
Citation: Kim, B.M.; Choi, J.S.; Jang,

S.; Park, H.; Lee, S.Y.; Jung, J.; Park, J.

Sustainable Strategies for

Synthesizing Lignin-Incorporated

Bio-Based Waterborne Polyurethane

with Tunable Characteristics.

Polymers 2023, 15, 3987. https://

doi.org/10.3390/polym15193987

Academic Editor: Ru-Jong Jeng

Received: 7 September 2023

Revised: 27 September 2023

Accepted: 29 September 2023

Published: 4 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Sustainable Strategies for Synthesizing Lignin-Incorporated
Bio-Based Waterborne Polyurethane with Tunable
Characteristics
Bo Min Kim 1 , Jin Sil Choi 2, Sunjin Jang 3, Hyeji Park 3, Seung Yeol Lee 2, Joonhoo Jung 4

and Jaehyeung Park 1,3,*

1 Department of Carbon and Fiber Composite Materials, Kyungpook National University,
Daegu 41566, Republic of Korea; kbm812@naver.com

2 Department of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
leesy1123@knu.ac.kr (S.Y.L.)

3 Department of Biofibers and Biomaterial Science, Kyungpook National University,
Daegu 41566, Republic of Korea; yuwe6633@naver.com (H.P.)

4 ANPOLY Inc., Pohang 37666, Republic of Korea; jjung@anpolyinc.com
* Correspondence: parkj@knu.ac.kr

Abstract: In this study, we introduce a novel approach for synthesizing lignin-incorporated castor-
oil-based cationic waterborne polyurethane (CWPU-LX), diverging significantly from conventional
waterborne polyurethane dispersion synthesis methods. Our innovative method efficiently reduces
the required solvent quantity for CWPU-LX synthesis to approximately 50% of that employed in
traditional WBPU experimental procedures. By incorporating lignin into the polyurethane matrix
using this efficient and reduced-solvent method, CWPU-LX demonstrates enhanced properties, ren-
dering it a promising material for diverse applications. Dynamic interactions between lignin and
polyurethane molecules contribute to improved mechanical properties, enhanced thermal stability,
and increased solvent resistance. Dynamic interactions between lignin and polyurethane molecules
contribute to improved tensile strength, up to 250% compared to CWPU samples. Furthermore, the
inclusion of lignin enhanced thermal stability, showcasing a 4.6% increase in thermal decomposition
temperature compared to conventional samples and increased solvent resistance to ethanol. More-
over, CWPU-LX exhibits desirable characteristics such as protection against ultraviolet light and
antibacterial properties. These unique properties can be attributed to the presence of the polyphenolic
group and the three-dimensional structure of lignin, further highlighting the versatility and potential
of this material in various application domains. The integration of lignin, a renewable and abundant
resource, into CWPU-LX exemplifies the commitment to environmentally conscious practices and
underscores the significance of greener materials in achieving a more sustainable future.

Keywords: bio-based polyurethane; waterborne polyurethane; lignin; castor oil; sustainability

1. Introduction

Polyurethanes (PUs), which are synthesized through the step-growth polymeriza-
tion of diisocyanate and polyol, are remarkably versatile and are utilized in a wide range
of industrial applications. For example, PUs are used in foams [1,2], additives [3], elas-
tomers [4], and coatings [5–7]. The exceptional and versatile mechanical, chemical, and
physical properties of PUs are the main reasons for their widespread usage [8]. Although
petroleum-based polyol is the material primarily used in commercial PU manufacturing,
increasing awareness of environmental issues and concerns about petroleum scarcity have
fueled research into alternative biomass resources [9]. Ongoing efforts are focused on
investigating and developing sustainable PU production techniques using polyols derived
from renewable biomass sources. For example, PU synthesis using renewable resources,
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such as vegetable-oil-derived polyols, has emerged as a promising approach. Fatty acids
are commonly utilized as polyols. Various vegetable oils, including those derived from
castor, soybean, cashew nut shell liquid, and cotton seed, have been investigated for their
potential as sustainable polyol sources [10]. The use of vegetable oil as a raw material in
the PU industry is gaining much attention because of the attractiveness of such oils as a
reliable starting material that offers diverse opportunities for chemical transformations to
develop novel products [11].

