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Abstract: The ability of organic photovoltaics (OPVs) to be deposited on flexible substrates by roll-
to-roll (R2R) processes is highly attractive for rapid mass production. Many research teams have
demonstrated the great potential of flexible OPVs. However, the fabrication of R2R-coated OPVs is
quite limited. There is still a performance gap between the R2R flexible OPVs and the rigid OPVs.
In this study, we demonstrate the promising photovoltaic characteristics of flexible OPVs fabricated
from blends of low bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-
b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-
dione)] (PBDB-T) and non-fullerene 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,
11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). We suc-
cessfully R2R slot-die coated the flexible OPVs with high power conversion efficiency (PCE) of over
8.9% under irradiation of simulated sunlight. Our results indicate that the processing parameters
significantly affect the PCE of R2R flexible OPVs. By adjusting the amount of solvent additive and
processing temperature, as well as optimizing thermal annealing conditions, the high PCE of R2R
slot-die coated OPVs can be obtained. These results provide significant insights into the fundamentals
of highly efficient OPVs for the R2R slot-die coating process.

Keywords: organic photovoltaic; slot-die; roll-to-roll; flexible; non-fullerene

1. Introduction

As an emerging renewable energy source, bulk-heterojunction (BHJ) OPVs have
attracted much attention due to the advantages of being lightweight, low manufactur-
ing cost, high flexibility, and ease of large-area mass production [1–4]. Three key fac-
tors in the commercialization of OPVs include high PCE, long operating lifetime, and
well-developed mass-production techniques. Many research groups have put a lot of
effort on how to improve the PCE of OPVs. Previous studies mainly focus on the de-
velopment of novel conducting polymers or small molecules as electron donor mate-
rials, such as poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-
fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), poly([2,6′-4,8-di(5-
ethylhexylthienyl) benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno
[3,4-b] thiophenediyl]) (PTB7-Th), Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-
benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-
c:4′,5′-c′]dithiophene-4,8-dione)] (PM6) and 2,2′-[(3,3′′′,3′′′′,4′-tetraoctyl[2,2′:5′,2′′:5′′,2′′′:5′′′,
2′′′′-quinquethiophene]-5,5′′′′-diyl)bis[(Z)-methylidyne(3-ethyl-4-oxo-5,2-thiazolidinediylid-
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ene)]]bis-propanedinitrile (DRCN5T) [5–14]. By incorporating interface engineering in device
manufacturing, an improved PCE of over 18% has been achieved [15]. Although several new
donor materials have been effectively used in high-efficiency OPVs, the electron acceptor mate-
rials are still limited to fullerene derivatives such as [6,6] phenyl-C61-butyric acid methyl ester
(PC61BM), [6,6]-Phenyl-C71-butyric acid methyl ester (PC71BM) and 1′,1′′,4′,4′′-tetrahydro-
di[1,4] methanonaphthaleno[5,6]fullerene-C60 (ICBA) for decades [10,16–19]. However, facil-
itating improvements in the PCE of OPVs was restricted by the weak absorption and lack
of bandgap tunability of these fullerene derivatives. In addition to the PCE of OPVs, the
fullerene aggregation during heating conditions often raises thermal stability concerns. In
recent years, non-fullerene small molecule materials have emerged as alternative electron
acceptor materials to fullerene derivatives [20–25]. Non-fullerene acceptor materials offer a
significant advantage in their ability to be chemically modulated to fine-tune their absorp-
tion, energy level, and electronic mobility, which is challenging to achieve with fullerene
derivatives. Various non-fullerene acceptors, including rylene imide, indacenodithiophene
(IDT), and diketopyrrolopyrrole (DPP)-based acceptors, were broadly used to fabricate
OPVs [26,27]. According to a previous study, single-junction OPVs based on low bandgap
polymers and non-fullerene molecules achieve a PCE of about 18% [15], while the tandem
structure of OPVs reaches over 19% [28]. However, these OPVs with promising PCEs were
obtained by lab-scale spin coating processes, and the high-efficiency devices fabricated by
the scalable and roll-to-roll (R2R) compatible method were still lacking.

