this problem, polymer systems for elec-
trospinning membranes should be tuned to be relatively less hydrophobic and easier to
degrade in water. The strategies include incorporating amphiphilic chemicals like low- to
mid-Mw PEG that is mostly safe for human tissue [61] and adding polar polymers into
the system to increase overall polarity like PGA, PVA, PVP, chitosan, gelatin, etc. [83–85].
PLA supplemented with hydrophilic polymers like gelatin [80,84], PEG [61], and PLGA
50:50 with PVA [83] demonstrated successful prolonged release profiles for hydrophilic
chemotherapy drugs DOX and 5-FU, allowing them to switch from the profile of burst
release in 24 h to a prolonged logistic release for more than a week or even 10 days. How-
ever, this short-term release via blending electrospinning techniques could not always
provide enough therapeutic duration. In order to achieve a longer release time of around
a month, core-shell electrospinning techniques would be more desirable. By designing
a hydrophilic core solution of hydrophilic drugs with chitosan or PVA together with a
shell solution of hydrophobic long-term biodegradable polymers like PLGA 50:50, PLA, or
PCL, the release of DOX or 5-FU could be prolonged to 25~30 days [59,78]. Conjugation
of hydrophilic drugs prior to electrospinning could even achieve a linear release that is
valuable for clinical practices [59].

2.2.3. Strategies to Enhance the Release Profiles of Hydrophobic Chemotherapy
Drug-Loaded Electrospun Membranes

The trickiest thing about applying hydrophobic chemotherapy drugs is increasing their
solubility and bioavailability. Raw hydrophobic drugs are usually crystalline particles that pre-
cipitate in an aqueous environment without entering the cancer cells. Electrospun membranes
should be designed to largely enhance their release quantity over the polymer degrada-
tion period and act as carriers to increase their compatibility with an aqueous environment.
PLA, PLGA 50:50, and PCL electrospun membranes could achieve logistic release of more
than 50% encapsulated PTX or cisplatin for 30 days or longer [60,63,67,68,71,87,89]. Com-
plex encapsulation techniques like conjugation [59], dextran encapsulation [87], blending
with chitosan [60], and release enhancers [71] were effective in boosting release efficiency
(released drug ratio). In addition, some of these carriers could help achieve linear release
of PTX or cisplatin, which is significantly important for providing reliable therapeutic
outcomes that require a stable drug administration dose [60,71,87].

3. Therapeutic Effects

Properly tuned electrospun chemotherapy drug membranes with prolonged and con-
trolled release profiles were proven effective against the activities of cancer cells in vitro and
inhibited the growth of local tumors while extending the lives of tumor-bearing animals.
For in vitro cell toxicity studies, DOX-loaded PCL/PLA-based controlled release mem-
branes were mostly reported to exhibit antiproliferative effects against the MCF-7 human
breast cancer cell line [59,70,82,103] and were found to be modulating BCL-2 and caspase-3
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signaling pathways of MCF-7 in synergism with berberine [70]. More prolonged-releasing
DOX membranes were also reported effective against human glioblastoma U-87 MG [80],
lung cancer A549 [61], and fibroblast 3T3 [104] cell lines, etc. The use of 5-FU controlled
release membranes was found to be effective against human colorectal carcinoma HCT-116
cells [62], late-stage human breast cancer MDA-MB-231 cells [78], and more. PTX-loaded
enhanced releasing membranes were mostly studied against breast cancer cell lines and
found to be effective [59,67]. Cisplatin-loaded membranes demonstrated antiproliferative
effects against mouse lung cancer LLC cells [71], human lung cancer spc-a-1 cells [64], C6
glioma cells [89], murine ovarian surface epithelial cells ID8 [105] and mouse fibroblasts
NCBI C161 [88]. A study of delicately fabricated triaxial electrospun membranes loaded
with DOX, 5-FU, and PTX achieved a significantly better antiproliferative effect against
MCF-7 human breast cancer cells than the routine single-layer membrane [59].

For in vivo anti-tumor studies, a local application of DOX-loaded controlled release
membranes was reported to reduce glioblastoma by nearly 80% at day 20, borne by naked
mice [80]. Another study reported that a DOX-micelle-loaded electrospun membrane
could achieve approximately 18% accumulation in tumor tissue in three days in MCF-7
breast tumor-bearing mice, which was more than a six-fold higher local DOX accumulation
compared to intravenously injected DOX and demonstrated low systemic toxicity [103]. A
PCL/PLGA bilayer membrane loaded with PTX and locally applied to human esophageal
carcinoma cells (Eca109) injected into naked mice was reported to maintain a superior
35 day survival rate over the intravenous injection groups and control groups. Their
PTX membrane group also demonstrated lower systemic toxicity than PTX intravenous
injection, as reflected by a higher body weight [86]. A study on the anti-glioblastoma effect
of PTX-dextran-PLA scaffolds on naked mice found improvements in overall survival on
scaffolds with varied release profiles [87]. A cisplatin-loaded PCL/chitosan membrane
was reported to reduce cervical tumor volume significantly more in Swiss albino mice
over 14 and 21 days compared to applying plain cisplatin [60]. Cisplatin-loaded PLGA
50:50 electrospun membranes were also found to deliver significantly more drug in the
locally treated area (brain) than systemic plasma for over eight weeks with no apparent
inflammatory responses [68].

Unfortunately, there are not yet any FDA-approved products of electrospun chemo-
drug-loaded membranes on the U.S. market. There are currently two electrospun material
products listed on the clinical trial database of the U.S. National Institute of Health (NIH).
One is an antibacterial electrospun material loaded with ciprofloxacin (CIP), metronidazole
(MET), and minocycline (MINO) for immature necrotic teeth (ClinicalTrials.gov Identifier:
NCT03690960). The other is a tissue repair scaffold for treating dermatologic wounds
created by the surgical removal of non-melanoma skin cancers (ClinicalTrials.gov Identifier:
NCT02409628). Hopefully, there will be chemotherapy drug-loaded electrospun material
products available for clinical trials against local carcinoma.

4. Conclusions

In this review, the key factors affecting the release profiles of chemotherapy drug-
loaded electrospun membranes were systematically discussed with mechanistic elabora-
tions and case studies. Research on electrospun membranes loaded with several repre-
sentative chemotherapy drugs (DOX, 5-FU, PTX, and cisplatin) with varied polymers and
techniques are selected and categorized to demonstrate the reality of drug release and
to provide meaningful experiences towards desirable release profiles according to varied
needs. Their therapeutic evidence, with both in vitro antiproliferative cell studies and
in vivo local anti-tumor effects, was also refined and demonstrated. Hopefully, this review
could serve as a strategic guide for the design of drug-loaded electrospun membranes,
especially to be applied as implants against local carcinoma, to unravel the relationship
between elements of drug membranes and their overall release profiles.
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