In many applications, PUs are used in conventional-solvent-based formulations that
heavily rely on organic solvents. However, concerns about the generation of volatile organic
compounds (VOCs) and hazardous air pollutants have led to an active investigation into
developing environmentally friendly waterborne PU formulations that eliminate the need
for organic solvents. Waterborne polyurethane (WPU) is a polymer that is dispersed in
water and has minimal or no VOCs, making it advantageous because it enables stable
storage and an eco-friendly solution [7]. WPU exhibits an exceptional adhesion ability
to diverse substrates, including textile, leather, glass, and polymers. WPU also forms a
transparent and odorless plastic coating that dries rapidly [12,13]. However, WPU has
lower mechanical strength than solvent-based PUs, and hence, various additives such as
fillers are used to enhance its properties.

Recently, lignin has gained attention as a filler to improve the physical properties
and functionality of WPU [14]. Lignin is a renewable biomass obtained from plants, and
has the second largest proportion after cellulose and it is being increasingly recognized
for its abundance and cost-effectiveness. The structure of lignin is characterized by a
three-dimensional network, in which three diverse phenylpropane units are interconnected
through carbon–carbon bonds and ether linkages. It is a promising candidate for the
formulation of new polymer composites because of its eco-friendly characteristics, dynamic
functionality, and biodegradable properties [15]. For example, it has been incorporated into
polybutylene adipate-co-terephthalate as a food packaging material because of its oxidant,
antibacterial, and barrier functionalities [16]. Functionalized lignin was also employed to
fabricate PU foam with an enhanced modulus and specific compressive strength [17].

Ongoing studies are exploring the integration of lignin into PU matrices, with a
focus on enhancing flame retardancy, UV shielding, and the incorporation of antibacterial
functionalities for a wide array of applications [18–20]. The influence of different types of
lignin on the PU network was examined during the synthesis of PU by using commonly
employed soft components such as polyether, polyethylene glycol, and polyester [21]. A
study focused on synthesizing a bio-based PU coating resin by modifying vinylic acid to
yield an isocyanate group, which subsequently reacted with the hydroxyl group of lignin
to form a urethane group [22]. Furthermore, because of the antioxidant and UV-blocking
properties of lignin, a peptide-delivery PU carrier was fabricated [23].

In this study, a cost-effective and environmentally sustainable approach was intro-
duced for creating bio-based nanocomposites by incorporating lignin into castor-oil-based
cationic waterborne polyurethane (CWPU-LX) through a straightforward blending pro-
cedure. By incorporating lignin into the polyurethane matrix using this efficient and
reduced-solvent method, the resulting CWPU-LX showcases enhanced properties, mak-
ing it a promising material for various applications while promoting a more sustainable
approach to waterborne polyurethane synthesis.

2. Materials and Methods
2.1. Materials

The bio-polyol used in this study was castor oil (CO), which was procured from
Alfa Aesar (Ward Hill, MA, USA). Lignin in the form of sulfonic acid calcium salt was
purchased from Sigma-Aldrich (water soluble, contains 5 wt% Ca, impurities <5 wt%,
St. Louis, MO, USA). The molecular weights of CO and lignin were determined by gel
permeation chromatography (GPC) analysis as 1625 and 2029 g mol−1, respectively. Polyte-
tramethylene ether glycol 2000 (PTMEG) was purchased from Korea PTG Co., Ltd (Ulsan,
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Republic of Korea). Isophorone diisocyanate (IPDI), N-methyldiethanolamine (MDEA),
and diethanolamine (DEA) were procured from Samchun Chemical (Seoul, Republic of
Korea). Dibutyltin didodecanoate (DBTDL) was purchased from Junsei Chemical (Tokyo,
Japan). Methyl ethyl ketone (MEK) and acetic acid (AA) were obtained from Daejung Chem-
ical (Busan, Republic of Korea). All materials were used as received without additional
purification.