Large-area solution-processable techniques have been successfully applied in OPV man-
ufacturing, such as ultrasonic spray [29,30], inkjet printing [31–33], doctor blades [34–37], and
slot-die coating [38–42]. Among these techniques, the slot-die coating process is the most
promising candidate for mass production due to its high throughput, low material waste,
low cost, and rapid manufacturing speed. However, the film formation of the slot-die
process is different from the conventional spin-coating process. For the R2R slot-die pro-
cess, the solidification of the wet film is complicated and critical. There are seldom studies
demonstrating the R2R manufacture of OPVs based on polymer and non-fullerene acceptor
materials. Liu et al. demonstrated a blade-coated OPV based on PTB7-Th and ITIC with
high PCEs of 9.5% on a glass substrate and 7.6% on a flexible substrate, respectively [43].
Vak et al. presented flexible OPVs based on PBDB-T and ITIC with a notable PCE of 8.77%
fabricated via batch slot-die process. On the other hand, a PCE of 7.11% was attained from
a flexible device fabricated using the R2R slot-die coating process [44]. These results show
that the non-fullerene acceptors and R2R slot-die coating process have great potential to
improve the PCE performance of OPVs. Moreover, the efficiency gap between lab-scale
spin-coated devices and R2R slot-die coated devices is needed to explore to further improve
the performance of the OPV devices.

In our previous study, flexible OPVs fabricated via the R2R slot-die coating process
with a high PCE of over 7% were demonstrated [45]. In this case, PTB7: PC71BM was R2R
slot-die coated, controlling the amount of solvent additive and oven temperature to obtain
a high PCE for the R2R flexible OPVs. According to these results, we presented a universal
approach for fabricating low-cost, large-area, and environmentally friendly flexible organic
photovoltaics. In this study, we present a new approach to fabricating R2R slot-die flexible
OPVs utilizing low bandgap polymer (PBDB-T) and non-fullerene acceptor material (ITIC).
In addition, we give an illustration of how the BHJ film structure and performance of the
R2R slot-die coated non-fullerene-based OPV devices can be effectively improved by tuning
the additive solvent, varying the slot-die coated parameters, and controlling the thermal
processing conditions. Here, the flexible R2R slot-die coated PBDB-T/ITIC active layer
notably achieved a PCE of 8.9%. This study paves the way to realize the commercialization
of OPVs.
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2. Materials and Methods
2.1. Preparation of Solution

The materials used were the same as our previous literature [45,46], and the ZnO
nanoparticles (NPs) solution was based on our previous literature [47]. First, 4.4 g zinc ac-
etate di-hydrate was dissolved in 220 mL ethanol until it completely dissolved. Then, 1.1 g
lithium hydroxide monohydrate and 4 mL DI water were added to the previous solution,
followed by vigorous stirring. After the color of the solution changed to transparent, the
solution was put in a water bath at 60 ◦C and stirred for 30 min. The reacted solution was
then centrifuged at 3000 rpm for 3 min, and then the suspension was removed. The ZnO
powder was redispersed in IPA at a concentration of 10 mg/mL with 0.15% ethanolamine
as a dispersant. For the active layer solution, 10 mg PBDB-T and 10 mg ITIC were dissolved
in 1 mL chlorobenzene (CB) and stirred at 70 ◦C overnight before use.

2.2. Preparation of Devices

The electron transport layer (ETL) and photoactive layer were slot-die coated by
the Coatema R2R system (Smartcoater, Coatema Coating Machinery GmbH, Dormagen,
Germany). We use ITO-coated polyethylene terephthalate (PET) with a sheet resistance of
15 Ω/square from Optical Filters Ltd. (EMI ITO-15) as the flexible transparent conducting
substrate. The PET/ITO substrate was first cut into a 10 × 10 cm2 sheet, and then the
substrate was treated with air plasma. ZnO nanoparticles were used as the ETL in this
study, and the PBDB-T:ITIC blend was used as the photoactive layer. The photoactive
solutions with varying amounts of 1,8-diiodooctane (DIO) were stirred at 50 ◦C overnight
before slot-die coating. The slot-die coated layer was dried immediately by an in-line oven
equipped with an R2R-coating machine (R2R oven), which was illustrated in our previous
literature [48]. The deposited ETL was dried at 150 ◦C for 10 min in an ambient oven, while
the top deposited wet photoactive layer was dried under the R2R oven. The photoactive
layers were subsequently post-annealed at 160 ◦C for 30 min in the ambient oven. To
provide a hole transporting layer (HTL) and top metal electrode, MoO3 (5 nm) and then the
Ag (100 nm) films were thermally evaporated on the photoactive layer by shadow mask.
The devices used in this study have an area of 1 × 0.3 cm2. Figure 1 shows the chemical
schematics of the donor and acceptor materials and the device structure. It is noteworthy to
mention that all the R2R slot-die coating processes were conducted in ambient conditions.
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2.3. Instrumentation 

Figure 1. The structure of the R2R slot-die coated devices and chemical structure of PBDB-T and ITIC.

2.3. Instrumentation

The current density-voltage characteristics of the devices were measured by a source
meter (Keithley 2400, Keithley instruments, Cleveland, OH, U.S.) under AM 1.5G illumina-
tion (100 mW/cm2) using a solar simulator (Model #11000, Abet Technologies, Milford, CT,
U.S.). The thicknesses of films were measured using a profilometer (Alpha Step D-100, KLA
Tencor, Milpitas, CA, U.S.). The morphologies of R2R slot-die coated film were measured
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by atomic force microscopy (AFM, Innova, Bruker Corporation, Billerica, MA, U.S.). All
the slot-die coated devices were not encapsulated and measured under ambient conditions.

3. Results and Discussion

High-performance OPVs based on PBDB-T and ITIC have been extensively reported in
numerous literature [17,49–51]. Most of these studies demonstrate highly efficient devices
that were typically fabricated under an inert atmosphere. To achieve future commercializa-
tion, we demonstrate an approach employing a slot-die process under ambient conditions.
To evaluate how the processing environment affects OPV performance, we initially ob-
served devices fabricated under different conditions. The current density-voltage (J-V)
curves of these devices are shown in Figure 2a, with electrical characteristics provided in
Table 1. In this study, the inverted structure of the devices was formed by spin-coating
technique while keeping the weight ratio of PBDT-T and ITIC at 1:1. Here, the CB so-
lution mixed with 0.5 vol% DIO was used as the processing solvent for fabricating the
BHJ photoactive layer [49]. As illustrated in Figure 2a, the OPVs fabricated in a glove box
filled with N2 show an open-circuit voltage (Voc) of 0.90 V, a short-circuit current density
(Jsc) of 17.68 mA/cm2, and a fill factor (FF) of 0.61, resulting in an average PCE of 9.75%,
of which the highest PCE is 10.17%. OPVs fabricated under ambient conditions (with
a relative humidity of ~50%) achieved an average PCE of 8.67%. The champion device
exhibited a PCE of 8.88%, followed by a Voc of 0.89 V, a Jsc of 15.72 mA/cm2, and a FF of
0.62. Interestingly, the PCE of devices produced in ambient conditions was approximately
10% lower than those manufactured under N2. In addition, the films deposited via the
slot-die process exhibited a different thickness as compared to that via spin coating. This
prompted us to investigate the effect of film thickness on the PCE of the devices based on
the blend of PBDB-T:ITIC fabricated via the spin coating process. The related J-V curves
and electrical characteristics are shown in Figure 2a and Table 1. Here, the effect of the
thickness of the photoactive layer on the PCE by varying the deposition spin rate from
3000 rpm to 5000 rpm was observed. As demonstrated in using these parameters, the PCE
was shown to further increase up to ~10% as the spin rate increases (lower film thickness).
Based on the pre-testing results, the fabricating process was switched from spin coating to
the R2R slot-die coating technique.
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Figure 2. (a) J-V curves of OPVs based on PBDB−T:ITIC fabricated via the spin coating process
with varying spin rates and atmospheric conditions. (b) J-V curves of OPVs based on PBDB−T:ITIC
fabricated using the R2R slot-die coating process with various R2R oven temperatures.
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Table 1. Photovoltaic characteristics of OPVs based on an PBDB−T:ITIC active layer prepared via
spin coating with various film thicknesses under different processing atmospheres. (These values
are for the champion PCE of these devices, and average values are obtained from 15 devices in
the brackets).