2.2. Synthesis of CWPU-LX

A dry three-neck flask was used to homogenize IPDI and MDEA using a mechanical
stirrer at 50 ◦C for 50 min. Subsequently, CO was added to the mixture, and the reaction
proceeded at 65 ◦C for 30 min. A single drop of DBTDL was added to treat the mixture.
DEA was incorporated to extend the prepolymer chain, and MEK was added to lower the
viscosity of the mixture. The resulting mixture was stirred for 3 h at 65 ◦C. Upon cooling
to 30 ◦C, AA was introduced as a neutralizer, and the mixture was stirred for 30 min. The
mixture was then dispersed with aqueous solutions at a stirring speed of 400 rpm for a
period of 12 h. Finally, an environmentally friendly castor-oil-based cationic waterborne PU
(CWPU) was obtained. In the preparation of the aqueous solutions, various concentrations
of lignin (0, 1, 3, 5, and 7 wt% to the solid contents of CWPU) were measured and dispersed
in 100 mL of deionized water. The interaction between the dispersed urethane molecules
and lignin molecules within the aqueous solution led to the formation of stable emulsions.
Subsequently, a rotary evaporator was used to remove any remaining MEK present in the
reactor; thus, CWPU with a total solid content of 8–10 wt% was obtained. Based on the
amount of lignin added, the resulting CWPU samples were denoted as CWPU-LX, where X
represented the percentage of lignin in the CWPU. The CWPU-LX films were obtained by
the solvent-casting method in a polytetrafluoroethylene mold. For comparison, PTMEG-L0
was synthesized using PTMEG as the polyol following the same procedure as described
above. The molar ratios of the chemicals are listed in Table 1.

Table 1. Formulation of the bio-based polyurethane sample.

Sample Polyol (func. mol) IPDI
(func. mol)

Chain Extender
(func. mol) Lignin

(wt%)
Content of Bio-Based

Component (wt%)
CO PTMEG MDEA DEA

CWPU-L0 1 -

2.5 0.6 0.1

0 47.35%
CWPU-L1 1 - 1 47.89%
CWPU-L3 1 - 3 48.92%
CWPU-L5 1 - 5 49.85%
CWPU-L7 1 - 7 50.81%
PTMEG-L0 - 1 0 0.00%

2.3. Characterization

The molecular weight and distribution of the prepared bio-based CWPU samples
were analyzed by the GPC using the Alliance e2695 instrument manufactured by Waters
Corp., Milford, MA, USA. The flow rate was set to 1 mL min−1 and the temperature
was maintained at 35 ◦C. Tetrahydrofuran (THF) was used as the mobile-phase solvent
to determine the molecular weight of CWPU-LX. The surface morphology of CWPU-
LX was examined by field-emission scanning electron microscopy and energy-dispersive
spectroscopy (SEM-EDS, SU8230, Hitachi, Tokyo, Japan) with a working distance of 15 mm
and an acceleration voltage of 15 kV. Fourier transform infrared spectroscopy (FT-IR; Nicolet
380, Thermo Fisher Scientific, Waltham, MA, USA) was performed using the attenuated
total reflection method (Smart iTR ZnSe) to determine the chemical structure of lignin and
CWPU. The thermal stability of the samples was analyzed using a Q500 TGA thermal
analyzer (TA, Robbinsville, NJ, USA) in a nitrogen atmosphere with a heating rate of
10 ◦C min−1 and a temperature range of 25–800 ◦C. Dynamic mechanical analysis was
conducted to investigate the thermomechanical properties of the CWPU films. The film
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samples were subjected to cyclic loading with a frequency of 1 Hz over a temperature
range of −50–70 ◦C with a temperature variation rate of 5 ◦C min−1. The dimensions of
the specimens were 40 × 10 × 0.4 mm (length × width × thickness). The mechanical
properties of the prepared CWPU films were evaluated using a universal testing machine
(UTM, OTT003, Oriental TM, Ansan, Republic of Korea) with a 20 kgf load cell and
an extension rate of 10 mm min−1. A minimum of five specimens were tested for each
sample. X-ray diffraction (XRD) experiments were performed using a Panalytical Empyrean
X-ray diffractometer with CuKα radiation (λ = 0.15418 nm). The water contact angle was
measured at room temperature (25 ◦C) using the static sessile drop method with a contact
angle measurement system (Holmarc, Kerala, India). For drop shape analysis, the drop
analysis plugin available in ImageJ software was used. The optical absorbance of the
CWPU-LX films was measured for the wavelength range of 190–800 nm using an OPTIZEN
POP UV/visible light (VIS) spectrophotometer (Lklab, Namyangju-si, Republic of Korea).