Spin Rate
(rpm) Atmosphere Jsc (mA/cm2) Voc (V) FF PCE (%)

3000
N2

17.62
(17.66 ± 0.24)

0.89
(0.89 ± 0.00)

0.55
(0.53 ± 0.011)

8.62
(8.40 ± 0.16)

Air 15.58
(15.58 ± 0.14)

0.88
(0.89 ± 0.01)

0.59
(0.57 ± 0.014)

8.09
(7.93 ± 0.24)

5000
N2

18.52
(17.68 ± 0.75)

0.90
(0.90 ± 0.01)

0.61
(0.61 ± 0.011)

10.17
(9.75 ± 0.30)

Air 15.83
(15.72 ± 0.10)

0.89
(0.89 ± 0.01)

0.63
(0.62 ± 0.006)

8.88
(8.67 ± 0.12)

To optimize the R2R slot-die coating processing condition for the devices based on
PBDB-T:ITIC, the parameters were focused on these processing parameters, including
R2R oven temperature, DIO additive amount, post-annealing treatment condition, and
R2R coating condition. Based on our previous research, we have developed a universal
approach, which interrelates the effects of R2R oven temperature and additive amount
to improve the PCE of the flexible OPVs [45]. Initially, the R2R oven temperature and
the amount of DIO solvent additive were evaluated. The preliminary tests indicated the
critical role of the R2R oven temperature for R2R slot-die coated flexible OPVs. In this
study, the R2R oven temperatures were controlled to 100 ◦C, 120 ◦C, and 140 ◦C, which is
consistent with our previous study [45]. The J-V curves of the devices fabricated via the
R2R slot-die coating process with varying oven temperatures are shown in Figure 2b, while
the performances of the devices are listed in Table 2. Here, the average PCE of the devices
with an R2R oven temperature of 100 ◦C was found to be 6.78%, while the average PCEs
of the devices were achieved at 7.15% as the R2R oven temperature increased to 120 ◦C.
As the R2R oven temperature increased to 140 ◦C, the PCE of devices showed a drop of
up to 6.70% which is suggested to be due to the JSC and FF loss of devices. This result
indicates that the fast solvent evaporation does not assist in the formation of the active layer
at 140 ◦C. Therefore, the R2R process with an oven temperature of 120 ◦C was selected for
further investigations.

Table 2. Photovoltaic characteristics of OPVs based on PBDB−T:ITIC prepared via the R2R slot-die
coating process under varying R2R oven temperatures. These values are for the highest PCE of these
devices, and the average values are obtained from 15 devices in the brackets.

R2R Oven
Temp. (◦C) Jsc (mA/cm2) Voc (V) FF PCE (%)

100 14.63
(14.71 ± 0.15)

0.86
(0.86 ± 0.01)

0.56
(0.54 ± 0.03)

7.05
(6.78 ± 0.33)

120 14.80
(14.70 ± 0.26)

0.87
(0.86 ± 0.01)

0.57
(0.56 ± 0.01)

7.34
(7.15 ± 0.10)

140 14.42
(14.50 ± 0.07)

0.86
(0.86 ± 0.01)

0.54
(0.53 ± 0.01)

6.70
(6.60 ± 0.08)

To manipulate the film formation and improve the PCE, a high boiling-point DIO
solvent additive was incorporated into the active layer solution as an additional and/or a
new parameter. The effect of varying amounts of DIO additive (0, 0.25, 0.5, and 1 vol%)
on the performance of the PBDB-T:ITIC active layer-based R2R-coated devices (R2R oven
temperature is 120 ◦C) was observed. Figure 3a shows the J-V curves of these devices with
the corresponding photovoltaic characteristics listed in Table 3. By adding 0.25 vol% DIO
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in the photoactive solution, the Jsc of R2R slot-die OPVs improved significantly, resulting
in an enhanced PCE of ~8%. With a further increase in the DIO amount from 0.5 vol% to
1 vol%, the PCE of R2R slot-die OPVs was decreased to 7.1%, where the PCE reduction is
due to the lower Jsc and FF. It is noteworthy that the R2R slot-die coated photoactive layer
was not completely dried when passing through the R2R oven at 120 ◦C due to the high
boiling point of the DIO additive. The wet photoactive layer was irregularly deposited on
the substrate as it proceeded through the roller. To evaluate the DIO’s effect on the PCE’s
performance, we use AFM to measure the roughness of the photoactive layer, shown in
Figure 4. Compared to the photoactive layer without DIO, the roughness of the photoactive
layer with 0.25 vol% DIO was reduced from 1.82 nm to 0.98 nm, which is expected to
correspond to the performance of the device. After the amount of the DIO was increased to
1 vol%, the roughness of the active layer was slightly increased in comparison to that with
0.5 vol% DIO. It is suggested that excess DIO additive on the active layer demonstrates a
negative impact on the photovoltaic performance of OPV. Further, PBDB−T:ITIC: 0.25 vol%
DIO film was R2R slot-die coated in the substrate and post-thermally annealed with varying
thermally annealing times of 10, 20, and 30 min. The results of the related J-V curves and
electric characteristics of the samples are shown in Figure 3b and Table 4. Post-thermal
annealing of 140 ◦C with 30 min displayed the highest FF, resulting in a notable PCE of
8.70%. The impact of annealing temperature on device performance is detailed in Table 5,
where all samples were subjected to post-annealing for a consistent duration of 30 min.
The average PCE of OPVs based on the active layer annealed at 120 ◦C does not show
an obvious improvement compared to the OPV without post-annealing. By increasing
the annealing temperature to 140 ◦C, the average PCE of OPVs can be enhanced from
8.10% to 8.60%. It indicated that the active layer with DIO additive was through sufficient
recrystallization at 140 ◦C. Conversely, a decline in PCE was observed when the annealing
temperature was further increased to 160 ◦C. It speculated that the active layer suffered
from the phase segregation of PBDB-T during the post-annealing process [51]. Therefore, it
is hypothesized that extending the annealing time beyond 30 min could be detrimental to
OPV performance, primarily due to the potential phase segregation of the active layer. To
maintain optimal blend homogeneity in the active layer, we standardized the annealing
time to 30 min.
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Figure 3. (a) J−V curves of OPVs based on PBDB−T:ITIC:DOI with varying amounts of DIO additive
prepared via the R2R slot-die coating process under 120 ◦C of R2R oven temperature. (b) J−V curves
of OPVs based on PBDB−T:ITIC fabricated via R2R slot-die coating process under 120 ◦C oven
temperature with post-thermal annealing temperature of 160 ◦C with varying annealing times.
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Table 3. Photovoltaic characteristics of OPVs based on PBDB−T:ITIC:DIO with varying amounts
of DIO additive prepared via the R2R slot-die coating process under 120 ◦C oven temperature.
These values represent the champion PCE of these devices, and the average data are obtained from
20 devices in the brackets.

DIO Amount
(vol%) Jsc (mA/cm2) Voc (V) FF PCE (%)

w/o 15.30
(15.29 ± 0.05)

0.86
(0.86 ± 0.01)

0.53
(0.52 ± 0.01)

7.00
(6.93 ± 0.06)

0.25 16.22
(16.12 ± 0.11)

0.90
(0.90 ± 0.01)

0.56
(0.56 ± 0.01)

8.20
(8.07 ± 0.15)

0.5 15.44
(15.69 ± 0.38)

0.90
(0.90 ± 0.01)

0.57
(0.56 ± 0.01)

7.90
(7.90 ± 0.03)

1 14.65
(14.24 ± 0.36)

0.96
(0.94 ± 0.01)

0.53
(0.53 ± 0.01)

7.30
(7.10 ± 0.17)
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fabricated via the R2R slot-die coating process under 120 ◦C oven temperature: (a) Without DIO,
(b) 0.25 vol% DIO, (c) 0.5 vol% DIO, (d) 1.0 vol% DIO.
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Table 4. Photovoltaic characteristics of OPVs based on PBDB-T:ITIC fabricated via the R2R slot-die
coating process under 120 ◦C oven temperature with post-thermal annealing temperature of 140 ◦C
with varying annealing times. These values are for the champion PCE of the devices, and the average
data in the brackets are obtained from 20 devices.