2.4. Determining the Hydroxyl Content of Castor Oil

The hydroxyl content of CO was determined in accordance with ASTM D 1957. The
hydroxyl value was calculated using the following equation:

Hydroxyl value =
B + (SA/C)− V

S
× N × 56.1 (1)

where A represents the volume (in mL) of KOH solution required for the titration of the
acid value; B represents the volume (in mL) of KOH solution required for the titration of
the reagent blank; C represents the mass (in g) of the sample used for the acid value; V
represents the volume (in mL) of KOH solution required for the titration of the acetylated
specimen; and S represents the mass (in g) of the sample used for acetylation. The hydroxyl
value of CO was determined to be 178.9 mg KOH g−1 and 3.19 mmol g−1.

2.5. Antibacterial Properties Test

The antibacterial properties of the resulting CWPU-LX films against Gram-positive
bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were evaluated
using a modified swab inoculation assay [24]. The objective of this investigation was
to rigorously assess the bacterial attachment and survival on the surface of CWPU-LX
films. The bacteria were cultured in nutrient broth at 25 ◦C for 24 h, and a bacterial stock
was prepared by diluting the cells to a concentration of 1 × 104 colony-forming units per
milliliter (CFU mL−1) using nutrient broth. A 300 µL volume of the bacterial stock was
inoculated onto the control and CWPU-LX films, and spread on the film surfaces using a
cotton swab. The films were incubated at 25 ◦C for 24 h under a relative humidity > 90%.
The samples were carefully transferred onto the agar plates, ensuring proper contact, and
then incubated at 25 ◦C for 4 days. The antibacterial efficacy was determined by counting
the CFUs of viable bacteria on the agar plates using Image J.

3. Results and Discussion

The synthetic mechanism of CWPU-LX is illustrated in Scheme 1. The network
structure of CWPU is derived from the reaction of the hydroxyl groups of CO and MDEA
with the isocyanate group of IPDI, resulting in the formation of isocyanate-terminated
urethane prepolymers. These prepolymers react with DEA (which is used as a chain
extender) and form PU. PU is neutralized with AA and an aqueous lignin solution is
added to it to obtain CWPU-LX. The incorporation of lignin between PU molecules leads
to the formation of stable CWPU-LX emulsions. The presence of lignin facilitates diverse
interactions and enhances the mechanical properties of the material via hydrogen bonding
and dynamic interactions between PU molecules and lignin. The molecular weights of
the synthesized CWPU-LX (as characterized by GPC) are summarized in Table 2. The
polydispersity index (PDI) values of all synthesized CWPU lie between 2 and 3.5, while the
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number average molecular weight (Mn) values range from 7000 to 15,000 and the weight
average molecular weight (Mw) values range from 20,000 to 35,000.
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Scheme 1. Synthesis mechanism of a castor oil (CO)-based cationic waterborne polyurethane with
lignin (CWPU-LX).

Table 2. Gel permeation chromatography (GPC) results of the prepared polytetramethylene ether
glycol (PTMEG-L0) and CWPU-LX.