Annealing Time
(min) Jsc (mA/cm2) Voc (V) FF PCE (%)

w/o 16.23
(16.41 ± 0.40)

0.90
(0.89 ± 0.01)

0.56
(0.56 ± 0.01)

8.20
(8.10 ± 0.10)

10 15.47
(15.46 ± 0.05)

0.90
(0.89 ± 0.01)

0.58
(0.59 ± 0.01)

8.10
(8.07 ± 0.06)

20 15.54
(15.50 ± 0.02)

0.89
(0.89 ± 0.01)

0.59
(0.59 ± 0.01)

8.20
(8.16 ± 0.06)

30 16.04
(15.81 ± 0.20)

0.89
(0.89 ± 0.01)

0.60
(0.61 ± 0.01)

8.70
(8.60 ± 0.10)

Table 5. Photovoltaic characteristics of OPVs based on PBDB−T:ITIC fabricated via the R2R slot-die
coating process under 120 ◦C oven temperature with various post-thermal annealing temperatures
for 30 min. These values are for the champion PCE of the devices, and the average data in the brackets
are obtained from 20 devices.

Annealing
Temperature

(◦C)
Jsc (mA/cm2) Voc (V) FF PCE (%)

w/o 16.23
(16.41 ± 0.40)

0.90
(0.89 ± 0.01)

0.56
(0.56 ± 0.01)

8.20
(8.10 ± 0.10)

120 16.07
(15.91 ± 0.15)

0.90
(0.87 ± 0.04)

0.60
(0.58 ± 0.03)

8.61
(8.06 ± 0.51)

140 16.04
(15.81 ± 0.20)

0.89
(0.89 ± 0.01)

0.60
(0.61 ± 0.01)

8.70
(8.60 ± 0.10)

160 14.10
(14.29 ± 0.04)

0.86
(0.82 ± 0.01)

0.55
(0.57 ± 0.01)

6.70
(6.63 ± 0.09)

The performance of OPVs is significantly influenced by the quality of the active
layer, which is determined by the R2R coating condition. We further investigate the
effect of R2R slot-die coating parameters, such as ink injection rate and coating speed,
on the morphology, uniformity, and thickness of the photoactive layer. The resulting J-V
curves and performance of OPVs (PBDB-T:ITIC: 0.25 vol% DIO) with varying coating
conditions are shown in Figure 5a and Table 6. Following the optimized R2R slot-die
coating parameters, a prominent PCE of over 9% is achieved. Figure 5b presents the PCEs
of the OPV device with varying film thicknesses. The thickness of the active layer was
controlled by the coating parameters, such as input rate and coating speed. In the case
using 0.5 mL·min−1 of input rate, the PCE of OPVs can be improved when the coating
speed is increased from 0.7 to 1.0 m·min−1. It implied faster coating speed may result in
more uniform film. Nevertheless, these devices exhibited a low Jsc due to the inadequate
absorption of the active layer. To obtain the thick active layer, we increase the input rate to
0.7 mL·min−1. Under this condition, raising the coating speed from 0.7 to 1.0 m·min−1, the
PCE of OPVs can be enhanced significantly from 7.2% to 8.6%. With the coating speed of
1.0 m·min−1, the thickness of the active layer was increased to 170 nm using 1.0 mL·min−1

of input rate. However, this led to a decline in PCE, suggesting more bulk defects in the
thicker photoactive layer. To optimize the quality of the active layer coating, the speed
was adjusted to 1.4 m·min−1, which resulted in OPVs exhibiting a commendable PCE
of 8.9%. Figure 6 shows the AFM images of the R2R slot-die coated films via various
coating parameters. We can observe that the surface morphology is influenced by the
variation in the R2R slot-die coating parameters. The smoothest surface of the photoactive
layer was obtained at 1.0/1.4 with a film thickness of 120 nm. As the thickness of the
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active layer increased to 170 nm, the roughness of the active layer increased from 0.84 nm
to 5.28 nm. This represents the criticality of precise R2R slot-die coating parameters for
ensuring high-quality films.
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Table 6. Performance of OPVs based on the active layer consisting of PBDB−T:ITIC:0.25 vol% DIO
fabricated via the R2R slot-die coating process with various coating conditions under 120 ◦C R2R
oven temperature. These values represent the highest PCE of the devices, and the average data are
obtained from 20 devices in the brackets.