Sample Mw Mn PDI

CWPU-L0 21,781 7320 2.97
CWPU-L1 22,980 7941 2.89
CWPU-L3 32,604 14,716 2.22
CWPU-L5 24,937 7107 3.5
CWPU-L7 35,102 10,181 3.44
PTMEG-L0 55,831 29,721 1.87



Polymers 2023, 15, 3987 6 of 16

The experimental approach in this study significantly deviates from the conventional
waterborne polyurethane dispersion synthesis method. The typical method of polyurethane
synthesis involves the initial reaction between polyol and isocyanate, resulting in the
formation of a prepolymer, which is then further extended by the addition of an extender
through a subsequent reaction. The use of CO, which contains three hydroxyl groups, in
this particular study presents a distinct challenge compared to conventional polyols. The
chain extension process with CO leads to a rapid increase in viscosity. Consequently, the
addition of multiple solvents becomes necessary to reduce the viscosity. In this study, a
different approach was adopted, where a short urethane chain was initially formed by
combining MDEA and IPDI. Subsequently, a prepolymer was synthesized by reacting the
short urethane chain with CO. The polyurethane was prepared through an additional chain
extension reaction with DEA. The implementation of this method effectively reduces the
solvent quantity required for CWPU-LX synthesis to approximately 50% of that used in
traditional experimental procedures. This reduction in solvent consumption contributes
to the production of an eco-friendly polyurethane, emphasizing the sustainability of the
synthesis process.

Figure 1 shows a photograph of the prepared CWPU-LX film, which is translucent.
With increasing lignin content, the color of the film changes from light yellow to brown.
Notably, the integration of lignin into the CWPU film does not produce any observable
particulate entities. The SEM-EDS analysis (Figure S1, Supplementary Material) shows that
the absence of observable particulate entities or significant agglomeration in specific regions
of the film. The absence of observable particulate entities or significant agglomeration in
specific regions of the film, as indicated by the results shown in the images, supported our
assertion of good lignin dispersion.
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The FT-IR spectra of the materials and the prepared CWPU-LX are shown in Figure 2.
IPDI reveals the appearance of a stretching vibration absorption peak attributed to the
isocyanate groups at wavenumbers in the range of 2280–2300 cm−1. The spectrum of CO
exhibits absorption peaks at 2930 and 2850 cm−1, which are assigned to the CH– and CH2
vibrations, respectively. In both the CO and lignin spectra, a broad stretching vibration
peak associated with –OH is observed in the wavenumber range of 3300–3500 cm−1. The
spectrum of lignin shows absorption peaks at 1412, 1512, and 1600 cm−1, which correspond
to the stretching vibrations of aromatic-ring structures [25]. The C–O stretching vibration
of the G (guaiacol) ring is assigned to the peak observed near 1190 cm−1, while the peak
at around 1050 cm−1 is attributed to the S=O stretching of sulfonate groups in lignin [26].
Upon the formation of the urethane bond between polyol and isocyanate during the
reaction, the isocyanate group corresponding to the 2280 cm−1 peak is no longer present in
CWPU-LX. The FT-IR spectrum of CWPU-LX does not indicate any stretching vibration
peaks corresponding to the –OH groups in the wavenumber range of 3300–3500 cm−1.
Instead, a sharp peak associated with the stretching vibration of –NH in the carbamate
groups appears at 3330 cm−1, confirming the successful formation of PU through the
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reaction between the polyol and isocyanate. Furthermore, the –C=O stretching vibration
and –C–O–C– bond of the urethane linkages in CWPU are assigned to the peaks observed
at 1697 and 1234 cm−1, respectively [27]. The effect of the lignin ratio on peak intensity is
negligible, likely because of the structural characteristics of lignin (such as steric hindrance),
which restrict the influence of its hydroxyl group and hinder the observation of peak
intensity changes with varying lignin amounts [28]. Moreover, the overlapping of peaks
can complicate the accurate observation of intensity changes, making it challenging to
pinpoint specific alterations directly attributable to lignin content. This also suggests that
lignin does not form a direct chemical bond among the PU molecules.
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The thermal properties of the prepared CWPU-LX are shown in Figure 3 and Table 3.
The figure shows the parameters Tonset, T50, Tmax, and Tg. The thermal stability of CWPU-
LX is influenced by the characteristics of the soft and hard segments and their intermolecular
interactions [29]. The decomposition of CWPU-LX occurs primarily through the breakdown
of the urethane groups at temperatures of 200–300 ◦C, while CO and lignin undergo
decomposition at higher temperatures, specifically between 300 ◦C and 400 ◦C [30,31]. The
T50 value increases as the lignin content increases, indicating that the presence of lignin
positively affects the rate of weight loss during decomposition. The observed increase in
T50 can be attributed to the enhanced crosslinking density of CWPU-LX and the filler effect
of lignin [25,32]. Figure 3b shows that the correlation between lignin content and Tg of
CWPU-LX can be evaluated from the loss factor analysis in DMA. An increase in lignin
content leads to a corresponding increase in the Tg value of CWPU-LX. With higher lignin
concentrations, the tan δ peak of CWPU-LX becomes broader, and its maximum value
decreases, indicating an increase in the crosslinking densities. This suggests that the higher
lignin content leads to an increase in crosslinking density, resulting in decreased energy
dispersion along the polymer chain [25,33].

The mechanical properties of the CWPU-LX films are shown in Figure 4 and Table 4.
With an increase in the lignin concentration, the CWPU-LX films exhibit improved mechan-
ical performance. The lignin content of CWPU-LX and its tensile strength are positively
correlated. The tensile strength increases from 1.10 MPa at 0 wt% to 5.57 MPa at 7 wt%,
while the elongation at break decreases from 666.9% to 314.3%. The improved mechanical
properties of the CWPU-LX films can be attributed to the increase in the strength of the
interactions between PU and lignin molecules [25]. Lignin fills the gaps in CWPU-LX,
thus increasing the free volume of the polymer matrix and improving the density of the
crosslinking. This results in improved mechanical properties. The introduction of lignin
into the polymer matrix alters the arrangement of the polymer chains, resulting in stronger
hydrogen bonds than in the initial state of the polymer [34]. As the amount of lignin in-
creases, the strength of these interactions also increases. However, at higher concentrations,
factors such as steric hindrance can cause weaker interactions [35,36].
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Table 3. Thermal properties of CWPU-LX: summary of the thermal analysis results.

Sample
Thermal Properties

TGA Analysis (◦C) DMA Analysis (◦C)
Tonset T50 Tmax Tg

CWPU-L0 263.94 319.19 303.59 18.41
CWPU-L1 256.37 319.92 300.69 22.44
CWPU-L3 256.27 323.77 305.86 25.76
CWPU-L5 260.07 327.95 304.11 31.67
CWPU-L7 261.04 333.78 297.94 27.44

Table 4. Summary of mechanical properties of the CWPU-LX films.

Sample Tensile Strength (MPa) Elongation at Break (%)

CWPU-L0 1.10 666.9
CWPU-L1 1.69 438.2
CWPU-L3 3.43 375.2
CWPU-L5 4.18 340.9
CWPU-L7 5.57 314.3
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The influence of lignin on the crystallization behavior of PU elastomers was examined
by XRD analysis. Figure 5a shows the broad scattering peak in the diffraction curves
of lignin at approximately 2θ = 21◦–23◦ and Figure 5b shows the broad scattering peaks
of CWPU-LX at approximately 2θ = 8◦ and 18◦–19◦. The peak at 2θ = 8◦ indicates a
crystalline region. The peak at 2θ = 18◦–19◦ suggests that CWPU-LX has an amorphous
structure, and the increasing sharpness of this peak indicates the development of ordered
amorphous regions [37,38]. The concentration of lignin affects the formation of the ordered
amorphous regions in the PU molecular chain, as evidenced by the sharper scattering
peak at 2θ = 18◦–19◦ with increasing lignin content. The degree of crystallinity can be
estimated through the full width at half maximum (FWHM) values of the XRD peak. As
shown in Table 5, higher lignin ratios result in higher FWHM values around 2θ = 19◦; this
result indicates a random shape in the ordered amorphous region because of hydrogen
bonding between the lignin and PU molecules. Addition of lignin to the PU matrix
results in additional hydrogen bonds, which enhances the constraint and orientation of
the chain segments during stretching; therefore, the material is drastically self-reinforced
through strain-induced crystallization [39]. Furthermore, in agreement with the S–S curve
results shown in Figure 4, an increase in the content of lignin induces a transition from an
amorphous region to an ordered amorphous region, leading to enhanced tensile strength
and reduced elongation at break. These effects are attributed to the structural characteristics
of the polyphenol in lignin and to chemical effects such as hydrogen bonding. Thus,
incorporating lignin in PU elastomers leads to the formation of dynamic molecular chains
and ultimately improves the mechanical properties of the material [40].