Input Rate/
Coating Speed

(mL·min−1/m·min−1)
Jsc (mA/cm2) Voc (V) FF PCE (%) Thickness

(nm)

0.5/0.7 14.50
(14.60 ± 0.31)

0.88
(0.88 ± 0.01)

0.58
(0.56 ± 0.01)

7.30
(7.22 ± 0.33) 80.6 ± 1.5

0.5/1.0 13.80
(13.71 ± 0.11)

0.90
(0.90 ± 0.01)

0.60
(0.59 ± 0.02)

7.50
(7.30 ± 0.27) 59.6 ± 0.9

0.7/0.7 15.13
(15.13 ± 0.01)

0.89
(0.88 ± 0.01)

0.54
(0.53 ± 0.06)

7.20
(7.10 ± 0.14) 150.2 ± 3.3

0.7/1.0 16.08
(15.92 ± 0.15)

0.91
(0.88 ± 0.05)

0.59
(0.58 ± 0.04)

8.60
(8.07 ± 0.50) 100.2 ± 1.1

1.0/1.0 16.68
(16.71 ± 0.05)

0.89
(0.89 ± 0.01)

0.52
(0.52 ± 0.01)

7.70
(7.70 ± 0.01) 170.6 ± 2.2

1.0/1.4 17.42
(17.39 ± 0.44)

0.90
(0.90 ± 0.01)

0.57
(0.55 ± 0.01)

8.90
(8.75 ± 0.17) 120.1 ± 2.0
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Figure 6. AFM images of PBDB−T:ITIC fabricated via the R2R slot-die coating process with various
coating conditions under 120 ◦C R2R oven temperature. (a) 0.5/1.0, (b) 1.0/1.4, (c) 1.0/1.0.

To demonstrate the large-area capability of R2R slot-die coated OPVs, we further
evaluated the large-area R2R OPVs devices and modules. Figure 7a and Table 7 show the
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performance of OPVs with different device areas. The OPV with an active area of 0.3 cm2

displayed the highest PCE of 6.90%. It can be observed that as the active area is increased
to 4 cm2, the PCE of the OPVs decreases to 5.70% owing to the FF loss. It implied that
carrier recombination was dominating during long-distance transporting [52]. Moreover,
we demonstrated an R2R OPV module, which has eight interconnecting sub-cells, and the
J-V curve of the R2R OPV module is shown in Figure 7b. The total active area of the module
was 3.2 cm2, and the PCE of the module was achieved up to 6.30%.
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Figure 7. (a) J−V curves of R2R OPVs with various areas of the active layer, (b) J−V curve of R2R
OPV module interconnected in 8 sub-cells.

Table 7. Performance of R2R OPVs with different areas of active layers.

Active Area (cm2) Jsc (mA/cm2) Voc (V) FF PCE (%)

1 × 0.3 14.29 0.88 54.68 6.90
1 × 1 14.21 0.88 50.30 6.30
1 × 2 13.88 0.89 46.90 5.80
1 × 4 13.66 0.88 47.10 5.70

4. Conclusions

We developed a facile R2R slot-die coating approach to significantly enhance the
PCE of flexible OPVs based on the PBDB-T:ITIC blends. By adjusting the DIO solvent
additive, R2R oven temperature, post-thermal annealing conditions, and module design,
we showcased the capabilities of the R2R slot-die coated OPVs. The amount of DIO
additive in the photoactive layer solution was demonstrated to significantly improve the
performance of the OPV by tailoring the morphology and intermixing phase separation of
the R2R coating active layer. A notable PCE of 8.9% based on the R2R flexible OPV device
was achieved by optimizing the R2R slot-die coating process. Our study demonstrates the
feasibility of solution-processable slot-die coated high-performance OPVs.
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