Table 5. FWHM analysis of CWPU-LX.

Samples FWHM a

CWPU-L0 6.5504 ± 0.03
CWPU-L1 6.5573 ± 0.03
CWPU-L3 6.6449 ± 0.03
CWPU-L5 6.6445 ± 0.05
CWPU-L7 6.7008 ± 0.02

a Full width at half maximum.
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The results of the water contact angle test reveal that the hydrophilicity of the films
is influenced by lignin concentration; higher lignin ratios result in higher contact angles.
The enhancement of the hydrogen bond between the lignin and CWPU, as the amount
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of lignin increases, contributes to the compactness of CWPU-LX, limiting water penetra-
tion and reducing surface wetting [25,41]. Figure 6 shows that PTMEG-L0 has a higher
hydrophilicity than CWPU-L0. Generally, the crosslink density between CO and isocyanate
is higher than that of the petroleum-based polyol because of the disparity in the number of
hydroxyl groups present in their respective molecules. Petroleum-based polyol contains
two hydroxyl groups per molecule, whereas CO contains three hydroxyl groups; thus, CO
has a higher crosslink density. The higher hydrophilicity of petroleum-based waterborne
PU, compared to CWPU-L0, can be attributed to this difference in crosslink density [42,43].
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The ethanol resistance of CWPU-LX is shown in Figure 7. The ethanol resistance test
revealed complete dissolution of CWPU-L0 and PTMEG PU after a 10 h exposure to ethanol.
PTMEG-L0, CWPU-L0, CWPU-L1, and CWPU-L3 completely dissolve in ethanol, leaving
behind a minimal residual film. In contrast, CWPU-L5 and CWPU-L7 remain in the film
form when exposed to ethanol; CWPU-L5 exhibits relatively more swelling than CWPU-L7.
To synthesize PTMEG PU and CWPU-LX, we used MDEA and DEA with cationic ions as
the extenders. Under the influence of cations, PTMEG-L0 and CWPU-L0 dissolve well in
ethanol. As the MDEA content increases, the ethanol uptake increases accordingly because
of the increased presence of hydrophilic ionic groups and crosslinking densities [29,30].
However, in the case of CWPU-LX, lignin enters into the voids of the urethane chain
and interacts with the urethane chain. When the concentration of lignin increases, the
interaction between lignin and the urethane chain becomes stronger, surpassing the strength
of interaction between ethanol and the urethane chain. This enhanced interaction helps
preserve the shape of the CWPU-LX film.

Because of the structure of lignin, it can effectively block UV radiation. Lignin contains
UV-absorbing chromophore groups such as phenolics, ketones, quinoid structures, and
intramolecular hydrogen bonds. Hence, lignin is highly desirable for several applications
owing to its UV-blocking properties [44–46]. To achieve effective UV absorption, a higher
concentration of lignin should be incorporated into CWPU-LX, as shown in Figure 8. The
UV spectrum encompasses three regions: UV A, B, and C, with corresponding wavelength
ranges of 320–400, 280–320, and 100–280 nm, respectively. The addition of lignin to CWPU-
LX leads to enhanced UV-blocking capability. The CWPU-L1 film exhibits UV absorption
up to 300 nm (UV-C). CWPU-L3, CWPU-L5, and CWPU-L7 can absorb UV wavelengths up
to 315 nm (UV-B and C), 320 nm (UV-B and C), and 380 nm (UV-A, B, and C), respectively.
As the lignin content increases relative to the PU solid content during the film fabrication
process, the amount of lignin incorporated within the manufactured film increases as well.
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This higher lignin content significantly contributes to the elevated UV-blocking capabilities
of the resulting film. Moreover, as depicted in Figure 1, the deepening color and increasing
opacity of the film with higher lignin content are visually evident. This observation aligns
with the phenomenon where heightened lignin content leads to a darker coloration and a
gradual increase in opacity. Consequently, the overall transmittance in both the UV and
visible regions decreases due to the higher absorption and scattering properties attributed
to lignin-rich films.

Figure 7. Ethanol resistance of PTMEG-L0 and CWPU-LX films (a) at 0 h and (b) after 10 h.
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The antibacterial activities of CWPU-LX against Gram-positive (Staphylococcus au-
reus) and Gram-negative (Escherichia coli) bacteria were analyzed by a modified swab
inoculation assay. As shown in Figure 9, the antibacterial activity is positively correlated
with the lignin content in the films. The introduction of lignin leads to a significant in-
crease in antibacterial efficacy against S. aureus. Specifically, films CWPU-L3, CWPU-L5,
and CWPU-L7 exhibit impressive antibacterial activities of 99.99%, while the activity of
CWPU-L0 is 40.25%. Similarly, the antibacterial activity against E. coli show a substantial
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improvement, with CWPU-L7 demonstrating an activity of 97.27%, compared to 1.58% for
CWPU-L0. This enhancement in antibacterial properties can be attributed to the synergistic
effect of lignin and ammonium cations (MDEA) in the CWPU-LX samples. The unique
three-dimensional structure and polyphenolic composition of lignin, containing phenolic
hydroxyl and methoxy groups, have been recognized as essential factors contributing to its
antibacterial activity [47–49]. Additionally, the use of ammonium cations, such as MDEA,
as an extender in the WBPU synthesis contributed to the antibacterial effect. Their strong
affinity towards bacterial cells, due to their positive charge, further contributed to the
observed antibacterial effect [50,51]. The combination of lignin’s polyphenolic composition
and the presence of ammonium cations contributed to the observed antibacterial effect.
These findings highlight the potential of CWPU-LX films as sustainable and antimicrobial
materials for various applications, including packaging and biomedical devices.
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4. Conclusions

In this research, we present a novel and environmentally conscious method for the
synthesis of lignin-incorporated castor-oil-based cationic waterborne polyurethane (CWPU-
LX), which diverges significantly from conventional approaches. The modified synthesis
route resulted in a significant reduction in solvent quantity required for CWPU-LX synthe-
sis, lowering it to approximately 50% of that used in traditional experimental procedures.
The reduction in solvent consumption highlights the eco-friendliness and sustainability of
our synthesis process, aligning with the growing emphasis on green chemistry and envi-
ronmentally friendly materials. By incorporating lignin into the polyurethane matrix using
this efficient and reduced-solvent method, the resulting CWPU-LX showcases enhanced
properties, making it a promising material for various applications while promoting a
more sustainable approach to waterborne polyurethane synthesis. The dynamic interaction
between lignin and PU molecules resulted in substantial enhancements in mechanical
properties, including a notable elevated tensile strength from 1.10 MPa to 5.57 MPa. Addi-
tionally, this interaction manifested enhanced thermal stability, with an increase in thermal
decomposition temperature from 319.19 ◦C to 333.78 ◦C. Furthermore, CWPU-LX exhibits
exceptional attributes, such as UV-light protection and antibacterial properties, which can
be attributed to the presence of the polyphenolic group and the unique three-dimensional
structure of lignin. These findings underscore the versatility and potential of CWPU-LX for
various applications like food packaging, coatings, and biomedical applications.

Our research not only introduces an innovative synthesis approach for advanced
polyurethane materials but also promotes a more sustainable and eco-friendly direction
in waterborne polyurethane production. The successful integration of lignin, a renewable
and abundant resource, into CWPU-LX exemplifies our commitment to environmentally
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conscious practices, emphasizing the significance of greener materials in striving towards a
more sustainable future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15193987/s1, Figure S1: Scanning electron microscopy
and energy dispersive spectroscopy (SEM-EDS) images of the CWPU-LX films.
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